Biology of Lymphedema

. 2021 Mar 25 ; 10 (4) : . [epub] 20210325

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33806183

Grantová podpora
CZ8/2019 Austrian Scientific & Technological Cooperation (OeAD)

This narrative review portrays the lymphatic system, a poorly understood but important physiological system. While several reviews have been published that are related to the biology of the lymphatic system and lymphedema, the physiological alternations, which arise due to disturbances of this system, and during lymphedema therapy, are poorly understood and, consequently, not widely reported. We present an inclusive collection of evidence from the scientific literature reflecting important developments in lymphedema research over the last few decades. This review aims at advancing the knowledge on the area of lymphatic system function as well as how system dysfunction, as seen in lymphedema, affects physiological systems and how lymphedema therapy modulates these mechanisms. We propose that future studies should aim at investigating, in-detail, aspects that are related to fluid regulation, hemodynamic responses, and endothelial and/or vascular changes due to lymphedema and lymphedema therapy.

Zobrazit více v PubMed

Breslin J.W., Yang Y., Scallan J.P., Sweat R.S., Adderley S.P., Murfee W.L. Lymphatic Vessel Network Structure and Physiology. Compr. Physiol. 2018;9:207–299. doi: 10.1002/cphy.c180015. PubMed DOI PMC

Schmid-Schonbein G.W. Microlymphatics and lymph flow. Physiol. Rev. 1990;70:987–1028. doi: 10.1152/physrev.1990.70.4.987. PubMed DOI

Moore J.E., Jr., Bertram C.D. Lymphatic System Flows. Annu. Rev. Fluid Mech. 2018;50:459–482. doi: 10.1146/annurev-fluid-122316-045259. PubMed DOI PMC

Breslin J.W. Mechanical forces and lymphatic transport. Microvasc. Res. 2014;96:46–54. doi: 10.1016/j.mvr.2014.07.013. PubMed DOI PMC

Telinius N., Hjortdal V.E. Role of the lymphatic vasculature in cardiovascular medicine. Heart. 2019;105:1777–1784. doi: 10.1136/heartjnl-2018-314461. PubMed DOI

Oliver G., Kipnis J., Randolph G.J., Harvey N.L. The Lymphatic Vasculature in the 21st Century: Novel Functional Roles in Homeostasis and Disease. Cell. 2020;182:270–296. doi: 10.1016/j.cell.2020.06.039. PubMed DOI PMC

Hsu M.C., Itkin M. Lymphatic Anatomy. Tech. Vasc. Interv. Radiol. 2016;19:247–254. doi: 10.1053/j.tvir.2016.10.003. PubMed DOI

Levick J.R., Michel C.C. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 2010;87:198–210. doi: 10.1093/cvr/cvq062. PubMed DOI

Lynch P.M., Delano F.A., Schmid-Schönbein G.W. The primary valves in the initial lymphatics during inflammation. Lymphat. Res. Biol. 2007;5:3–10. doi: 10.1089/lrb.2007.5102. PubMed DOI

Trzewik J., Mallipattu S.K., Artmann G.M., Delano F.A., Schmid-Schönbein G.W. Evidence for a second valve system in lymphatics: Endothelial microvalves. FASEB J. 2001;15:1711–1717. doi: 10.1096/fj.01-0067com. PubMed DOI

Scallan J.P., Zawieja S.D., Castorena-Gonzalez J.A., Davis M.J. Lymphatic pumping: Mechanics, mechanisms and malfunction. J. Physiol. 2016;594:5749–5768. doi: 10.1113/JP272088. PubMed DOI PMC

Armenio S., Cetta F., Tanzini G., Guercia C. Spontaneous contractility in the human lymph vessels. Lymphology. 1981;14:173–178. PubMed

Olszewski W.L., Engeset A., Sokolowski J. Lymph flow and protein in the normal male leg during lying, getting up, and walking. Lymphology. 1977;10:178–183. PubMed

Gashev A.A., Davis M.J., Delp M.D., Zawieja D.C. Regional variations of contractile activity in isolated rat lymphatics. Microcirculation. 2004;11:477–492. doi: 10.1080/10739680490476033. PubMed DOI

Gasheva O.Y., Zawieja D.C., Gashev A.A. Contraction-initiated NO-dependent lymphatic relaxation: A self-regulatory mechanism in rat thoracic duct. J. Physiol. 2006;575:821–832. doi: 10.1113/jphysiol.2006.115212. PubMed DOI PMC

Scallan J.P., Davis M.J., Huxley V.H. Permeability and contractile responses of collecting lymphatic vessels elicited by atrial and brain natriuretic peptides. J. Physiol. 2013;591:5071–5081. doi: 10.1113/jphysiol.2013.260042. PubMed DOI PMC

Adair T.H., Guyton A.C. Modification of lymph by lymph nodes. III. Effect of increased lymph hydrostatic pressure. Am. J. Physiol. 1985;249:H777–H782. doi: 10.1152/ajpheart.1985.249.4.H777. PubMed DOI

Hansen K.C., D’Alessandro A., Clement C.C., Santambrogio L. Lymph formation, composition and circulation: A proteomics perspective. Int. Immunol. 2015;27:219–227. doi: 10.1093/intimm/dxv012. PubMed DOI

Renkin E.M. Some consequences of capillary permeability to macromolecules: Starling’s hypothesis reconsidered. Am. J. Physiol. 1986;250:H706–H710. doi: 10.1152/ajpheart.1986.250.5.H706. PubMed DOI

Gannon B.J., Carati C.J. Endothelial distribution of the membrane water channel molecule aquaporin-1: Implications for tissue and lymph fluid physiology? Lymphat. Res. Biol. 2003;1:55–66. doi: 10.1089/15396850360495709. PubMed DOI

Adamczyk L.A., Gordon K., Kholova I., Meijer-Jo rna L.B., Telinius N., Gallagher P.J., van der Wal A.C., Baandrup U. Lymph vessels: The forgotten second circulation in health and disease. Virchows Arch. 2016;469:3–17. doi: 10.1007/s00428-016-1945-6. PubMed DOI PMC

Alitalo K. The lymphatic vasculature in disease. Nat. Med. 2011;17:1371–1380. doi: 10.1038/nm.2545. PubMed DOI

