Insights into the Role of Transcriptional Gene Silencing in Response to Herbicide-Treatments in Arabidopsis thaliana
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
437317/2018-8
Conselho Nacional de Desenvolvimento Científico e Tecnológico
AP1859-2
Deutsche Stiftung Friedensforschung
CZ.02.1.01/0.0/0.0/16_019/0000827
European Regional Development Fund
BEX 10896/14-7
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
PubMed
33804990
PubMed Central
PMC8037345
DOI
10.3390/ijms22073314
PII: ijms22073314
Knihovny.cz E-zdroje
- Klíčová slova
- 2,4-D, ROS1, chromatin mutants, epigenetics, glyphosate, herbicide resistance, imazethapyr,
- MeSH
- acyltransferasy genetika MeSH
- Arabidopsis účinky léků genetika MeSH
- chromatin chemie MeSH
- demetylace DNA MeSH
- genetická transkripce MeSH
- herbicidy farmakologie MeSH
- jaderné proteiny genetika MeSH
- kyselina 2,4-dichlorfenoxyoctová farmakologie MeSH
- kyseliny nikotinové farmakologie MeSH
- metylace DNA MeSH
- mutace MeSH
- proteiny huseníčku genetika MeSH
- regulace genové exprese u rostlin * MeSH
- RNA rostlin genetika MeSH
- sekvenování transkriptomu MeSH
- umlčování genů * MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acyltransferasy MeSH
- AT5G13930 protein, Arabidopsis MeSH Prohlížeč
- chromatin MeSH
- herbicidy MeSH
- imazethapyr MeSH Prohlížeč
- jaderné proteiny MeSH
- kyselina 2,4-dichlorfenoxyoctová MeSH
- kyseliny nikotinové MeSH
- proteiny huseníčku MeSH
- RNA rostlin MeSH
- ROS1 protein, Arabidopsis MeSH Prohlížeč
Herbicide resistance is broadly recognized as the adaptive evolution of weed populations to the intense selection pressure imposed by the herbicide applications. Here, we tested whether transcriptional gene silencing (TGS) and RNA-directed DNA Methylation (RdDM) pathways modulate resistance to commonly applied herbicides. Using Arabidopsis thaliana wild-type plants exposed to sublethal doses of glyphosate, imazethapyr, and 2,4-D, we found a partial loss of TGS and increased susceptibility to herbicides in six out of 11 tested TGS/RdDM mutants. Mutation in REPRESSOR OF SILENCING 1 (ROS1), that plays an important role in DNA demethylation, leading to strongly increased susceptibility to all applied herbicides, and imazethapyr in particular. Transcriptomic analysis of the imazethapyr-treated wild type and ros1 plants revealed a relation of the herbicide upregulated genes to chemical stimulus, secondary metabolism, stress condition, flavonoid biosynthesis, and epigenetic processes. Hypersensitivity to imazethapyr of the flavonoid biosynthesis component TRANSPARENT TESTA 4 (TT4) mutant plants strongly suggests that ROS1-dependent accumulation of flavonoids is an important mechanism for herbicide stress response in A. thaliana. In summary, our study shows that herbicide treatment affects transcriptional gene silencing pathways and that misregulation of these pathways makes Arabidopsis plants more sensitive to herbicide treatment.
Zobrazit více v PubMed
Oerke E.C. Crop losses to pests. J. Agric. Sci. 2006;144:31–43. doi: 10.1017/S0021859605005708. DOI
Busi R., Vila-Aiub M.M., Beckie H.J., Gaines T.A., Goggin D.E., Kaundun S.S., Lacoste M., Neve P., Nissen S.J., Norsworthy J.K., et al. Herbicide-resistant weeds: From research and knowledge to future needs. Evol. Appl. 2013;6:1218–1221. doi: 10.1111/eva.12098. PubMed DOI PMC
Heap I. The International Survey of Herbicide Resistant Weeds. [(accessed on 17 January 2021)]; Available online: www.weedscience.org.
