Insights into the Role of Transcriptional Gene Silencing in Response to Herbicide-Treatments in Arabidopsis thaliana

. 2021 Mar 24 ; 22 (7) : . [epub] 20210324

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33804990

Grantová podpora
437317/2018-8 Conselho Nacional de Desenvolvimento Científico e Tecnológico
AP1859-2 Deutsche Stiftung Friedensforschung
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund
BEX 10896/14-7 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Herbicide resistance is broadly recognized as the adaptive evolution of weed populations to the intense selection pressure imposed by the herbicide applications. Here, we tested whether transcriptional gene silencing (TGS) and RNA-directed DNA Methylation (RdDM) pathways modulate resistance to commonly applied herbicides. Using Arabidopsis thaliana wild-type plants exposed to sublethal doses of glyphosate, imazethapyr, and 2,4-D, we found a partial loss of TGS and increased susceptibility to herbicides in six out of 11 tested TGS/RdDM mutants. Mutation in REPRESSOR OF SILENCING 1 (ROS1), that plays an important role in DNA demethylation, leading to strongly increased susceptibility to all applied herbicides, and imazethapyr in particular. Transcriptomic analysis of the imazethapyr-treated wild type and ros1 plants revealed a relation of the herbicide upregulated genes to chemical stimulus, secondary metabolism, stress condition, flavonoid biosynthesis, and epigenetic processes. Hypersensitivity to imazethapyr of the flavonoid biosynthesis component TRANSPARENT TESTA 4 (TT4) mutant plants strongly suggests that ROS1-dependent accumulation of flavonoids is an important mechanism for herbicide stress response in A. thaliana. In summary, our study shows that herbicide treatment affects transcriptional gene silencing pathways and that misregulation of these pathways makes Arabidopsis plants more sensitive to herbicide treatment.

Zobrazit více v PubMed

Oerke E.C. Crop losses to pests. J. Agric. Sci. 2006;144:31–43. doi: 10.1017/S0021859605005708. DOI

Busi R., Vila-Aiub M.M., Beckie H.J., Gaines T.A., Goggin D.E., Kaundun S.S., Lacoste M., Neve P., Nissen S.J., Norsworthy J.K., et al. Herbicide-resistant weeds: From research and knowledge to future needs. Evol. Appl. 2013;6:1218–1221. doi: 10.1111/eva.12098. PubMed DOI PMC

Heap I. The International Survey of Herbicide Resistant Weeds. [(accessed on 17 January 2021)]; Available online: www.weedscience.org.

Evans J.A., Tranel P.J., Hager A.G., Schutte B., Wu C.X., Chatham L.A., Davis A.S. Managing the evolution of herbicide resistance. Pest Manag. Sci. 2016;72:74–80. doi: 10.1002/ps.4009. PubMed DOI PMC

Baucom R.S., Busi R. Evolutionary epidemiology in the field: A proactive approach for identifying herbicide resistance in problematic crop weeds. New Phytol. 2019;223:1056–1058. doi: 10.1111/nph.15959. PubMed DOI

Comont D., Hicks H., Crook L., Hull R., Cocciantelli E., Hadfield J., Childs D., Freckleton R., Neve P. Evolutionary epidemiology predicts the emergence of glyphosate resistance in a major agricultural weed. New Phytol. 2019;223:1584–1594. doi: 10.1111/nph.15800. PubMed DOI

Penner D. Turf weeds and their control. In: Turgeon A.J., editor. Herbicide Action and Metabolism. 2nd ed. American Society of Agronomy; Madison, WI, USA: 1994. pp. 37–70.

Powles S.B., Yu Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010;61:317–347. doi: 10.1146/annurev-arplant-042809-112119. PubMed DOI

Patzoldt W.L., Hager A.G., McCormick J.S., Tranel P.J. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc. Natl. Acad. Sci. USA. 2006;103:12329–12334. doi: 10.1073/pnas.0603137103. PubMed DOI PMC

Gaines T.A., Zhang W.L., Wang D.F., Bukun B., Chisholm S.T., Shaner D.L., Nissen S.J., Patzoldt W.L., Tranel P.J., Culpepper A.S., et al. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc. Natl. Acad. Sci. USA. 2010;107:1029–1034. doi: 10.1073/pnas.0906649107. PubMed DOI PMC

Varanasi V.K., Godar A.S., Peterson D.E., Shoup D., Jugulam M. A target-site point mutation in henbit (Lamium amplexicaule) confers high-level resistance to ALS-inhibitors. Weed Sci. 2016;64:231–239. doi: 10.1614/WS-D-15-00152.1. DOI