Notohamiprodjo M., Weiss M., Baumeister R.G., Sommer W.H., Helck A., Crispin A., Reiser M.F., Herrmann K.A. MR lymphangiography at 3.0 T: Correlation with lymphoscintigraphy. Radiology. 2012;264:78–87. doi: 10.1148/radiol.12110229. PubMed DOI

Mazzei F.G., Gentili F., Guerrini S., Cioffi Squitieri N., Guerrieri D., Gennaro P., Scialpi M., Volterrani L., Mazzei M.A. MR Lymphangiography: A Practical Guide to Perform It and a Brief Review of the Literature from a Technical Point of View. BioMed Res. Int. 2017;2017:2598358. doi: 10.1155/2017/2598358. PubMed DOI PMC

Pieper C.C., Feisst A., Schild H.H. Contrast-enhanced Interstitial Transpedal MR Lymphangiography for Thoracic Chylous Effusions. Radiology. 2020;295:458–466. doi: 10.1148/radiol.2020191593. PubMed DOI

Chavhan G.B., Lam C.Z., Greer M.C., Temple M., Amaral J., Grosse-Wortmann L. Magnetic Resonance Lymphangiography. Radiol. Clin. N. Am. 2020;58:693–706. doi: 10.1016/j.rcl.2020.02.002. PubMed DOI

Giacalone G., Yamamoto T., Belva F., Hayashi A. Bedside 3D Visualization of Lymphatic Vessels with a Handheld Multispectral Optoacoustic Tomography Device. J. Clin. Med. 2020;9:815. doi: 10.3390/jcm9030815. PubMed DOI PMC

Polomska A.K., Proulx S.T. Imaging technology of the lymphatic system. Adv. Drug Deliv. Rev. 2020 doi: 10.1016/j.addr.2020.08.013. PubMed DOI

Rössler A., Fink M., Goswami N., Batzel J.J. Modeling of hyaluronan clearance with application to estimation of lymph flow. Physiol. Meas. 2011;32:1213–1238. doi: 10.1088/0967-3334/32/8/014. PubMed DOI

Roh K., Cho S., Park J.-h., Yoo B.C., Kim W.-K., Kim S.-k., Park K., Kang H., Ku J.-m., Yeom C.-H., et al. Therapeutic effects of hyaluronidase on acquired lymphedema using a newly developed mouse limb model. Exp. Biol. Med. 2017;242:584–592. doi: 10.1177/1535370216688570. PubMed DOI PMC

Rossler A., Hinghofer-Szalkay H. Hyaluronan fragments: An information-carrying system? Horm. Metab. Res. 2003;35:67–68. doi: 10.1055/s-2003-39062. PubMed DOI

Hinghofer-Szalkay H.G., Mekonen W., Rossler A., Schwaberger G., Lamprecht M., Hofmann P. Post-exercise decrease of plasma hyaluronan: Increased clearance or diminished production? Physiol. Res. 2002;51:139–144. PubMed

Rössler A., László Z., Kvas E., Hinghofer-Szalkay H.G. Plasma hyaluronan concentration: No circadian rhythm but large effect of food intake in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1998;78:573–577. doi: 10.1007/s004210050463. PubMed DOI

Liu N.-F., Zhang L. Changes of tissue fluid hyaluronan (hyaluronic acid) in peripheral lymphedema. Lymphology. 1998;31:173–179. PubMed

Brix B., Apich G., Rössler A., Walbrodt S., Goswami N. Effects of physical therapy on hyaluronan clearance and volume regulating hormones in lower limb lymphedema patients: A pilot study. Sci. Prog. 2021;104:36850421998485. doi: 10.1177/0036850421998485. PubMed DOI PMC

Goswami N., Roessler A., Haditsch B., Hinghofer-Szalkay H., Schneditz D. Paradoxical clearance of hyaluronan fragments during haemodialysis and haemodiafiltration. Nephrol. Dial. Transplant. 2012;27:4420–4422. doi: 10.1093/ndt/gfs266. PubMed DOI

Liu N.F., Olszewski W. The influence of local hyperthermia on lymphedema and lymphedematous skin of the human leg. Lymphology. 1993;26:28–37. PubMed

Rockson S.G., Rivera K.K. Estimating the population burden of lymphedema. Ann. N. Y. Acad. Sci. 2008;1131:147–154. doi: 10.1196/annals.1413.014. PubMed DOI

Kayıran O., De La Cruz C., Tane K., Soran A. Lymphedema: From diagnosis to treatment. Turk. J. Surg. 2017;33:51–57. doi: 10.5152/turkjsurg.2017.3870. PubMed DOI PMC

Maclellan R.A., Couto R.A., Sullivan J.E., Grant F.D., Slavin S.A., Greene A.K. Management of Primary and Secondary Lymphedema: Analysis of 225 Referrals to a Center. Ann. Plast. Surg. 2015;75:197–200. doi: 10.1097/SAP.0000000000000022. PubMed DOI

Gasparis A.P., Kim P.S., Dean S.M., Khilnani N.M., Labropoulos N. Diagnostic approach to lower limb edema. Phlebology. 2020;35:650–655. doi: 10.1177/0268355520938283. PubMed DOI PMC

Grada A.A., Phillips T.J. Lymphedema: Pathophysiology and clinical manifestations. J. Am. Acad. Dermatol. 2017;77:1009–1020. doi: 10.1016/j.jaad.2017.03.022. PubMed DOI

Borman P. Lymphedema diagnosis, treatment, and follow-up from the view point of physical medicine and rehabilitation specialists. Turk. J. Phys. Med. Rehabil. 2018;64:179–197. doi: 10.5606/tftrd.2018.3539. PubMed DOI PMC

Schaverien M.V., Coroneos C.J. Surgical Treatment of Lymphedema. Plast. Reconstr. Surg. 2019;144:738–758. doi: 10.1097/PRS.0000000000005993. PubMed DOI

Moffatt C.J., Franks P.J., Doherty D.C., Williams A.F., Badger C., Jeffs E., Bosanquet N., Mortimer P.S. Lymphoedema: An underestimated health problem. Qjm. 2003;96:731–738. doi: 10.1093/qjmed/hcg126. PubMed DOI

Neuhüttler S., Brenner E. Beitrag zur Epidemiologie des Lymphödems. Phlebologie. 2018;35:181–187. doi: 10.1055/s-0037-1622142. DOI