Evans J.A., Tranel P.J., Hager A.G., Schutte B., Wu C.X., Chatham L.A., Davis A.S. Managing the evolution of herbicide resistance. Pest Manag. Sci. 2016;72:74–80. doi: 10.1002/ps.4009. PubMed DOI PMC
Baucom R.S., Busi R. Evolutionary epidemiology in the field: A proactive approach for identifying herbicide resistance in problematic crop weeds. New Phytol. 2019;223:1056–1058. doi: 10.1111/nph.15959. PubMed DOI
Comont D., Hicks H., Crook L., Hull R., Cocciantelli E., Hadfield J., Childs D., Freckleton R., Neve P. Evolutionary epidemiology predicts the emergence of glyphosate resistance in a major agricultural weed. New Phytol. 2019;223:1584–1594. doi: 10.1111/nph.15800. PubMed DOI
Penner D. Turf weeds and their control. In: Turgeon A.J., editor. Herbicide Action and Metabolism. 2nd ed. American Society of Agronomy; Madison, WI, USA: 1994. pp. 37–70.
Powles S.B., Yu Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010;61:317–347. doi: 10.1146/annurev-arplant-042809-112119. PubMed DOI
Patzoldt W.L., Hager A.G., McCormick J.S., Tranel P.J. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc. Natl. Acad. Sci. USA. 2006;103:12329–12334. doi: 10.1073/pnas.0603137103. PubMed DOI PMC
Gaines T.A., Zhang W.L., Wang D.F., Bukun B., Chisholm S.T., Shaner D.L., Nissen S.J., Patzoldt W.L., Tranel P.J., Culpepper A.S., et al. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc. Natl. Acad. Sci. USA. 2010;107:1029–1034. doi: 10.1073/pnas.0906649107. PubMed DOI PMC
Varanasi V.K., Godar A.S., Peterson D.E., Shoup D., Jugulam M. A target-site point mutation in henbit (Lamium amplexicaule) confers high-level resistance to ALS-inhibitors. Weed Sci. 2016;64:231–239. doi: 10.1614/WS-D-15-00152.1. DOI
Iwakami S., Endo M., Saika H., Okuno J., Nakamura N., Yokoyama M., Watanabe H., Toki S., Uchino A., Inamura T. Cytochrome P450 CYP81A12 and CYP81A21 are associated with resistance to two acetolactate synthase inhibitors in Echinochloa phyllopogon. Plant Physiol. 2014;165:618–629. doi: 10.1104/pp.113.232843. PubMed DOI PMC
Gaines T.A., Lorentz L., Figge A., Herrmann J., Maiwald F., Ott M.C., Han H.P., Busi R., Yu Q., Powles S.B., et al. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J. 2014;78:865–876. doi: 10.1111/tpj.12514. PubMed DOI
Ghanizadeh H., Harrington K.C. Non-target Site Mechanisms of Resistance to Herbicides. Crit. Rev. Plant Sci. 2017;36:24–34. doi: 10.1080/07352689.2017.1316134. DOI
Pan L., Yu Q., Han H.P., Mao L.F., Nyporko A., Fan L.J., Bai L.Y., Powles S. Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona. Plant Physiol. 2019;181:1519–1534. doi: 10.1104/pp.19.00979. PubMed DOI PMC
Délye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013;69:176–187. doi: 10.1002/ps.3318. PubMed DOI
Gressel J. Evolving understanding of the evolution of herbicide resistance. Pest Manag. Sci. 2009;65:1164–1173. doi: 10.1002/ps.1842. PubMed DOI
Kim G., Clarke C.R., Larose H., Tran H.T., Haak D.C., Zhang L.Q., Askew S., Barney J., Westwood J.H. Herbicide injury induces DNA methylome alterations in Arabidopsis. PeerJ. 2017;5:e3560. doi: 10.7717/peerj.3560. PubMed DOI PMC
Markus C., Pecinka A., Karan R., Barney J.N., Merotto A. Epigenetic regulation-contribution to herbicide resistance in weeds? Pest Manag. Sci. 2018;74:275–281. doi: 10.1002/ps.4727. PubMed DOI