Iwakami S., Endo M., Saika H., Okuno J., Nakamura N., Yokoyama M., Watanabe H., Toki S., Uchino A., Inamura T. Cytochrome P450 CYP81A12 and CYP81A21 are associated with resistance to two acetolactate synthase inhibitors in Echinochloa phyllopogon. Plant Physiol. 2014;165:618–629. doi: 10.1104/pp.113.232843. PubMed DOI PMC

Gaines T.A., Lorentz L., Figge A., Herrmann J., Maiwald F., Ott M.C., Han H.P., Busi R., Yu Q., Powles S.B., et al. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J. 2014;78:865–876. doi: 10.1111/tpj.12514. PubMed DOI

Ghanizadeh H., Harrington K.C. Non-target Site Mechanisms of Resistance to Herbicides. Crit. Rev. Plant Sci. 2017;36:24–34. doi: 10.1080/07352689.2017.1316134. DOI

Pan L., Yu Q., Han H.P., Mao L.F., Nyporko A., Fan L.J., Bai L.Y., Powles S. Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona. Plant Physiol. 2019;181:1519–1534. doi: 10.1104/pp.19.00979. PubMed DOI PMC

Délye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013;69:176–187. doi: 10.1002/ps.3318. PubMed DOI

Gressel J. Evolving understanding of the evolution of herbicide resistance. Pest Manag. Sci. 2009;65:1164–1173. doi: 10.1002/ps.1842. PubMed DOI

Kim G., Clarke C.R., Larose H., Tran H.T., Haak D.C., Zhang L.Q., Askew S., Barney J., Westwood J.H. Herbicide injury induces DNA methylome alterations in Arabidopsis. PeerJ. 2017;5:e3560. doi: 10.7717/peerj.3560. PubMed DOI PMC

Markus C., Pecinka A., Karan R., Barney J.N., Merotto A. Epigenetic regulation-contribution to herbicide resistance in weeds? Pest Manag. Sci. 2018;74:275–281. doi: 10.1002/ps.4727. PubMed DOI

Hauser M.T., Aufsatz W., Jonak C., Luschnig C. Transgenerational epigenetic inheritance in plants. Biochim. Biophys. Acta Gene Regul. Mech. 2011;1809:459–468. doi: 10.1016/j.bbagrm.2011.03.007. PubMed DOI PMC

Pecinka A., Chevalier C., Colas I., Kalantidis K., Varotto S., Krugman T., Michailidis C., Valles M.P., Munoz A., Pradillo M. Chromatin dynamics during interphase and cell division: Similarities and differences between model and crop plants. J. Exp. Bot. 2020;71:5205–5222. doi: 10.1093/jxb/erz457. PubMed DOI

Cortijo S., Wardenaar R., Colome-Tatche M., Gilly A., Etcheverry M., Labadie K., Caillieux E., Hospital F., Aury J.M., Wincker P., et al. Mapping the epigenetic basis of complex traits. Science. 2014;343:1145–1148. doi: 10.1126/science.1248127. PubMed DOI

Mozgova I., Hennig L. The polycomb group protein regulatory network. Annu. Rev. Plant Biol. 2015;66:269–296. doi: 10.1146/annurev-arplant-043014-115627. PubMed DOI

Matzke M.A., Mosher R.A. RNA-directed DNA methylation: An epigenetic pathway of increasing complexity. Nat. Rev. Genet. 2014;15:394–408. doi: 10.1038/nrg3683. PubMed DOI

Pecinka A., Dinh H.Q., Baubec T., Rosa M., Lettner N., Scheid O.M. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell. 2010;22:3118–3129. doi: 10.1105/tpc.110.078493. PubMed DOI PMC

Lu Y.C., Feng S.J., Zhang J.J., Luo F., Zhang S., Yang H. Genome-wide identification of DNA methylation provides insights into the association of gene expression in rice exposed to pesticide atrazine. Sci. Rep. 2016;6:1–15. doi: 10.1038/srep18985. PubMed DOI PMC

Nardemir G., Agar G., Arslan E., Erturk F.A. Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques. Theor. Exp. Plant Physiol. 2015;27:131–139. doi: 10.1007/s40626-015-0039-1. DOI

Margaritopoulou T., Tani E., Chachalis D., Travlos I. Involvement of epigenetic mechanisms in herbicide resistance: The case of Conyza canadensis. Agriculture. 2018;8:17. doi: 10.3390/agriculture8010017. DOI

Tyczewska A., Gracz-Bernaciak J., Szymkowiak J., Twardowski T. Herbicide stress-induced DNA methylation changes in two Zea mays inbred lines differing in Roundup (R) resistance. J. Appl. Genet. 2021:1–14. doi: 10.1007/s13353-021-00609-4. PubMed DOI PMC

Busi R., Goggin D.E., Heap I.M., Horak M.J., Jugulam M., Masters R.A., Napier R.M., Riar D.S., Satchivi N.M., Torra J., et al. Weed resistance to synthetic auxin herbicides. Pest Manag. Sci. 2018;74:2265–2276. doi: 10.1002/ps.4823. PubMed DOI PMC