Keeley V., Franks P., Quere I., Mercier G., Michelini S., Cestari M., Borman P., Hughes A., Clark K., Lisle J., et al. LIMPRINT in Specialist Lymphedema Services in United Kingdom, France, Italy, and Turkey. Lymphat. Res. Biol. 2019;17:141–146. doi: 10.1089/lrb.2019.0021. PubMed DOI PMC

Mortimer P.S., Rockson S.G. New developments in clinical aspects of lymphatic disease. J. Clin. Investig. 2014;124:915–921. doi: 10.1172/JCI71608. PubMed DOI PMC

Maltese P.E., Michelini S., Ricci M., Maitz S., Fiorentino A., Serrani R., Lazzerotti A., Bruson A., Paolacci S., Benedetti S., et al. Increasing evidence of hereditary lymphedema caused by CELSR1 loss-of-function variants. Am. J. Med. Genet. A. 2019;179:1718–1724. doi: 10.1002/ajmg.a.61269. PubMed DOI

Aspelund A., Robciuc M.R., Karaman S., Makinen T., Alitalo K. Lymphatic System in Cardiovascular Medicine. Circ. Res. 2016;118:515–530. doi: 10.1161/CIRCRESAHA.115.306544. PubMed DOI

Brice G., Child A.H., Evans A., Bell R., Mansour S., Burnand K., Sarfarazi M., Jeffery S., Mortimer P. Milroy disease and the VEGFR-3 mutation phenotype. J. Med. Genet. 2005;42:98–102. doi: 10.1136/jmg.2004.024802. PubMed DOI PMC

Mellor R.H., Tate N., Stanton A.W., Hubert C., Mäkinen T., Smith A., Burnand K.G., Jeffery S., Levick J.R., Mortimer P.S. Mutations in FOXC2 in humans (lymphoedema distichiasis syndrome) cause lymphatic dysfunction on dependency. J. Vasc. Res. 2011;48:397–407. doi: 10.1159/000323484. PubMed DOI

Kerchner K., Fleischer A., Yosipovitch G. Lower extremity lymphedema update: Pathophysiology, diagnosis, and treatment guidelines. J. Am. Acad. Dermatol. 2008;59:324–331. doi: 10.1016/j.jaad.2008.04.013. PubMed DOI

WHO Fact sheet. [(accessed on 4 February 2021)];Lymphatic Filariasis. Available online: https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis.

Cormier J.N., Askew R.L., Mungovan K.S., Xing Y., Ross M.I., Armer J.M. Lymphedema beyond breast cancer: A systematic review and meta-analysis of cancer-related secondary lymphedema. Cancer. 2010;116:5138–5149. doi: 10.1002/cncr.25458. PubMed DOI

Bar Ad V., Cheville A., Solin L.J., Dutta P., Both S., Harris E.E. Time course of mild arm lymphedema after breast conservation treatment for early-stage breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010;76:85–90. doi: 10.1016/j.ijrobp.2009.01.024. PubMed DOI

Allam O., Park K.E., Chandler L., Mozaffari M.A., Ahmad M., Lu X., Alperovich M. The impact of radiation on lymphedema: A review of the literature. Gland. Surg. 2020;9:596–602. doi: 10.21037/gs.2020.03.20. PubMed DOI PMC

Tiwari A. Differential Diagnosis, Investigation, and Current Treatment of Lower Limb Lymphedema. Arch. Surg. 2003;138:152. doi: 10.1001/archsurg.138.2.152. PubMed DOI

Newman B., Lose F., Kedda M.A., Francois M., Ferguson K., Janda M., Yates P., Spurdle A.B., Hayes S.C. Possible genetic predisposition to lymphedema after breast cancer. Lymphat. Res. Biol. 2012;10:2–13. doi: 10.1089/lrb.2011.0024. PubMed DOI PMC

Muambangu J.P., Lukenze Jacques T. Genetic Risk Factors of Secondary Lymphedema in African Breast Cancer Population. J. Oncol. Res. Ther. 2018;4:147.

Michelini S., Vettori A., Maltese P.E., Cardone M., Bruson A., Fiorentino A., Cappellino F., Sainato V., Guerri G., Marceddu G., et al. Genetic Screening in a Large Cohort of Italian Patients Affected by Primary Lymphedema Using a Next Generation Sequencing (NGS) Approach. Lymphology. 2016;49:57–72. PubMed

Müller-Wille R., Wildgruber M., Sadick M., Wohlgemuth W.A. Vascular Anomalies (Part II): Interventional Therapy of Peripheral Vascular Malformations. RöFo. 2018;190:927–937. doi: 10.1055/s-0044-101266. PubMed DOI

Sadick M., Müller-Wille R., Wildgruber M., Wohlgemuth W.A. Vascular Anomalies (Part I): Classification and Diagnostics of Vascular Anomalies. RöFo. 2018;190:825–835. doi: 10.1055/a-0620-8925. PubMed DOI

Masthoff M., Helfen A., Claussen J., Karlas A., Markwardt N.A., Ntziachristos V., Eisenblätter M., Wildgruber M. Use of Multispectral Optoacoustic Tomography to Diagnose Vascular Malformations. JAMA Dermatol. 2018;154:1457–1462. doi: 10.1001/jamadermatol.2018.3269. PubMed DOI PMC

Lv S., Wang Q., Zhao W., Han L., Wang Q., Batchu N., Ulain Q., Zou J., Sun C., Du J., et al. A review of the postoperative lymphatic leakage. Oncotarget. 2017;8:69062–69075. doi: 10.18632/oncotarget.17297. PubMed DOI PMC

Pieper C.C., Hur S., Sommer C.M., Nadolski G., Maleux G., Kim J., Itkin M. Back to the Future: Lipiodol in Lymphography-From Diagnostics to Theranostics. Investig. Radiol. 2019;54:600–615. doi: 10.1097/RLI.0000000000000578. PubMed DOI

Chen E., Itkin M. Thoracic duct embolization for chylous leaks. Semin. Interv. Radiol. 2011;28:63–74. doi: 10.1055/s-0031-1273941. PubMed DOI PMC

Rockson S.G. Diagnosis and Management of Lymphatic Vascular Disease. J. Am. Coll. Cardiol. 2008;52:799–806. doi: 10.1016/j.jacc.2008.06.005. PubMed DOI

Wilting J., Bartkowski R., Baumeister R.G., Földi E., Stöhr S., Strubel G., Schrader K., Traber J. S2k Leitlinie: Diagnostik und Therapie der Lymphödeme. [(accessed on 1 October 2020)]; Available online: https://www.awmf.org/uploads/tx_szleitlinien/058-001l_S2k_Diagnostik_und_Therapie_der_Lymphoedeme_2019-07.pdf.

Kilgore L.J., Korentager S.S., Hangge A.N., Amin A.L., Balanoff C.R., Larson K.E., Mitchell M.P., Chen J.G., Burgen E., Khan Q.J., et al. Reducing Breast Cancer-Related Lymphedema (BCRL) Through Prospective Surveillance Monitoring Using Bioimpedance Spectroscopy (BIS) and Patient Directed Self-Interventions. Ann. Surg. Oncol. 2018;25:2948–2952. doi: 10.1245/s10434-018-6601-8. PubMed DOI

Schook C.C., Mulliken J.B., Fishman S.J., Alomari A.I., Grant F.D., Greene A.K. Differential diagnosis of lower extremity enlargement in pediatric patients referred with a diagnosis of lymphedema. Plast. Reconstr. Surg. 2011;127:1571–1581. doi: 10.1097/PRS.0b013e31820a64f3. PubMed DOI

Lin S., Kim J., Lee M.-J., Roche L., Yang N.L., Tsao P.S., Rockson S.G. Prospective transcriptomic pathway analysis of human lymphatic vascular insufficiency: Identification and validation of a circulating biomarker panel. PLoS ONE. 2012;7:e52021. doi: 10.1371/journal.pone.0052021. PubMed DOI PMC

Dixon J.B., Weiler M.J. Bridging the divide between pathogenesis and detection in lymphedema. Semin. Cell Dev. Biol. 2015;38:75–82. doi: 10.1016/j.semcdb.2014.12.003. PubMed DOI PMC

Ure C. Diagnosis of lymphedema. Wien. Med. Wochenschr. 2013;163:162–168. doi: 10.1007/s10354-013-0204-6. PubMed DOI

Goss J.A., Greene A.K. Sensitivity and Specificity of the Stemmer Sign for Lymphedema: A Clinical Lymphoscintigraphic Study. Plast. Reconstr. Surg. Glob. Open. 2019;7:e2295. doi: 10.1097/GOX.0000000000002295. PubMed DOI PMC

Hidding J.T., Viehoff P.B., Beurskens C.H., van Laarhoven H.W., Nijhuis-van der Sanden M.W., van der Wees P.J. Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review. Phys. Ther. 2016;96:1965–1981. doi: 10.2522/ptj.20150412. PubMed DOI

Sharkey A.R., King S.W., Kuo R.Y., Bickerton S.B., Ramsden A.J., Furniss D. Measuring Limb Volume: Accuracy and Reliability of Tape Measurement Versus Perometer Measurement. Lymphat. Res. Biol. 2018;16:182–186. doi: 10.1089/lrb.2017.0039. PubMed DOI

Ciudad P., Sabbagh M.D., Agko M., Huang T.C.T., Manrique O.J., L C.R., Reynaga C., Delgado R., Maruccia M., Chen H.C. Surgical Management of Lower Extremity Lymphedema: A Comprehensive Review. Indian J. Plast. Surg. 2019;52:81–92. doi: 10.1055/s-0039-1688537. PubMed DOI PMC

Ogawa Y. Recent advances in medical treatment for lymphedema. Ann. Vasc. Dis. 2012;5:139–144. doi: 10.3400/avd.ra.12.00006. PubMed DOI PMC

Apich G. Konservative Therapie des Lymphoedems-Lymphologische Rehabilitationsbehandlung. Wien. Med. Wochenschr. 2013;163:169–176. doi: 10.1007/s10354-013-0205-5. PubMed DOI

Tzani I., Tsichlaki M., Zerva E., Papathanasiou G., Dimakakos E. Physiotherapeutic rehabilitation of lymphedema: State-of-the-art. Lymphology. 2018;51:1–12. PubMed

Dayan J.H., Ly C.L., Kataru R.P., Mehrara B.J. Lymphedema: Pathogenesis and Novel Therapies. Annu. Rev. Med. 2018;69:263–276. doi: 10.1146/annurev-med-060116-022900. PubMed DOI

Gott F.H., Ly K., Piller N., Mangio A. Negative pressure therapy in the management of lymphoedema. J. Lymphoedema. 2018;13:43–48.

Gatt M., Willis S., Leuschner S. A meta-analysis of the effectiveness and safety of kinesiology taping in the management of cancer-related lymphoedema. Eur. J. Cancer Care. 2017;26 doi: 10.1111/ecc.12510. PubMed DOI

Davies C., Levenhagen K., Ryans K., Perdomo M., Gilchrist L. Interventions for Breast Cancer-Related Lymphedema: Clinical Practice Guideline from the Academy of Oncologic Physical Therapy of APTA. Phys. Ther. 2020;100:1163–1179. doi: 10.1093/ptj/pzaa087. PubMed DOI PMC

Stecco A., Stern R., Fantoni I., De Caro R., Stecco C. Fascial Disorders: Implications for Treatment. PM&R. 2016;8:161–168. doi: 10.1016/j.pmrj.2015.06.006. PubMed DOI

Roman M., Chaudhry H., Bukiet B., Stecco A., Findley T.W. Mathematical analysis of the flow of hyaluronic acid around fascia during manual therapy motions. J. Am. Osteopath Assoc. 2013;113:600–610. doi: 10.7556/jaoa.2013.021. PubMed DOI

Shaw C., Mortimer P., Judd P.A. A randomized controlled trial of weight reduction as a treatment for breast cancer-related lymphedema. Cancer. 2007;110:1868–1874. doi: 10.1002/cncr.22994. PubMed DOI

Nitti M.D., Hespe G.E., Kataru R.P., García Nores G.D., Savetsky I.L., Torrisi J.S., Gardenier J.C., Dannenberg A.J., Mehrara B.J. Obesity-induced lymphatic dysfunction is reversible with weight loss. J. Physiol. 2016;594:7073–7087. doi: 10.1113/JP273061. PubMed DOI PMC

Kwan M.L., Cohn J.C., Armer J.M., Stewart B.R., Cormier J.N. Exercise in patients with lymphedema: A systematic review of the contemporary literature. J. Cancer Surviv. 2011;5:320–336. doi: 10.1007/s11764-011-0203-9. PubMed DOI

Mariana V.F., de Fatima G.G., Maria Pde G. The effect of mechanical lymph drainage accompanied with heat on lymphedema. J. Res. Med. Sci. 2011;16:1448–1451. PubMed PMC

Bae H., Kim H.J. Clinical outcomes of extracorporeal shock wave therapy in patients with secondary lymphedema: A pilot study. Ann. Rehabil. Med. 2013;37:229–234. doi: 10.5535/arm.2013.37.2.229. PubMed DOI PMC

Li K., Zhang Z., Liu N.F., Feng S.Q., Tong Y., Zhang J.F., Constantinides J., Lazzeri D., Grassetti L., Nicoli F., et al. Efficacy and safety of far infrared radiation in lymphedema treatment: Clinical evaluation and laboratory analysis. Lasers Med. Sci. 2017;32:485–494. doi: 10.1007/s10103-016-2135-0. PubMed DOI

Badger C., Preston N., Seers K., Mortimer P. Benzo-pyrones for reducing and controlling lymphoedema of the limbs. Cochrane Database Syst. Rev. 2004;2:Cd003140. doi: 10.1002/14651858.CD003140.pub2. PubMed DOI PMC

Rockson S.G., Tian W., Jiang X., Kuznetsova T., Haddad F., Zampell J., Mehrara B., Sampson J.P., Roche L., Kim J., et al. Pilot studies demonstrate the potential benefits of antiinflammatory therapy in human lymphedema. JCI Insight. 2018;3:e123775. doi: 10.1172/jci.insight.123775. PubMed DOI PMC

Nakamura K., Radhakrishnan K., Wong Y.M., Rockson S.G. Anti-inflammatory pharmacotherapy with ketoprofen ameliorates experimental lymphatic vascular insufficiency in mice. PLoS ONE. 2009;4:e8380. doi: 10.1371/journal.pone.0008380. PubMed DOI PMC

Gardenier J.C., Kataru R.P., Hespe G.E., Savetsky I.L., Torrisi J.S., Nores G.D., Jowhar D.K., Nitti M.D., Schofield R.C., Carlow D.C., et al. Topical tacrolimus for the treatment of secondary lymphedema. Nat. Commun. 2017;8:14345. doi: 10.1038/ncomms14345. PubMed DOI PMC

Schutte-Nutgen K., Tholking G., Suwelack B., Reuter S. Tacrolimus—Pharmacokinetic Considerations for Clinicians. Curr. Drug Metab. 2018;19:342–350. doi: 10.2174/1389200219666180101104159. PubMed DOI

Schwartz M.S. Use of hyaluronidase by iontophoresis in treatment of lymphedema. AMA Arch. Intern. Med. 1955;95:662–668. doi: 10.1001/archinte.1955.00250110032004. PubMed DOI

Borelli S. Therapy of elephantiasis with hyaluronidase. Dermatol. Wochenschr. 1959;139:5–8. PubMed

Hochstrasser E., Horvath G. Hyaluronidase therapy of elephantiasis. Borgyogy. Venerol. Sz. 1960;36:201–203. PubMed

Breslin J.W., Gaudreault N., Watson K.D., Reynoso R., Yuan S.Y., Wu M.H. Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H709–H718. doi: 10.1152/ajpheart.00102.2007. PubMed DOI

Baker A., Kim H., Semple J.L., Dumont D., Shoichet M., Tobbia D., Johnston M. Experimental assessment of pro-lymphangiogenic growth factors in the treatment of post-surgical lymphedema following lymphadenectomy. Breast Cancer Res. 2010;12:R70. doi: 10.1186/bcr2638. PubMed DOI PMC

Zhou H., Wang M., Hou C., Jin X., Wu X. Exogenous VEGF-C augments the efficacy of therapeutic lymphangiogenesis induced by allogenic bone marrow stromal cells in a rabbit model of limb secondary lymphedema. Jpn. J. Clin. Oncol. 2011;41:841–846. doi: 10.1093/jjco/hyr055. PubMed DOI

Hartiala P., Suominen S., Suominen E., Kaartinen I., Kiiski J., Viitanen T., Alitalo K., Saarikko A.M. Phase 1 Lymfactin® Study: Short-term Safety of Combined Adenoviral VEGF-C and Lymph Node Transfer Treatment for Upper Extremity Lymphedema. J. Plast. Reconstr. Aesthet. Surg. 2020;73:1612–1621. doi: 10.1016/j.bjps.2020.05.009. PubMed DOI

Maldonado G.E., Perez C.A., Covarrubias E.E., Cabriales S.A., Leyva L.A., Perez J.C., Almaguer D.G. Autologous stem cells for the treatment of post-mastectomy lymphedema: A pilot study. Cytotherapy. 2011;13:1249–1255. doi: 10.3109/14653249.2011.594791. PubMed DOI

Hou C., Wu X., Jin X. Autologous bone marrow stromal cells transplantation for the treatment of secondary arm lymphedema: A prospective controlled study in patients with breast cancer related lymphedema. Jpn. J. Clin. Oncol. 2008;38:670–674. doi: 10.1093/jjco/hyn090. PubMed DOI

Conrad C., Niess H., Huss R., Huber S., von Luettichau I., Nelson P.J., Ott H.C., Jauch K.W., Bruns C.J. Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation. 2009;119:281–289. doi: 10.1161/CIRCULATIONAHA.108.793208. PubMed DOI

Toyserkani N.M., Jensen C.H., Tabatabaeifar S., Jorgensen M.G., Hvidsten S., Simonsen J.A., Andersen D.C., Sheikh S.P., Sorensen J.A. Adipose-derived regenerative cells and fat grafting for treating breast cancer-related lymphedema: Lymphoscintigraphic evaluation with 1 year of follow-up. J. Plast. Reconstr. Aesthet. Surg. 2019;72:71–77. doi: 10.1016/j.bjps.2018.09.007. PubMed DOI

Hu L.R., Pan J. Adipose-derived stem cell therapy shows promising results for secondary lymphedema. World J. Stem Cells. 2020;12:612–620. doi: 10.4252/wjsc.v12.i7.612. PubMed DOI PMC

Rockson S.G. Lymphedema. Vasc. Med. 2016;21:77–81. doi: 10.1177/1358863X15620852. PubMed DOI

Schaverien M.V., Badash I., Patel K.M., Selber J.C., Cheng M.H. Vascularized Lymph Node Transfer for Lymphedema. Semin. Plast. Surg. 2018;32:28–35. doi: 10.1055/s-0038-1632401. PubMed DOI PMC

Kataru R.P., Park H.J., Baik J.E., Li C., Shin J., Mehrara B.J. Regulation of Lymphatic Function in Obesity. Front. Physiol. 2020;11:459. doi: 10.3389/fphys.2020.00459. PubMed DOI PMC

Lasinski B.B., McKillip Thrift K., Squire D., Austin M.K., Smith K.M., Wanchai A., Green J.M., Stewart B.R., Cormier J.N., Armer J.M. A systematic review of the evidence for complete decongestive therapy in the treatment of lymphedema from 2004 to 2011. PM&R. 2012;4:580–601. doi: 10.1016/j.pmrj.2012.05.003. PubMed DOI

Weiss J.M., Spray B.J. The effect of complete decongestive therapy on the quality of life of patients with peripheral lymphedema. Lymphology. 2002;35:46–58. PubMed

Döller W. Lymphologie. Wien. Med. Wochenschr. 2013;163:153–154. doi: 10.1007/s10354-013-0186-4. PubMed DOI

Ohlin K., Svensson B., Brorson H. Controlled Compression Therapy and Compression Garments. In: Greene A.K., Slavin S.A., Brorson H., editors. Lymphedema: Presentation, Diagnosis, and Treatment. Springer International Publishing; Cham, Switzerland: 2015. pp. 213–225. DOI

Fukushima T., Tsuji T., Sano Y., Miyata C., Kamisako M., Hohri H., Yoshimura C., Asakura M., Okitsu T., Muraoka K., et al. Immediate effects of active exercise with compression therapy on lower-limb lymphedema. Support. Care Cancer. 2017;25:2603–2610. doi: 10.1007/s00520-017-3671-2. PubMed DOI PMC

Soriano-Maldonado A., Carrera-Ruiz Á., Díez-Fernández D.M., Esteban-Simón A., Maldonado-Quesada M., Moreno-Poza N., García-Martínez M.D.M., Alcaraz-García C., Vázquez-Sousa R., Moreno-Martos H., et al. Effects of a 12-week resistance and aerobic exercise program on muscular strength and quality of life in breast cancer survivors: Study protocol for the EFICAN randomized controlled trial. Medicine. 2019;98:e17625. doi: 10.1097/MD.0000000000017625. PubMed DOI PMC

Baumann F.T., Reike A., Reimer V., Schumann M., Hallek M., Taaffe D.R., Newton R.U., Galvao D.A. Effects of physical exercise on breast cancer-related secondary lymphedema: A systematic review. Breast Cancer Res. Treat. 2018;170:1–13. doi: 10.1007/s10549-018-4725-y. PubMed DOI

The diagnosis and treatment of peripheral lymphedema: 2013 Consensus Document of the International Society of Lymphology. Lymphology. 2013;46:1–11. PubMed

Douglass J., Graves P., Gordon S. Self-Care for Management of Secondary Lymphedema: A Systematic Review. PLoS Negl. Trop. Dis. 2016;10:e0004740. doi: 10.1371/journal.pntd.0004740. PubMed DOI PMC

Bozkurt M., Palmer L.J., Guo Y. Effectiveness of Decongestive Lymphatic Therapy in Patients with Lymphedema Resulting from Breast Cancer Treatment Regardless of Previous Lymphedema Treatment. Breast J. 2017;23:154–158. doi: 10.1111/tbj.12710. PubMed DOI

Pereira de Godoy J.M., Godoy H., Pereira de Godoy A.C., Marqui T., Guerreiro Godoy M.d.F. Lymphedema and the mobilization of intracellular and extracellular fluids with intensive treatment. Acta Phlebol. 2019;20:57–60. doi: 10.23736/S1593-232X.19.00446-6. DOI

Ancukiewicz M., Russell T.A., Otoole J., Specht M., Singer M., Kelada A., Murphy C.D., Pogachar J., Gioioso V., Patel M., et al. Standardized method for quantification of developing lymphedema in patients treated for breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011;79:1436–1443. doi: 10.1016/j.ijrobp.2010.01.001. PubMed DOI PMC

Koehler L.A., Mayrovitz H.N. Tissue Dielectric Constant Measures in Women with and without Clinical Trunk Lymphedema Following Breast Cancer Surgery: A 78-Week Longitudinal Study. Phys. Ther. 2020;100:1384–1392. doi: 10.1093/ptj/pzaa080. PubMed DOI PMC

Sagen A., Kåresen R., Skaane P., Risberg M.A. Validity for the simplified water displacement instrument to measure arm lymphedema as a result of breast cancer surgery. Arch. Phys. Med. Rehabil. 2009;90:803–809. doi: 10.1016/j.apmr.2008.11.016. PubMed DOI

Reza C., Nørregaard S., Moffatt C., Karlsmark T. Inter-observer and Intra-observer Variability in Volume Measurements of the Lower Extremity Using Perometer. Lymphat. Res. Biol. 2020;18:416–421. doi: 10.1089/lrb.2019.0063. PubMed DOI

Tidhar D., Armer J.M., Deutscher D., Shyu C.R., Azuri J., Madsen R. Measurement Issues in Anthropometric Measures of Limb Volume Change in Persons at Risk for and Living with Lymphedema: A Reliability Study. J. Pers. Med. 2015;5:341–353. doi: 10.3390/jpm5040341. PubMed DOI PMC

Pereira De Godoy J.M., Gonçalves I.P., Barufi S., Godoy M.F.G. Large reduction in volume with the intensive treatment of lymphedema: Reduction of fluids? Int. J. Angiol. 2012;21:171–174. doi: 10.1055/s-0032-1325167. PubMed DOI PMC

De Godoy J.M.P., de Godoy A.C.P., Maria F.G.G. Evolution of Godoy & Godoy manual lymph drainage. Technique with linear Movements. Clin. Pract. 2017;7:1006. doi: 10.4081/cp.2017.1006. PubMed DOI PMC

Bertsch T. Evaluation of a novel night-time compression garment: A prospective observational study. Br. J. Community Nurs. 2018;23:535–541. doi: 10.12968/bjcn.2018.23.11.535. PubMed DOI

Ward L.C. Assessment of lymphedema by bioelectrical impedance spectroscopy. Jpn. J. Nurs. Sci. 2011;8:108. doi: 10.1111/j.1742-7924.2010.00165.x. PubMed DOI

Pereira De Godoy J.M., Franco Brigidio P.A., Salles Cunha S.X., Batigália F., De Fatima Guerreiro Godoy M. Mobilization of fluids in large volumetric reductions during intensive treatment of leg lymphedema. Int. Angiol. 2013;32:479–482. PubMed

Hinghofer-Szalkay H.G., Sauseng-Fellegger G., Greenleaf J.E. Plasma volume with alternative tilting: Effect of fluid ingestion. J. Appl. Physiol. 1995;78:1369–1373. doi: 10.1152/jappl.1995.78.4.1369. PubMed DOI

Van Beaumont W. Evaluation of hemoconcentration from hematocrit measurements. J. Appl. Physiol. 1972;32:712–713. doi: 10.1152/jappl.1972.32.5.712. PubMed DOI

Dill D.B., Costill D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974;37:247–248. doi: 10.1152/jappl.1974.37.2.247. PubMed DOI

Nadler S.B., Hidalgo J.H., Bloch T. Prediction of blood volume in normal human adults. Surgery. 1962;51:224–232. PubMed

Brix B., Apich G., Roessler A., Ure C., Schmid-Zalaudek K., Hinghofer-Szalkay H., Goswami N. Fluid Shifts Induced by Physical Therapy in Lower Limb Lymphedema Patients. J. Clin. Med. 2020;9:3678. doi: 10.3390/jcm9113678. PubMed DOI PMC

Titze J. Water-free Na+ retention: Interaction with hypertension and tissue hydration. Blood Purif. 2008;26:95–99. doi: 10.1159/000110573. PubMed DOI

Wiig H., Luft F.C., Titze J.M. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol. 2018;222 doi: 10.1111/apha.13006. PubMed DOI

Titze J., Lang R., Ilies C., Schwind K.H., Kirsch K.A., Dietsch P., Luft F.C., Hilgers K.F. Osmotically inactive skin Na+ storage in rats. Am. J. Physiol. Ren. Physiol. 2003;285:F1108–F1117. doi: 10.1152/ajprenal.00200.2003. PubMed DOI

Pimenta E., Gaddam K.K., Oparil S., Aban I., Husain S., Dell’Italia L.J., Calhoun D.A. Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: Results from a randomized trial. Hypertension. 2009;54:475–481. doi: 10.1161/HYPERTENSIONAHA.109.131235. PubMed DOI PMC

Goswami N., Blaber A.P., Hinghofer-Szalkay H., Montani J.P. Orthostatic intolerance in older persons: Etiology and countermeasures. Front. Physiol. 2017;8 doi: 10.3389/fphys.2017.00803. PubMed DOI PMC

Goswami N. Falls and fall-prevention in older persons: Geriatrics meets spaceflight! Front. Physiol. 2017;8:603. doi: 10.3389/fphys.2017.00603. PubMed DOI PMC

Harrison M.H., Kravik S.E., Geelen G., Keil L., Greenleaf J.E. Blood pressure and plasma renin activity as predictors of orthostatic intolerance. Aviat. Space Environ. Med. 1985;56:1059–1064. PubMed

Hinghofer-Szalkay H. Gravity, the hydrostatic indifference concept and the cardiovascular system. Eur. J. Appl. Physiol. 2011;111:1673–1674. doi: 10.1007/s00421-010-1646-9. PubMed DOI

Blaber A.P., Goswami N., Bondar R.L., Kassam M.S. Impairment of cerebral blood flow regulation in astronauts with post flight orthostatic intolerance. Stroke. 2011;42:1844–1850. doi: 10.1161/STROKEAHA.110.610576. PubMed DOI

Putz Z., Németh N., Istenes I., Martos T., Gandhi R.A., Körei A.E., Hermányi Z., Szathmári M., Jermendy G., Tesfaye S., et al. Autonomic dysfunction and circadian blood pressure variations in people with impaired glucose tolerance. Diabet. Med. 2013;30:358–362. doi: 10.1111/dme.12111. PubMed DOI

Goswami N., Roessler A., Hinghofer-Szalkay H., Montani J.P., Steptoe A. Delaying orthostatic syncope with mental challenge: A pilot study. Physiol. Behav. 2012;106:569–573. doi: 10.1016/j.physbeh.2012.02.022. PubMed DOI

Rapp K., Becker C., Cameron I.D., König H.H., Büchele G. Epidemiology of falls in residential aged care: Analysis of more than 70,000 falls from residents of bavarian nursing homes. J. Am. Med. Dir. Assoc. 2012;13:187–e181. doi: 10.1016/j.jamda.2011.06.011. PubMed DOI

Blaber A., Hinghofer-Szalkay H., Goswami N. Blood volume redistribution during hypovolemia. Aviat. Space Environ. Med. 2013;84:59–64. doi: 10.3357/ASEM.3424.2013. PubMed DOI

Gangavati A., Hajjar I., Quach L., Jones R.N., Kiely D.K., Gagnon P., Lipsitz L.A. Hypertension, orthostatic hypotension, and the risk of falls in a community-dwelling elderly population: The maintenance of balance, independent living, intellect, and zest in the elderly of Boston study. J. Am. Geriatr. Soc. 2011;59:383–389. doi: 10.1111/j.1532-5415.2011.03317.x. PubMed DOI PMC

Blaszczyk J.W., Lowe D.L., Hansen P.D. Ranges of postural stability and their changes in the elderly. Gait Posture. 1994;2:11–17. doi: 10.1016/0966-6362(94)90012-4. DOI

Tinetti M.E., Baker D.I., McAvay G., Claus E.B., Garrett P., Gottschalk M., Koch M.L., Trainor K., Horwitz R.I. A multifactorial intervention to reduce the risk of falling among elderly people living in the community. N. Engl. J. Med. 1994;331:821–827. doi: 10.1056/NEJM199409293311301. PubMed DOI

Mackey D.C., Robinovitch S.N. Mechanisms underlying age-related differences in ability to recover balance with the ankle strategy. Gait Posture. 2006;23:59–68. doi: 10.1016/j.gaitpost.2004.11.009. PubMed DOI

Hsiao-Wecksler E.T., Robinovitch S.N. The effect of step length on young and elderly women’s ability to recover balance. Clin. Biomech. 2007;22:574–580. doi: 10.1016/j.clinbiomech.2007.01.013. PubMed DOI

Esmer M., Keser I., Erer D., Kupeli B. Acute Cardiovascular Responses to the Application of Manual Lymphatic Drainage in Different Body Regions. Lymphat. Res. Biol. 2019;17:362–367. doi: 10.1089/lrb.2018.0043. PubMed DOI

Sachse C., Trozic I., Brix B., Roessler A., Goswami N. Sex differences in cardiovascular responses to orthostatic challenge in healthy older persons: A pilot study. Physiol. Int. 2019;106:236–249. doi: 10.1556/2060.106.2019.16. PubMed DOI

Trozic I., Platzer D., Fazekas F., Bondarenko A.I., Brix B., Rossler A., Goswami N. Postural hemodynamic parameters in older persons have a seasonal dependency: A pilot study. Z. Gerontol. Geriatr. 2020;53:145–155. doi: 10.1007/s00391-019-01525-3. PubMed DOI PMC

Blaber A.P., Landrock C.K., Souvestre P.A. Cardio-postural deconditioning: A model for post-flight orthostatic intolerance. Respir. Physiol. Neurobiol. 2009;169:S21–S25. doi: 10.1016/j.resp.2009.04.007. PubMed DOI

Small D.M., Bond M.G., Waugh D., Prack M., Sawyer J.K. Physicochemical and histological changes in the arterial wall of nonhuman primates during progression and regression of atherosclerosis. J. Clin. Investig. 1984;73:1590–1605. doi: 10.1172/JCI111366. PubMed DOI PMC

Wang X., Rader D.J. Molecular regulation of macrophage reverse cholesterol transport. Curr. Opin. Cardiol. 2007;22:368–372. doi: 10.1097/HCO.0b013e3281ec5113. PubMed DOI

Lim H.Y., Thiam C.H., Yeo K.P., Bisoendial R., Hii C.S., McGrath K.C., Tan K.W., Heather A., Alexander J.S., Angeli V. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 2013;17:671–684. doi: 10.1016/j.cmet.2013.04.002. PubMed DOI

Randolph G.J., Miller N.E. Lymphatic transport of high-density lipoproteins and chylomicrons. J. Clin. Investig. 2014;124:929–935. doi: 10.1172/JCI71610. PubMed DOI PMC

Martel C., Li W., Fulp B., Platt A.M., Gautier E.L., Westerterp M., Bittman R., Tall A.R., Chen S.-H., Thomas M.J., et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J. Clin. Investing. 2013;123:1571–1579. doi: 10.1172/JCI63685. PubMed DOI PMC

Vuorio T., Nurmi H., Moulton K., Kurkipuro J., Robciuc M.R., Ohman M., Heinonen S.E., Samaranayake H., Heikura T., Alitalo K., et al. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arter. Thromb. Vasc. Biol. 2014;34:1162–1170. doi: 10.1161/ATVBAHA.114.302528. PubMed DOI PMC

Münzel T., Sinning C., Post F., Warnholtz A., Schulz E. Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Ann. Med. 2008;40:180–196. doi: 10.1080/07853890701854702. PubMed DOI

Levick J.R. An Introduction to Cardiovascular Physiology. 5th ed. Hodder Education; London, UK: 2012.

Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflüg. Arch. Eur. J. Physiol. 2010;459:793–806. doi: 10.1007/s00424-009-0767-7. PubMed DOI

Konukoglu D., Uzun H. Endothelial Dysfunction and Hypertension. Adv. Exp. Med. Biol. 2017;956:511–540. doi: 10.1007/5584_2016_90. PubMed DOI

Vita J.A. Endothelial function. Circulation. 2011;124:e906–e912. doi: 10.1161/CIRCULATIONAHA.111.078824. PubMed DOI

Brix B., Apich G., Ure C., Roessler A., Goswami N. Physical therapy affects endothelial function in lymphedema patients. Lymphology. 2020;53:109–117. PubMed

Thijssen D.H., Black M.A., Pyke K.E., Padilla J., Atkinson G., Harris R.A., Parker B., Widlansky M.E., Tschakovsky M.E., Green D.J. Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. American journal of physiology. Heart Circ. Physiol. 2011;300:H2–H12. doi: 10.1152/ajpheart.00471.2010. PubMed DOI PMC

Thijssen D.H.J., Bruno R.M., van Mil A., Holder S.M., Faita F., Greyling A., Zock P.L., Taddei S., Deanfield J.E., Luscher T., et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 2019;40:2534–2547. doi: 10.1093/eurheartj/ehz350. PubMed DOI

Yamashina A., Tomiyama H., Arai T., Hirose K., Koji Y., Hirayama Y., Yamamoto Y., Hori S. Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk. Hypertens. Res. 2003;26:615–622. doi: 10.1291/hypres.26.615. PubMed DOI

Everson F., De Boever P., Nawrot T.S., Goswami N., Mthethwa M., Webster I., Martens D.S., Mashele N., Charania S., Kamau F., et al. Personal NO(2) and Volatile Organic Compounds Exposure Levels are Associated with Markers of Cardiovascular Risk in Women in the Cape Town Region of South Africa. Int. J. Environ. Res. Public Health. 2019;16:2284. doi: 10.3390/ijerph16132284. PubMed DOI PMC

Louwies T., Int Panis L., Alders T., Bonne K., Goswami N., Nawrot T.S., Dendale P., De Boever P. Microvascular reactivity in rehabilitating cardiac patients based on measurements of retinal blood vessel diameters. Microvasc. Res. 2019;124:25–29. doi: 10.1016/j.mvr.2019.02.006. PubMed DOI

Matušková V., Zeman T., Ewerlingová L., Hlinomazová Z., Souček J., Vlková E., Goswami N., Balcar V.J., Šerý O. An association of neovascular age-related macular degeneration with polymorphisms of CFH, ARMS2, HTRA1 and C3 genes in Czech population. Acta Ophthalmol. 2020;98:e691–e699. doi: 10.1111/aos.14357. PubMed DOI

Vaes A.W., Spruit M.A., Theunis J., Goswami N., Vanfleteren L.E., Franssen F.M.E., Wouters E.F.M., De Boever P. Looking into the eye of patients with chronic obstructive pulmonary disease: An opportunity for better microvascular profiling of these complex patients. Acta Ophthalmol. 2018;96:539–549. doi: 10.1111/aos.13765. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...