Hauser M.T., Aufsatz W., Jonak C., Luschnig C. Transgenerational epigenetic inheritance in plants. Biochim. Biophys. Acta Gene Regul. Mech. 2011;1809:459–468. doi: 10.1016/j.bbagrm.2011.03.007. PubMed DOI PMC
Pecinka A., Chevalier C., Colas I., Kalantidis K., Varotto S., Krugman T., Michailidis C., Valles M.P., Munoz A., Pradillo M. Chromatin dynamics during interphase and cell division: Similarities and differences between model and crop plants. J. Exp. Bot. 2020;71:5205–5222. doi: 10.1093/jxb/erz457. PubMed DOI
Cortijo S., Wardenaar R., Colome-Tatche M., Gilly A., Etcheverry M., Labadie K., Caillieux E., Hospital F., Aury J.M., Wincker P., et al. Mapping the epigenetic basis of complex traits. Science. 2014;343:1145–1148. doi: 10.1126/science.1248127. PubMed DOI
Mozgova I., Hennig L. The polycomb group protein regulatory network. Annu. Rev. Plant Biol. 2015;66:269–296. doi: 10.1146/annurev-arplant-043014-115627. PubMed DOI
Matzke M.A., Mosher R.A. RNA-directed DNA methylation: An epigenetic pathway of increasing complexity. Nat. Rev. Genet. 2014;15:394–408. doi: 10.1038/nrg3683. PubMed DOI
Pecinka A., Dinh H.Q., Baubec T., Rosa M., Lettner N., Scheid O.M. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell. 2010;22:3118–3129. doi: 10.1105/tpc.110.078493. PubMed DOI PMC
Lu Y.C., Feng S.J., Zhang J.J., Luo F., Zhang S., Yang H. Genome-wide identification of DNA methylation provides insights into the association of gene expression in rice exposed to pesticide atrazine. Sci. Rep. 2016;6:1–15. doi: 10.1038/srep18985. PubMed DOI PMC
Nardemir G., Agar G., Arslan E., Erturk F.A. Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques. Theor. Exp. Plant Physiol. 2015;27:131–139. doi: 10.1007/s40626-015-0039-1. DOI
Margaritopoulou T., Tani E., Chachalis D., Travlos I. Involvement of epigenetic mechanisms in herbicide resistance: The case of Conyza canadensis. Agriculture. 2018;8:17. doi: 10.3390/agriculture8010017. DOI
Tyczewska A., Gracz-Bernaciak J., Szymkowiak J., Twardowski T. Herbicide stress-induced DNA methylation changes in two Zea mays inbred lines differing in Roundup (R) resistance. J. Appl. Genet. 2021:1–14. doi: 10.1007/s13353-021-00609-4. PubMed DOI PMC
Busi R., Goggin D.E., Heap I.M., Horak M.J., Jugulam M., Masters R.A., Napier R.M., Riar D.S., Satchivi N.M., Torra J., et al. Weed resistance to synthetic auxin herbicides. Pest Manag. Sci. 2018;74:2265–2276. doi: 10.1002/ps.4823. PubMed DOI PMC
Pikaard C.S., Scheid O.M. Epigenetic regulation in plants. Cold Spring Harb. Perspect. Biol. 2014;6:a019315. doi: 10.1101/cshperspect.a019315. PubMed DOI PMC
Morel J.B., Mourrain P., Beclin C., Vaucheret H. DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Curr. Biol. 2000;10:1591–1594. doi: 10.1016/S0960-9822(00)00862-9. PubMed DOI
Elmayan T., Proux F., Vaucheret H. Arabidopsis RPA2: A genetic link among transcriptional gene silencing, DNA repair, and DNA replication. Curr. Biol. 2005;15:1919–1925. doi: 10.1016/j.cub.2005.09.044. PubMed DOI
Baubec T., Finke A., Scheid O.M., Pecinka A. Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Rep. 2014;15:446–452. doi: 10.1002/embr.201337915. PubMed DOI PMC
Gong Z.H., Morales-Ruiz T., Ariza R.R., Roldan-Arjona T., David L., Zhu J.K. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell. 2002;111:803–814. doi: 10.1016/S0092-8674(02)01133-9. PubMed DOI
Stroud H., Greenberg M.V.C., Feng S.H., Bernatavichute Y.V., Jacobsen S.E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell. 2013;152:352–364. doi: 10.1016/j.cell.2012.10.054. PubMed DOI PMC
Calarco J.P., Borges F., Donoghue M.T.A., Van Ex F., Jullien P.E., Lopes T., Gardner R., Berger F., Feijo J.A., Becker J.D., et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell. 2012;151:194–205. doi: 10.1016/j.cell.2012.09.001. PubMed DOI PMC
Habermann K., Dedhia N., Parnell L., Preston R., Hillier L., Chen E., Marra M., Martienssen R., McCombie W.R., Mayer K., et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. PubMed
Caverzan A., Piasecki C., Chavarria G., Stewart C.N., Vargas L. Defenses against ROS in crops and weeds: The effects of interference and herbicides. Int. J. Mol. Sci. 2019;20:1086. doi: 10.3390/ijms20051086. PubMed DOI PMC
Neve P., Powles S. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum. Theor. Appl. Genet. 2005;110:1154–1166. doi: 10.1007/s00122-005-1947-2. PubMed DOI
Nowicka A., Tokarz B., Zwyrtkova J., Tomastikova E.D., Prochazkova K., Ercan U., Finke A., Rozhon W., Poppenberger B., Otmar M., et al. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant J. 2020;102:68–84. doi: 10.1111/tpj.14612. PubMed DOI
Sales M.A., Shivrain V.K., Burgos N.R., Kuk Y.I. Amino acid substitutions in the acetolactate synthase gene of red rice (Oryza sativa) confer resistance to imazethapyr. Weed Sci. 2008;56:485–489. doi: 10.1614/WS-07-165.1. DOI
Dill G.M. Glyphosate-resistant crops: History, status and future. Pest Manag. Sci. 2005;61:219–224. doi: 10.1002/ps.1008. PubMed DOI
Mithila J., Hall J.C., Johnson W.G., Kelley K.B., Riechers D.E. Evolution of resistance to auxinic herbicides: Historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 2011;59:445–457. doi: 10.1614/WS-D-11-00062.1. DOI
Zhu J.H., Kapoor A., Sridhar V.V., Agius F., Zhu J.K. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr. Biol. 2007;17:54–59. doi: 10.1016/j.cub.2006.10.059. PubMed DOI
Bharti P., Mahajan M., Vishwakarma A.K., Bhardwaj J., Yadav S.K. AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco. J. Exp. Bot. 2015;66:5959–5969. doi: 10.1093/jxb/erv304. PubMed DOI PMC
Qian W.Q., Miki D., Zhang H., Liu Y.H., Zhang X., Tang K., Kan Y.C., La H.G., Li X.J., Li S.F., et al. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science. 2012;336:1445–1448. doi: 10.1126/science.1219416. PubMed DOI PMC
Sun C.C., Chen S., Jin Y.J., Song H., Ruan S.L., Fu Z.W., Asad M.A.U., Qian H.F. Effects of the herbicide imazethapyr on photosynthesis in PGR5-and NDH-deficient Arabidopsis thaliana at the biochemical, transcriptomic, and proteomic levels. J. Agric. Food Chem. 2016;64:4497–4504. doi: 10.1021/acs.jafc.6b01699. PubMed DOI
Sales-Perez R.A., Saski C.A., Noorai R.E., Srivastava S.K., Lawton-Rauh A.L., Nichols R.L., Roma-Burgos N. RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide. PLoS ONE. 2018;13:e0195488. doi: 10.1371/journal.pone.0195488. PubMed DOI PMC
Cobb A.H., Reade P.H.R. Herbicides and Plant Physiology. 2nd ed. John Wiley & Sons; New York, NY, USA: 2010. 286p
Delye C., Duhoux A., Gardin J.A.C., Gouzy J., Carrere S. High conservation of the transcriptional response to acetolactate-synthase-inhibiting herbicides across plant species. Weed Res. 2018;58:2–7. doi: 10.1111/wre.12276. DOI
Dixon R.A., Paiva N.P. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7:1085–1097. doi: 10.2307/3870059. PubMed DOI PMC
Cummins I., Bryant D.N., Edwards R. Safener responsiveness and multiple herbicide resistance in the weed black-grass (Alopecurus myosuroides) Plant Biotechnol. J. 2009;7:807–820. doi: 10.1111/j.1467-7652.2009.00445.x. PubMed DOI
Cummins I., Wortley D.J., Sabbadin F., He Z.S., Coxon C.R., Straker H.E., Sellars J.D., Knight K., Edwards L., Hughes D., et al. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc. Natl. Acad. Sci. USA. 2013;110:5812–5817. doi: 10.1073/pnas.1221179110. PubMed DOI PMC
Burbulis I.E., Iacobucci M., Shirley B.W. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell. 1996;8:1013–1025. PubMed PMC
Xuan L.J., Zhang C.C., Yan T., Wu D.Z., Hussain N., Li Z.L., Chen M.X., Pan J.W., Jiang L.X. TRANSPARENT TESTA 4-mediated flavonoids negatively affect embryonic fatty acid biosynthesis in Arabidopsis. Plant Cell Environ. 2018;41:2773–2790. doi: 10.1111/pce.13402. PubMed DOI
Yuan J.S., Tranel P.J., Stewart C.N. Non-target-site herbicide resistance: A family business. Trends Plant Sci. 2007;12:6–13. doi: 10.1016/j.tplants.2006.11.001. PubMed DOI
Hatzios K.K., Burgos N. Metabolism-based herbicide resistance: Regulation by safeners. Weed Sci. 2004;52:454–467. doi: 10.1614/P2002-168C. DOI
Duhoux A., Pernin F., Desserre D., Délye C. Herbicide safeners decrease sensitivity to herbicides inhibiting acetolactate-synthase and likely activate non-target-site-based resistance pathways in the major grass weed Lolium sp. (Rye-Grass) Front. Plant Sci. 2017;8:1310. doi: 10.3389/fpls.2017.01310. PubMed DOI PMC
Streibig J.C. Herbicide bioassay. Weed Res. 1988;28:479–484. doi: 10.1111/j.1365-3180.1988.tb00831.x. DOI
Vongs A., Kakutani T., Martienssen R.A., Richards E.J. Arabidopsis thaliana DNA methylation mutants. Science. 1993;260:1926–1928. doi: 10.1126/science.8316832. PubMed DOI
Rozhon W., Baubec T., Mayerhofer J., Scheid O.M., Jonak C. Rapid quantification of global DNA methylation by isocratic cation exchange high-performance liquid chromatography. Anal. Biochem. 2008;375:354–360. doi: 10.1016/j.ab.2008.01.001. PubMed DOI
Garcia-Alcalde F., Okonechnikov K., Carbonell J., Cruz L.M., Gotz S., Tarazona S., Dopazo J., Meyer T.F., Conesa A. Qualimap: Evaluating next-generation sequencing alignment data. Bioinformatics. 2012;28:2678–2679. doi: 10.1093/bioinformatics/bts503. PubMed DOI
Trapnell C., Roberts A., Goff L., Pertea G., Kim D., Kelley D.R., Pimentel H., Salzberg S.L., Rinn J.L., Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012;7:562–578. doi: 10.1038/nprot.2012.016. PubMed DOI PMC
Lamesch P., Berardini T.Z., Li D.H., Swarbreck D., Wilks C., Sasidharan R., Muller R., Dreher K., Alexander D.L., Garcia-Hernandez M., et al. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res. 2012;40:1202–1210. doi: 10.1093/nar/gkr1090. PubMed DOI PMC
Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:1–13. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC
Mi H., Muruganujan A., Huang X., Ebert D., Mills C., Guo X., Paul D., Thomas P.D. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0) Nat. Protoc. 2019;14:703–721. doi: 10.1038/s41596-019-0128-8. PubMed DOI PMC
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Larionov A., Krause A., Miller W. A standard curve-based method for relative real time PCR data processing. BMC Bioinform. 2005;6:1–16. doi: 10.1186/1471-2105-6-62. PubMed DOI PMC
Herbicide resistance in grass weeds: Epigenetic regulation matters too