Pikaard C.S., Scheid O.M. Epigenetic regulation in plants. Cold Spring Harb. Perspect. Biol. 2014;6:a019315. doi: 10.1101/cshperspect.a019315. PubMed DOI PMC

Morel J.B., Mourrain P., Beclin C., Vaucheret H. DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Curr. Biol. 2000;10:1591–1594. doi: 10.1016/S0960-9822(00)00862-9. PubMed DOI

Elmayan T., Proux F., Vaucheret H. Arabidopsis RPA2: A genetic link among transcriptional gene silencing, DNA repair, and DNA replication. Curr. Biol. 2005;15:1919–1925. doi: 10.1016/j.cub.2005.09.044. PubMed DOI

Baubec T., Finke A., Scheid O.M., Pecinka A. Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Rep. 2014;15:446–452. doi: 10.1002/embr.201337915. PubMed DOI PMC

Gong Z.H., Morales-Ruiz T., Ariza R.R., Roldan-Arjona T., David L., Zhu J.K. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell. 2002;111:803–814. doi: 10.1016/S0092-8674(02)01133-9. PubMed DOI

Stroud H., Greenberg M.V.C., Feng S.H., Bernatavichute Y.V., Jacobsen S.E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell. 2013;152:352–364. doi: 10.1016/j.cell.2012.10.054. PubMed DOI PMC

Calarco J.P., Borges F., Donoghue M.T.A., Van Ex F., Jullien P.E., Lopes T., Gardner R., Berger F., Feijo J.A., Becker J.D., et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell. 2012;151:194–205. doi: 10.1016/j.cell.2012.09.001. PubMed DOI PMC

Habermann K., Dedhia N., Parnell L., Preston R., Hillier L., Chen E., Marra M., Martienssen R., McCombie W.R., Mayer K., et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. PubMed

Caverzan A., Piasecki C., Chavarria G., Stewart C.N., Vargas L. Defenses against ROS in crops and weeds: The effects of interference and herbicides. Int. J. Mol. Sci. 2019;20:1086. doi: 10.3390/ijms20051086. PubMed DOI PMC

Neve P., Powles S. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum. Theor. Appl. Genet. 2005;110:1154–1166. doi: 10.1007/s00122-005-1947-2. PubMed DOI

Nowicka A., Tokarz B., Zwyrtkova J., Tomastikova E.D., Prochazkova K., Ercan U., Finke A., Rozhon W., Poppenberger B., Otmar M., et al. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant J. 2020;102:68–84. doi: 10.1111/tpj.14612. PubMed DOI

Sales M.A., Shivrain V.K., Burgos N.R., Kuk Y.I. Amino acid substitutions in the acetolactate synthase gene of red rice (Oryza sativa) confer resistance to imazethapyr. Weed Sci. 2008;56:485–489. doi: 10.1614/WS-07-165.1. DOI

Dill G.M. Glyphosate-resistant crops: History, status and future. Pest Manag. Sci. 2005;61:219–224. doi: 10.1002/ps.1008. PubMed DOI

Mithila J., Hall J.C., Johnson W.G., Kelley K.B., Riechers D.E. Evolution of resistance to auxinic herbicides: Historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 2011;59:445–457. doi: 10.1614/WS-D-11-00062.1. DOI

Zhu J.H., Kapoor A., Sridhar V.V., Agius F., Zhu J.K. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr. Biol. 2007;17:54–59. doi: 10.1016/j.cub.2006.10.059. PubMed DOI

Bharti P., Mahajan M., Vishwakarma A.K., Bhardwaj J., Yadav S.K. AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco. J. Exp. Bot. 2015;66:5959–5969. doi: 10.1093/jxb/erv304. PubMed DOI PMC

Qian W.Q., Miki D., Zhang H., Liu Y.H., Zhang X., Tang K., Kan Y.C., La H.G., Li X.J., Li S.F., et al. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science. 2012;336:1445–1448. doi: 10.1126/science.1219416. PubMed DOI PMC

Sun C.C., Chen S., Jin Y.J., Song H., Ruan S.L., Fu Z.W., Asad M.A.U., Qian H.F. Effects of the herbicide imazethapyr on photosynthesis in PGR5-and NDH-deficient Arabidopsis thaliana at the biochemical, transcriptomic, and proteomic levels. J. Agric. Food Chem. 2016;64:4497–4504. doi: 10.1021/acs.jafc.6b01699. PubMed DOI

Sales-Perez R.A., Saski C.A., Noorai R.E., Srivastava S.K., Lawton-Rauh A.L., Nichols R.L., Roma-Burgos N. RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide. PLoS ONE. 2018;13:e0195488. doi: 10.1371/journal.pone.0195488. PubMed DOI PMC

Cobb A.H., Reade P.H.R. Herbicides and Plant Physiology. 2nd ed. John Wiley & Sons; New York, NY, USA: 2010. 286p

Delye C., Duhoux A., Gardin J.A.C., Gouzy J., Carrere S. High conservation of the transcriptional response to acetolactate-synthase-inhibiting herbicides across plant species. Weed Res. 2018;58:2–7. doi: 10.1111/wre.12276. DOI

Dixon R.A., Paiva N.P. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7:1085–1097. doi: 10.2307/3870059. PubMed DOI PMC

Cummins I., Bryant D.N., Edwards R. Safener responsiveness and multiple herbicide resistance in the weed black-grass (Alopecurus myosuroides) Plant Biotechnol. J. 2009;7:807–820. doi: 10.1111/j.1467-7652.2009.00445.x. PubMed DOI

Cummins I., Wortley D.J., Sabbadin F., He Z.S., Coxon C.R., Straker H.E., Sellars J.D., Knight K., Edwards L., Hughes D., et al. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc. Natl. Acad. Sci. USA. 2013;110:5812–5817. doi: 10.1073/pnas.1221179110. PubMed DOI PMC

Burbulis I.E., Iacobucci M., Shirley B.W. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell. 1996;8:1013–1025. PubMed PMC

Xuan L.J., Zhang C.C., Yan T., Wu D.Z., Hussain N., Li Z.L., Chen M.X., Pan J.W., Jiang L.X. TRANSPARENT TESTA 4-mediated flavonoids negatively affect embryonic fatty acid biosynthesis in Arabidopsis. Plant Cell Environ. 2018;41:2773–2790. doi: 10.1111/pce.13402. PubMed DOI

Yuan J.S., Tranel P.J., Stewart C.N. Non-target-site herbicide resistance: A family business. Trends Plant Sci. 2007;12:6–13. doi: 10.1016/j.tplants.2006.11.001. PubMed DOI

Hatzios K.K., Burgos N. Metabolism-based herbicide resistance: Regulation by safeners. Weed Sci. 2004;52:454–467. doi: 10.1614/P2002-168C. DOI

Duhoux A., Pernin F., Desserre D., Délye C. Herbicide safeners decrease sensitivity to herbicides inhibiting acetolactate-synthase and likely activate non-target-site-based resistance pathways in the major grass weed Lolium sp. (Rye-Grass) Front. Plant Sci. 2017;8:1310. doi: 10.3389/fpls.2017.01310. PubMed DOI PMC

Streibig J.C. Herbicide bioassay. Weed Res. 1988;28:479–484. doi: 10.1111/j.1365-3180.1988.tb00831.x. DOI

Vongs A., Kakutani T., Martienssen R.A., Richards E.J. Arabidopsis thaliana DNA methylation mutants. Science. 1993;260:1926–1928. doi: 10.1126/science.8316832. PubMed DOI

Rozhon W., Baubec T., Mayerhofer J., Scheid O.M., Jonak C. Rapid quantification of global DNA methylation by isocratic cation exchange high-performance liquid chromatography. Anal. Biochem. 2008;375:354–360. doi: 10.1016/j.ab.2008.01.001. PubMed DOI

Garcia-Alcalde F., Okonechnikov K., Carbonell J., Cruz L.M., Gotz S., Tarazona S., Dopazo J., Meyer T.F., Conesa A. Qualimap: Evaluating next-generation sequencing alignment data. Bioinformatics. 2012;28:2678–2679. doi: 10.1093/bioinformatics/bts503. PubMed DOI

Trapnell C., Roberts A., Goff L., Pertea G., Kim D., Kelley D.R., Pimentel H., Salzberg S.L., Rinn J.L., Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012;7:562–578. doi: 10.1038/nprot.2012.016. PubMed DOI PMC

Lamesch P., Berardini T.Z., Li D.H., Swarbreck D., Wilks C., Sasidharan R., Muller R., Dreher K., Alexander D.L., Garcia-Hernandez M., et al. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res. 2012;40:1202–1210. doi: 10.1093/nar/gkr1090. PubMed DOI PMC

Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:1–13. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC

Mi H., Muruganujan A., Huang X., Ebert D., Mills C., Guo X., Paul D., Thomas P.D. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0) Nat. Protoc. 2019;14:703–721. doi: 10.1038/s41596-019-0128-8. PubMed DOI PMC

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Larionov A., Krause A., Miller W. A standard curve-based method for relative real time PCR data processing. BMC Bioinform. 2005;6:1–16. doi: 10.1186/1471-2105-6-62. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Herbicide resistance in grass weeds: Epigenetic regulation matters too

. 2022 ; 13 () : 1040958. [epub] 20221110

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace