Biology of Lymphedema
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ8/2019
Austrian Scientific & Technological Cooperation (OeAD)
PubMed
33806183
PubMed Central
PMC8065876
DOI
10.3390/biology10040261
PII: biology10040261
Knihovny.cz E-zdroje
- Klíčová slova
- cardiovascular system, complete decongestive therapy, fluid shifts, hemodynamics, lymphatic vasculature, lymphedema, manual lymphatic drainage, perometry, plasma volume,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This narrative review portrays the lymphatic system, a poorly understood but important physiological system. While several reviews have been published that are related to the biology of the lymphatic system and lymphedema, the physiological alternations, which arise due to disturbances of this system, and during lymphedema therapy, are poorly understood and, consequently, not widely reported. We present an inclusive collection of evidence from the scientific literature reflecting important developments in lymphedema research over the last few decades. This review aims at advancing the knowledge on the area of lymphatic system function as well as how system dysfunction, as seen in lymphedema, affects physiological systems and how lymphedema therapy modulates these mechanisms. We propose that future studies should aim at investigating, in-detail, aspects that are related to fluid regulation, hemodynamic responses, and endothelial and/or vascular changes due to lymphedema and lymphedema therapy.
Zobrazit více v PubMed
Breslin J.W., Yang Y., Scallan J.P., Sweat R.S., Adderley S.P., Murfee W.L. Lymphatic Vessel Network Structure and Physiology. Compr. Physiol. 2018;9:207–299. doi: 10.1002/cphy.c180015. PubMed DOI PMC
Schmid-Schonbein G.W. Microlymphatics and lymph flow. Physiol. Rev. 1990;70:987–1028. doi: 10.1152/physrev.1990.70.4.987. PubMed DOI
Moore J.E., Jr., Bertram C.D. Lymphatic System Flows. Annu. Rev. Fluid Mech. 2018;50:459–482. doi: 10.1146/annurev-fluid-122316-045259. PubMed DOI PMC
Breslin J.W. Mechanical forces and lymphatic transport. Microvasc. Res. 2014;96:46–54. doi: 10.1016/j.mvr.2014.07.013. PubMed DOI PMC
Telinius N., Hjortdal V.E. Role of the lymphatic vasculature in cardiovascular medicine. Heart. 2019;105:1777–1784. doi: 10.1136/heartjnl-2018-314461. PubMed DOI
Oliver G., Kipnis J., Randolph G.J., Harvey N.L. The Lymphatic Vasculature in the 21st Century: Novel Functional Roles in Homeostasis and Disease. Cell. 2020;182:270–296. doi: 10.1016/j.cell.2020.06.039. PubMed DOI PMC
Hsu M.C., Itkin M. Lymphatic Anatomy. Tech. Vasc. Interv. Radiol. 2016;19:247–254. doi: 10.1053/j.tvir.2016.10.003. PubMed DOI
Levick J.R., Michel C.C. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 2010;87:198–210. doi: 10.1093/cvr/cvq062. PubMed DOI
Lynch P.M., Delano F.A., Schmid-Schönbein G.W. The primary valves in the initial lymphatics during inflammation. Lymphat. Res. Biol. 2007;5:3–10. doi: 10.1089/lrb.2007.5102. PubMed DOI
Trzewik J., Mallipattu S.K., Artmann G.M., Delano F.A., Schmid-Schönbein G.W. Evidence for a second valve system in lymphatics: Endothelial microvalves. FASEB J. 2001;15:1711–1717. doi: 10.1096/fj.01-0067com. PubMed DOI
Scallan J.P., Zawieja S.D., Castorena-Gonzalez J.A., Davis M.J. Lymphatic pumping: Mechanics, mechanisms and malfunction. J. Physiol. 2016;594:5749–5768. doi: 10.1113/JP272088. PubMed DOI PMC
Armenio S., Cetta F., Tanzini G., Guercia C. Spontaneous contractility in the human lymph vessels. Lymphology. 1981;14:173–178. PubMed
Olszewski W.L., Engeset A., Sokolowski J. Lymph flow and protein in the normal male leg during lying, getting up, and walking. Lymphology. 1977;10:178–183. PubMed
Gashev A.A., Davis M.J., Delp M.D., Zawieja D.C. Regional variations of contractile activity in isolated rat lymphatics. Microcirculation. 2004;11:477–492. doi: 10.1080/10739680490476033. PubMed DOI
Gasheva O.Y., Zawieja D.C., Gashev A.A. Contraction-initiated NO-dependent lymphatic relaxation: A self-regulatory mechanism in rat thoracic duct. J. Physiol. 2006;575:821–832. doi: 10.1113/jphysiol.2006.115212. PubMed DOI PMC
Scallan J.P., Davis M.J., Huxley V.H. Permeability and contractile responses of collecting lymphatic vessels elicited by atrial and brain natriuretic peptides. J. Physiol. 2013;591:5071–5081. doi: 10.1113/jphysiol.2013.260042. PubMed DOI PMC
Adair T.H., Guyton A.C. Modification of lymph by lymph nodes. III. Effect of increased lymph hydrostatic pressure. Am. J. Physiol. 1985;249:H777–H782. doi: 10.1152/ajpheart.1985.249.4.H777. PubMed DOI
Hansen K.C., D’Alessandro A., Clement C.C., Santambrogio L. Lymph formation, composition and circulation: A proteomics perspective. Int. Immunol. 2015;27:219–227. doi: 10.1093/intimm/dxv012. PubMed DOI
Renkin E.M. Some consequences of capillary permeability to macromolecules: Starling’s hypothesis reconsidered. Am. J. Physiol. 1986;250:H706–H710. doi: 10.1152/ajpheart.1986.250.5.H706. PubMed DOI
Gannon B.J., Carati C.J. Endothelial distribution of the membrane water channel molecule aquaporin-1: Implications for tissue and lymph fluid physiology? Lymphat. Res. Biol. 2003;1:55–66. doi: 10.1089/15396850360495709. PubMed DOI
Adamczyk L.A., Gordon K., Kholova I., Meijer-Jo rna L.B., Telinius N., Gallagher P.J., van der Wal A.C., Baandrup U. Lymph vessels: The forgotten second circulation in health and disease. Virchows Arch. 2016;469:3–17. doi: 10.1007/s00428-016-1945-6. PubMed DOI PMC
Alitalo K. The lymphatic vasculature in disease. Nat. Med. 2011;17:1371–1380. doi: 10.1038/nm.2545. PubMed DOI
Notohamiprodjo M., Weiss M., Baumeister R.G., Sommer W.H., Helck A., Crispin A., Reiser M.F., Herrmann K.A. MR lymphangiography at 3.0 T: Correlation with lymphoscintigraphy. Radiology. 2012;264:78–87. doi: 10.1148/radiol.12110229. PubMed DOI
Mazzei F.G., Gentili F., Guerrini S., Cioffi Squitieri N., Guerrieri D., Gennaro P., Scialpi M., Volterrani L., Mazzei M.A. MR Lymphangiography: A Practical Guide to Perform It and a Brief Review of the Literature from a Technical Point of View. BioMed Res. Int. 2017;2017:2598358. doi: 10.1155/2017/2598358. PubMed DOI PMC
Pieper C.C., Feisst A., Schild H.H. Contrast-enhanced Interstitial Transpedal MR Lymphangiography for Thoracic Chylous Effusions. Radiology. 2020;295:458–466. doi: 10.1148/radiol.2020191593. PubMed DOI
Chavhan G.B., Lam C.Z., Greer M.C., Temple M., Amaral J., Grosse-Wortmann L. Magnetic Resonance Lymphangiography. Radiol. Clin. N. Am. 2020;58:693–706. doi: 10.1016/j.rcl.2020.02.002. PubMed DOI
Giacalone G., Yamamoto T., Belva F., Hayashi A. Bedside 3D Visualization of Lymphatic Vessels with a Handheld Multispectral Optoacoustic Tomography Device. J. Clin. Med. 2020;9:815. doi: 10.3390/jcm9030815. PubMed DOI PMC
Polomska A.K., Proulx S.T. Imaging technology of the lymphatic system. Adv. Drug Deliv. Rev. 2020 doi: 10.1016/j.addr.2020.08.013. PubMed DOI
Rössler A., Fink M., Goswami N., Batzel J.J. Modeling of hyaluronan clearance with application to estimation of lymph flow. Physiol. Meas. 2011;32:1213–1238. doi: 10.1088/0967-3334/32/8/014. PubMed DOI
Roh K., Cho S., Park J.-h., Yoo B.C., Kim W.-K., Kim S.-k., Park K., Kang H., Ku J.-m., Yeom C.-H., et al. Therapeutic effects of hyaluronidase on acquired lymphedema using a newly developed mouse limb model. Exp. Biol. Med. 2017;242:584–592. doi: 10.1177/1535370216688570. PubMed DOI PMC
Rossler A., Hinghofer-Szalkay H. Hyaluronan fragments: An information-carrying system? Horm. Metab. Res. 2003;35:67–68. doi: 10.1055/s-2003-39062. PubMed DOI
Hinghofer-Szalkay H.G., Mekonen W., Rossler A., Schwaberger G., Lamprecht M., Hofmann P. Post-exercise decrease of plasma hyaluronan: Increased clearance or diminished production? Physiol. Res. 2002;51:139–144. PubMed
Rössler A., László Z., Kvas E., Hinghofer-Szalkay H.G. Plasma hyaluronan concentration: No circadian rhythm but large effect of food intake in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1998;78:573–577. doi: 10.1007/s004210050463. PubMed DOI
Liu N.-F., Zhang L. Changes of tissue fluid hyaluronan (hyaluronic acid) in peripheral lymphedema. Lymphology. 1998;31:173–179. PubMed
Brix B., Apich G., Rössler A., Walbrodt S., Goswami N. Effects of physical therapy on hyaluronan clearance and volume regulating hormones in lower limb lymphedema patients: A pilot study. Sci. Prog. 2021;104:36850421998485. doi: 10.1177/0036850421998485. PubMed DOI PMC
Goswami N., Roessler A., Haditsch B., Hinghofer-Szalkay H., Schneditz D. Paradoxical clearance of hyaluronan fragments during haemodialysis and haemodiafiltration. Nephrol. Dial. Transplant. 2012;27:4420–4422. doi: 10.1093/ndt/gfs266. PubMed DOI
Liu N.F., Olszewski W. The influence of local hyperthermia on lymphedema and lymphedematous skin of the human leg. Lymphology. 1993;26:28–37. PubMed
Rockson S.G., Rivera K.K. Estimating the population burden of lymphedema. Ann. N. Y. Acad. Sci. 2008;1131:147–154. doi: 10.1196/annals.1413.014. PubMed DOI
Kayıran O., De La Cruz C., Tane K., Soran A. Lymphedema: From diagnosis to treatment. Turk. J. Surg. 2017;33:51–57. doi: 10.5152/turkjsurg.2017.3870. PubMed DOI PMC
Maclellan R.A., Couto R.A., Sullivan J.E., Grant F.D., Slavin S.A., Greene A.K. Management of Primary and Secondary Lymphedema: Analysis of 225 Referrals to a Center. Ann. Plast. Surg. 2015;75:197–200. doi: 10.1097/SAP.0000000000000022. PubMed DOI
Gasparis A.P., Kim P.S., Dean S.M., Khilnani N.M., Labropoulos N. Diagnostic approach to lower limb edema. Phlebology. 2020;35:650–655. doi: 10.1177/0268355520938283. PubMed DOI PMC
Grada A.A., Phillips T.J. Lymphedema: Pathophysiology and clinical manifestations. J. Am. Acad. Dermatol. 2017;77:1009–1020. doi: 10.1016/j.jaad.2017.03.022. PubMed DOI
Borman P. Lymphedema diagnosis, treatment, and follow-up from the view point of physical medicine and rehabilitation specialists. Turk. J. Phys. Med. Rehabil. 2018;64:179–197. doi: 10.5606/tftrd.2018.3539. PubMed DOI PMC
Schaverien M.V., Coroneos C.J. Surgical Treatment of Lymphedema. Plast. Reconstr. Surg. 2019;144:738–758. doi: 10.1097/PRS.0000000000005993. PubMed DOI
Moffatt C.J., Franks P.J., Doherty D.C., Williams A.F., Badger C., Jeffs E., Bosanquet N., Mortimer P.S. Lymphoedema: An underestimated health problem. Qjm. 2003;96:731–738. doi: 10.1093/qjmed/hcg126. PubMed DOI
Neuhüttler S., Brenner E. Beitrag zur Epidemiologie des Lymphödems. Phlebologie. 2018;35:181–187. doi: 10.1055/s-0037-1622142. DOI
Keeley V., Franks P., Quere I., Mercier G., Michelini S., Cestari M., Borman P., Hughes A., Clark K., Lisle J., et al. LIMPRINT in Specialist Lymphedema Services in United Kingdom, France, Italy, and Turkey. Lymphat. Res. Biol. 2019;17:141–146. doi: 10.1089/lrb.2019.0021. PubMed DOI PMC
Mortimer P.S., Rockson S.G. New developments in clinical aspects of lymphatic disease. J. Clin. Investig. 2014;124:915–921. doi: 10.1172/JCI71608. PubMed DOI PMC
Maltese P.E., Michelini S., Ricci M., Maitz S., Fiorentino A., Serrani R., Lazzerotti A., Bruson A., Paolacci S., Benedetti S., et al. Increasing evidence of hereditary lymphedema caused by CELSR1 loss-of-function variants. Am. J. Med. Genet. A. 2019;179:1718–1724. doi: 10.1002/ajmg.a.61269. PubMed DOI
Aspelund A., Robciuc M.R., Karaman S., Makinen T., Alitalo K. Lymphatic System in Cardiovascular Medicine. Circ. Res. 2016;118:515–530. doi: 10.1161/CIRCRESAHA.115.306544. PubMed DOI
Brice G., Child A.H., Evans A., Bell R., Mansour S., Burnand K., Sarfarazi M., Jeffery S., Mortimer P. Milroy disease and the VEGFR-3 mutation phenotype. J. Med. Genet. 2005;42:98–102. doi: 10.1136/jmg.2004.024802. PubMed DOI PMC
Mellor R.H., Tate N., Stanton A.W., Hubert C., Mäkinen T., Smith A., Burnand K.G., Jeffery S., Levick J.R., Mortimer P.S. Mutations in FOXC2 in humans (lymphoedema distichiasis syndrome) cause lymphatic dysfunction on dependency. J. Vasc. Res. 2011;48:397–407. doi: 10.1159/000323484. PubMed DOI
Kerchner K., Fleischer A., Yosipovitch G. Lower extremity lymphedema update: Pathophysiology, diagnosis, and treatment guidelines. J. Am. Acad. Dermatol. 2008;59:324–331. doi: 10.1016/j.jaad.2008.04.013. PubMed DOI
WHO Fact sheet. [(accessed on 4 February 2021)];Lymphatic Filariasis. Available online: https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis.
Cormier J.N., Askew R.L., Mungovan K.S., Xing Y., Ross M.I., Armer J.M. Lymphedema beyond breast cancer: A systematic review and meta-analysis of cancer-related secondary lymphedema. Cancer. 2010;116:5138–5149. doi: 10.1002/cncr.25458. PubMed DOI
Bar Ad V., Cheville A., Solin L.J., Dutta P., Both S., Harris E.E. Time course of mild arm lymphedema after breast conservation treatment for early-stage breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010;76:85–90. doi: 10.1016/j.ijrobp.2009.01.024. PubMed DOI
Allam O., Park K.E., Chandler L., Mozaffari M.A., Ahmad M., Lu X., Alperovich M. The impact of radiation on lymphedema: A review of the literature. Gland. Surg. 2020;9:596–602. doi: 10.21037/gs.2020.03.20. PubMed DOI PMC
Tiwari A. Differential Diagnosis, Investigation, and Current Treatment of Lower Limb Lymphedema. Arch. Surg. 2003;138:152. doi: 10.1001/archsurg.138.2.152. PubMed DOI
Newman B., Lose F., Kedda M.A., Francois M., Ferguson K., Janda M., Yates P., Spurdle A.B., Hayes S.C. Possible genetic predisposition to lymphedema after breast cancer. Lymphat. Res. Biol. 2012;10:2–13. doi: 10.1089/lrb.2011.0024. PubMed DOI PMC
Muambangu J.P., Lukenze Jacques T. Genetic Risk Factors of Secondary Lymphedema in African Breast Cancer Population. J. Oncol. Res. Ther. 2018;4:147.
Michelini S., Vettori A., Maltese P.E., Cardone M., Bruson A., Fiorentino A., Cappellino F., Sainato V., Guerri G., Marceddu G., et al. Genetic Screening in a Large Cohort of Italian Patients Affected by Primary Lymphedema Using a Next Generation Sequencing (NGS) Approach. Lymphology. 2016;49:57–72. PubMed
Müller-Wille R., Wildgruber M., Sadick M., Wohlgemuth W.A. Vascular Anomalies (Part II): Interventional Therapy of Peripheral Vascular Malformations. RöFo. 2018;190:927–937. doi: 10.1055/s-0044-101266. PubMed DOI
Sadick M., Müller-Wille R., Wildgruber M., Wohlgemuth W.A. Vascular Anomalies (Part I): Classification and Diagnostics of Vascular Anomalies. RöFo. 2018;190:825–835. doi: 10.1055/a-0620-8925. PubMed DOI
Masthoff M., Helfen A., Claussen J., Karlas A., Markwardt N.A., Ntziachristos V., Eisenblätter M., Wildgruber M. Use of Multispectral Optoacoustic Tomography to Diagnose Vascular Malformations. JAMA Dermatol. 2018;154:1457–1462. doi: 10.1001/jamadermatol.2018.3269. PubMed DOI PMC
Lv S., Wang Q., Zhao W., Han L., Wang Q., Batchu N., Ulain Q., Zou J., Sun C., Du J., et al. A review of the postoperative lymphatic leakage. Oncotarget. 2017;8:69062–69075. doi: 10.18632/oncotarget.17297. PubMed DOI PMC
Pieper C.C., Hur S., Sommer C.M., Nadolski G., Maleux G., Kim J., Itkin M. Back to the Future: Lipiodol in Lymphography-From Diagnostics to Theranostics. Investig. Radiol. 2019;54:600–615. doi: 10.1097/RLI.0000000000000578. PubMed DOI
Chen E., Itkin M. Thoracic duct embolization for chylous leaks. Semin. Interv. Radiol. 2011;28:63–74. doi: 10.1055/s-0031-1273941. PubMed DOI PMC
Rockson S.G. Diagnosis and Management of Lymphatic Vascular Disease. J. Am. Coll. Cardiol. 2008;52:799–806. doi: 10.1016/j.jacc.2008.06.005. PubMed DOI
Wilting J., Bartkowski R., Baumeister R.G., Földi E., Stöhr S., Strubel G., Schrader K., Traber J. S2k Leitlinie: Diagnostik und Therapie der Lymphödeme. [(accessed on 1 October 2020)]; Available online: https://www.awmf.org/uploads/tx_szleitlinien/058-001l_S2k_Diagnostik_und_Therapie_der_Lymphoedeme_2019-07.pdf.
Kilgore L.J., Korentager S.S., Hangge A.N., Amin A.L., Balanoff C.R., Larson K.E., Mitchell M.P., Chen J.G., Burgen E., Khan Q.J., et al. Reducing Breast Cancer-Related Lymphedema (BCRL) Through Prospective Surveillance Monitoring Using Bioimpedance Spectroscopy (BIS) and Patient Directed Self-Interventions. Ann. Surg. Oncol. 2018;25:2948–2952. doi: 10.1245/s10434-018-6601-8. PubMed DOI
Schook C.C., Mulliken J.B., Fishman S.J., Alomari A.I., Grant F.D., Greene A.K. Differential diagnosis of lower extremity enlargement in pediatric patients referred with a diagnosis of lymphedema. Plast. Reconstr. Surg. 2011;127:1571–1581. doi: 10.1097/PRS.0b013e31820a64f3. PubMed DOI
Lin S., Kim J., Lee M.-J., Roche L., Yang N.L., Tsao P.S., Rockson S.G. Prospective transcriptomic pathway analysis of human lymphatic vascular insufficiency: Identification and validation of a circulating biomarker panel. PLoS ONE. 2012;7:e52021. doi: 10.1371/journal.pone.0052021. PubMed DOI PMC
Dixon J.B., Weiler M.J. Bridging the divide between pathogenesis and detection in lymphedema. Semin. Cell Dev. Biol. 2015;38:75–82. doi: 10.1016/j.semcdb.2014.12.003. PubMed DOI PMC
Ure C. Diagnosis of lymphedema. Wien. Med. Wochenschr. 2013;163:162–168. doi: 10.1007/s10354-013-0204-6. PubMed DOI
Goss J.A., Greene A.K. Sensitivity and Specificity of the Stemmer Sign for Lymphedema: A Clinical Lymphoscintigraphic Study. Plast. Reconstr. Surg. Glob. Open. 2019;7:e2295. doi: 10.1097/GOX.0000000000002295. PubMed DOI PMC
Hidding J.T., Viehoff P.B., Beurskens C.H., van Laarhoven H.W., Nijhuis-van der Sanden M.W., van der Wees P.J. Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review. Phys. Ther. 2016;96:1965–1981. doi: 10.2522/ptj.20150412. PubMed DOI
Sharkey A.R., King S.W., Kuo R.Y., Bickerton S.B., Ramsden A.J., Furniss D. Measuring Limb Volume: Accuracy and Reliability of Tape Measurement Versus Perometer Measurement. Lymphat. Res. Biol. 2018;16:182–186. doi: 10.1089/lrb.2017.0039. PubMed DOI
Ciudad P., Sabbagh M.D., Agko M., Huang T.C.T., Manrique O.J., L C.R., Reynaga C., Delgado R., Maruccia M., Chen H.C. Surgical Management of Lower Extremity Lymphedema: A Comprehensive Review. Indian J. Plast. Surg. 2019;52:81–92. doi: 10.1055/s-0039-1688537. PubMed DOI PMC
Ogawa Y. Recent advances in medical treatment for lymphedema. Ann. Vasc. Dis. 2012;5:139–144. doi: 10.3400/avd.ra.12.00006. PubMed DOI PMC
Apich G. Konservative Therapie des Lymphoedems-Lymphologische Rehabilitationsbehandlung. Wien. Med. Wochenschr. 2013;163:169–176. doi: 10.1007/s10354-013-0205-5. PubMed DOI
Tzani I., Tsichlaki M., Zerva E., Papathanasiou G., Dimakakos E. Physiotherapeutic rehabilitation of lymphedema: State-of-the-art. Lymphology. 2018;51:1–12. PubMed
Dayan J.H., Ly C.L., Kataru R.P., Mehrara B.J. Lymphedema: Pathogenesis and Novel Therapies. Annu. Rev. Med. 2018;69:263–276. doi: 10.1146/annurev-med-060116-022900. PubMed DOI
Gott F.H., Ly K., Piller N., Mangio A. Negative pressure therapy in the management of lymphoedema. J. Lymphoedema. 2018;13:43–48.
Gatt M., Willis S., Leuschner S. A meta-analysis of the effectiveness and safety of kinesiology taping in the management of cancer-related lymphoedema. Eur. J. Cancer Care. 2017;26 doi: 10.1111/ecc.12510. PubMed DOI
Davies C., Levenhagen K., Ryans K., Perdomo M., Gilchrist L. Interventions for Breast Cancer-Related Lymphedema: Clinical Practice Guideline from the Academy of Oncologic Physical Therapy of APTA. Phys. Ther. 2020;100:1163–1179. doi: 10.1093/ptj/pzaa087. PubMed DOI PMC
Stecco A., Stern R., Fantoni I., De Caro R., Stecco C. Fascial Disorders: Implications for Treatment. PM&R. 2016;8:161–168. doi: 10.1016/j.pmrj.2015.06.006. PubMed DOI
Roman M., Chaudhry H., Bukiet B., Stecco A., Findley T.W. Mathematical analysis of the flow of hyaluronic acid around fascia during manual therapy motions. J. Am. Osteopath Assoc. 2013;113:600–610. doi: 10.7556/jaoa.2013.021. PubMed DOI
Shaw C., Mortimer P., Judd P.A. A randomized controlled trial of weight reduction as a treatment for breast cancer-related lymphedema. Cancer. 2007;110:1868–1874. doi: 10.1002/cncr.22994. PubMed DOI
Nitti M.D., Hespe G.E., Kataru R.P., García Nores G.D., Savetsky I.L., Torrisi J.S., Gardenier J.C., Dannenberg A.J., Mehrara B.J. Obesity-induced lymphatic dysfunction is reversible with weight loss. J. Physiol. 2016;594:7073–7087. doi: 10.1113/JP273061. PubMed DOI PMC
Kwan M.L., Cohn J.C., Armer J.M., Stewart B.R., Cormier J.N. Exercise in patients with lymphedema: A systematic review of the contemporary literature. J. Cancer Surviv. 2011;5:320–336. doi: 10.1007/s11764-011-0203-9. PubMed DOI
Mariana V.F., de Fatima G.G., Maria Pde G. The effect of mechanical lymph drainage accompanied with heat on lymphedema. J. Res. Med. Sci. 2011;16:1448–1451. PubMed PMC
Bae H., Kim H.J. Clinical outcomes of extracorporeal shock wave therapy in patients with secondary lymphedema: A pilot study. Ann. Rehabil. Med. 2013;37:229–234. doi: 10.5535/arm.2013.37.2.229. PubMed DOI PMC
Li K., Zhang Z., Liu N.F., Feng S.Q., Tong Y., Zhang J.F., Constantinides J., Lazzeri D., Grassetti L., Nicoli F., et al. Efficacy and safety of far infrared radiation in lymphedema treatment: Clinical evaluation and laboratory analysis. Lasers Med. Sci. 2017;32:485–494. doi: 10.1007/s10103-016-2135-0. PubMed DOI
Badger C., Preston N., Seers K., Mortimer P. Benzo-pyrones for reducing and controlling lymphoedema of the limbs. Cochrane Database Syst. Rev. 2004;2:Cd003140. doi: 10.1002/14651858.CD003140.pub2. PubMed DOI PMC
Rockson S.G., Tian W., Jiang X., Kuznetsova T., Haddad F., Zampell J., Mehrara B., Sampson J.P., Roche L., Kim J., et al. Pilot studies demonstrate the potential benefits of antiinflammatory therapy in human lymphedema. JCI Insight. 2018;3:e123775. doi: 10.1172/jci.insight.123775. PubMed DOI PMC
Nakamura K., Radhakrishnan K., Wong Y.M., Rockson S.G. Anti-inflammatory pharmacotherapy with ketoprofen ameliorates experimental lymphatic vascular insufficiency in mice. PLoS ONE. 2009;4:e8380. doi: 10.1371/journal.pone.0008380. PubMed DOI PMC
Gardenier J.C., Kataru R.P., Hespe G.E., Savetsky I.L., Torrisi J.S., Nores G.D., Jowhar D.K., Nitti M.D., Schofield R.C., Carlow D.C., et al. Topical tacrolimus for the treatment of secondary lymphedema. Nat. Commun. 2017;8:14345. doi: 10.1038/ncomms14345. PubMed DOI PMC
Schutte-Nutgen K., Tholking G., Suwelack B., Reuter S. Tacrolimus—Pharmacokinetic Considerations for Clinicians. Curr. Drug Metab. 2018;19:342–350. doi: 10.2174/1389200219666180101104159. PubMed DOI
Schwartz M.S. Use of hyaluronidase by iontophoresis in treatment of lymphedema. AMA Arch. Intern. Med. 1955;95:662–668. doi: 10.1001/archinte.1955.00250110032004. PubMed DOI
Borelli S. Therapy of elephantiasis with hyaluronidase. Dermatol. Wochenschr. 1959;139:5–8. PubMed
Hochstrasser E., Horvath G. Hyaluronidase therapy of elephantiasis. Borgyogy. Venerol. Sz. 1960;36:201–203. PubMed
Breslin J.W., Gaudreault N., Watson K.D., Reynoso R., Yuan S.Y., Wu M.H. Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H709–H718. doi: 10.1152/ajpheart.00102.2007. PubMed DOI
Baker A., Kim H., Semple J.L., Dumont D., Shoichet M., Tobbia D., Johnston M. Experimental assessment of pro-lymphangiogenic growth factors in the treatment of post-surgical lymphedema following lymphadenectomy. Breast Cancer Res. 2010;12:R70. doi: 10.1186/bcr2638. PubMed DOI PMC
Zhou H., Wang M., Hou C., Jin X., Wu X. Exogenous VEGF-C augments the efficacy of therapeutic lymphangiogenesis induced by allogenic bone marrow stromal cells in a rabbit model of limb secondary lymphedema. Jpn. J. Clin. Oncol. 2011;41:841–846. doi: 10.1093/jjco/hyr055. PubMed DOI
Hartiala P., Suominen S., Suominen E., Kaartinen I., Kiiski J., Viitanen T., Alitalo K., Saarikko A.M. Phase 1 Lymfactin® Study: Short-term Safety of Combined Adenoviral VEGF-C and Lymph Node Transfer Treatment for Upper Extremity Lymphedema. J. Plast. Reconstr. Aesthet. Surg. 2020;73:1612–1621. doi: 10.1016/j.bjps.2020.05.009. PubMed DOI
Maldonado G.E., Perez C.A., Covarrubias E.E., Cabriales S.A., Leyva L.A., Perez J.C., Almaguer D.G. Autologous stem cells for the treatment of post-mastectomy lymphedema: A pilot study. Cytotherapy. 2011;13:1249–1255. doi: 10.3109/14653249.2011.594791. PubMed DOI
Hou C., Wu X., Jin X. Autologous bone marrow stromal cells transplantation for the treatment of secondary arm lymphedema: A prospective controlled study in patients with breast cancer related lymphedema. Jpn. J. Clin. Oncol. 2008;38:670–674. doi: 10.1093/jjco/hyn090. PubMed DOI
Conrad C., Niess H., Huss R., Huber S., von Luettichau I., Nelson P.J., Ott H.C., Jauch K.W., Bruns C.J. Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation. 2009;119:281–289. doi: 10.1161/CIRCULATIONAHA.108.793208. PubMed DOI
Toyserkani N.M., Jensen C.H., Tabatabaeifar S., Jorgensen M.G., Hvidsten S., Simonsen J.A., Andersen D.C., Sheikh S.P., Sorensen J.A. Adipose-derived regenerative cells and fat grafting for treating breast cancer-related lymphedema: Lymphoscintigraphic evaluation with 1 year of follow-up. J. Plast. Reconstr. Aesthet. Surg. 2019;72:71–77. doi: 10.1016/j.bjps.2018.09.007. PubMed DOI
Hu L.R., Pan J. Adipose-derived stem cell therapy shows promising results for secondary lymphedema. World J. Stem Cells. 2020;12:612–620. doi: 10.4252/wjsc.v12.i7.612. PubMed DOI PMC
Rockson S.G. Lymphedema. Vasc. Med. 2016;21:77–81. doi: 10.1177/1358863X15620852. PubMed DOI
Schaverien M.V., Badash I., Patel K.M., Selber J.C., Cheng M.H. Vascularized Lymph Node Transfer for Lymphedema. Semin. Plast. Surg. 2018;32:28–35. doi: 10.1055/s-0038-1632401. PubMed DOI PMC
Kataru R.P., Park H.J., Baik J.E., Li C., Shin J., Mehrara B.J. Regulation of Lymphatic Function in Obesity. Front. Physiol. 2020;11:459. doi: 10.3389/fphys.2020.00459. PubMed DOI PMC
Lasinski B.B., McKillip Thrift K., Squire D., Austin M.K., Smith K.M., Wanchai A., Green J.M., Stewart B.R., Cormier J.N., Armer J.M. A systematic review of the evidence for complete decongestive therapy in the treatment of lymphedema from 2004 to 2011. PM&R. 2012;4:580–601. doi: 10.1016/j.pmrj.2012.05.003. PubMed DOI
Weiss J.M., Spray B.J. The effect of complete decongestive therapy on the quality of life of patients with peripheral lymphedema. Lymphology. 2002;35:46–58. PubMed
Döller W. Lymphologie. Wien. Med. Wochenschr. 2013;163:153–154. doi: 10.1007/s10354-013-0186-4. PubMed DOI
Ohlin K., Svensson B., Brorson H. Controlled Compression Therapy and Compression Garments. In: Greene A.K., Slavin S.A., Brorson H., editors. Lymphedema: Presentation, Diagnosis, and Treatment. Springer International Publishing; Cham, Switzerland: 2015. pp. 213–225. DOI
Fukushima T., Tsuji T., Sano Y., Miyata C., Kamisako M., Hohri H., Yoshimura C., Asakura M., Okitsu T., Muraoka K., et al. Immediate effects of active exercise with compression therapy on lower-limb lymphedema. Support. Care Cancer. 2017;25:2603–2610. doi: 10.1007/s00520-017-3671-2. PubMed DOI PMC
Soriano-Maldonado A., Carrera-Ruiz Á., Díez-Fernández D.M., Esteban-Simón A., Maldonado-Quesada M., Moreno-Poza N., García-Martínez M.D.M., Alcaraz-García C., Vázquez-Sousa R., Moreno-Martos H., et al. Effects of a 12-week resistance and aerobic exercise program on muscular strength and quality of life in breast cancer survivors: Study protocol for the EFICAN randomized controlled trial. Medicine. 2019;98:e17625. doi: 10.1097/MD.0000000000017625. PubMed DOI PMC
Baumann F.T., Reike A., Reimer V., Schumann M., Hallek M., Taaffe D.R., Newton R.U., Galvao D.A. Effects of physical exercise on breast cancer-related secondary lymphedema: A systematic review. Breast Cancer Res. Treat. 2018;170:1–13. doi: 10.1007/s10549-018-4725-y. PubMed DOI
The diagnosis and treatment of peripheral lymphedema: 2013 Consensus Document of the International Society of Lymphology. Lymphology. 2013;46:1–11. PubMed
Douglass J., Graves P., Gordon S. Self-Care for Management of Secondary Lymphedema: A Systematic Review. PLoS Negl. Trop. Dis. 2016;10:e0004740. doi: 10.1371/journal.pntd.0004740. PubMed DOI PMC
Bozkurt M., Palmer L.J., Guo Y. Effectiveness of Decongestive Lymphatic Therapy in Patients with Lymphedema Resulting from Breast Cancer Treatment Regardless of Previous Lymphedema Treatment. Breast J. 2017;23:154–158. doi: 10.1111/tbj.12710. PubMed DOI
Pereira de Godoy J.M., Godoy H., Pereira de Godoy A.C., Marqui T., Guerreiro Godoy M.d.F. Lymphedema and the mobilization of intracellular and extracellular fluids with intensive treatment. Acta Phlebol. 2019;20:57–60. doi: 10.23736/S1593-232X.19.00446-6. DOI
Ancukiewicz M., Russell T.A., Otoole J., Specht M., Singer M., Kelada A., Murphy C.D., Pogachar J., Gioioso V., Patel M., et al. Standardized method for quantification of developing lymphedema in patients treated for breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011;79:1436–1443. doi: 10.1016/j.ijrobp.2010.01.001. PubMed DOI PMC
Koehler L.A., Mayrovitz H.N. Tissue Dielectric Constant Measures in Women with and without Clinical Trunk Lymphedema Following Breast Cancer Surgery: A 78-Week Longitudinal Study. Phys. Ther. 2020;100:1384–1392. doi: 10.1093/ptj/pzaa080. PubMed DOI PMC
Sagen A., Kåresen R., Skaane P., Risberg M.A. Validity for the simplified water displacement instrument to measure arm lymphedema as a result of breast cancer surgery. Arch. Phys. Med. Rehabil. 2009;90:803–809. doi: 10.1016/j.apmr.2008.11.016. PubMed DOI
Reza C., Nørregaard S., Moffatt C., Karlsmark T. Inter-observer and Intra-observer Variability in Volume Measurements of the Lower Extremity Using Perometer. Lymphat. Res. Biol. 2020;18:416–421. doi: 10.1089/lrb.2019.0063. PubMed DOI
Tidhar D., Armer J.M., Deutscher D., Shyu C.R., Azuri J., Madsen R. Measurement Issues in Anthropometric Measures of Limb Volume Change in Persons at Risk for and Living with Lymphedema: A Reliability Study. J. Pers. Med. 2015;5:341–353. doi: 10.3390/jpm5040341. PubMed DOI PMC
Pereira De Godoy J.M., Gonçalves I.P., Barufi S., Godoy M.F.G. Large reduction in volume with the intensive treatment of lymphedema: Reduction of fluids? Int. J. Angiol. 2012;21:171–174. doi: 10.1055/s-0032-1325167. PubMed DOI PMC
De Godoy J.M.P., de Godoy A.C.P., Maria F.G.G. Evolution of Godoy & Godoy manual lymph drainage. Technique with linear Movements. Clin. Pract. 2017;7:1006. doi: 10.4081/cp.2017.1006. PubMed DOI PMC
Bertsch T. Evaluation of a novel night-time compression garment: A prospective observational study. Br. J. Community Nurs. 2018;23:535–541. doi: 10.12968/bjcn.2018.23.11.535. PubMed DOI
Ward L.C. Assessment of lymphedema by bioelectrical impedance spectroscopy. Jpn. J. Nurs. Sci. 2011;8:108. doi: 10.1111/j.1742-7924.2010.00165.x. PubMed DOI
Pereira De Godoy J.M., Franco Brigidio P.A., Salles Cunha S.X., Batigália F., De Fatima Guerreiro Godoy M. Mobilization of fluids in large volumetric reductions during intensive treatment of leg lymphedema. Int. Angiol. 2013;32:479–482. PubMed
Hinghofer-Szalkay H.G., Sauseng-Fellegger G., Greenleaf J.E. Plasma volume with alternative tilting: Effect of fluid ingestion. J. Appl. Physiol. 1995;78:1369–1373. doi: 10.1152/jappl.1995.78.4.1369. PubMed DOI
Van Beaumont W. Evaluation of hemoconcentration from hematocrit measurements. J. Appl. Physiol. 1972;32:712–713. doi: 10.1152/jappl.1972.32.5.712. PubMed DOI
Dill D.B., Costill D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974;37:247–248. doi: 10.1152/jappl.1974.37.2.247. PubMed DOI
Nadler S.B., Hidalgo J.H., Bloch T. Prediction of blood volume in normal human adults. Surgery. 1962;51:224–232. PubMed
Brix B., Apich G., Roessler A., Ure C., Schmid-Zalaudek K., Hinghofer-Szalkay H., Goswami N. Fluid Shifts Induced by Physical Therapy in Lower Limb Lymphedema Patients. J. Clin. Med. 2020;9:3678. doi: 10.3390/jcm9113678. PubMed DOI PMC
Titze J. Water-free Na+ retention: Interaction with hypertension and tissue hydration. Blood Purif. 2008;26:95–99. doi: 10.1159/000110573. PubMed DOI
Wiig H., Luft F.C., Titze J.M. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol. 2018;222 doi: 10.1111/apha.13006. PubMed DOI
Titze J., Lang R., Ilies C., Schwind K.H., Kirsch K.A., Dietsch P., Luft F.C., Hilgers K.F. Osmotically inactive skin Na+ storage in rats. Am. J. Physiol. Ren. Physiol. 2003;285:F1108–F1117. doi: 10.1152/ajprenal.00200.2003. PubMed DOI
Pimenta E., Gaddam K.K., Oparil S., Aban I., Husain S., Dell’Italia L.J., Calhoun D.A. Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: Results from a randomized trial. Hypertension. 2009;54:475–481. doi: 10.1161/HYPERTENSIONAHA.109.131235. PubMed DOI PMC
Goswami N., Blaber A.P., Hinghofer-Szalkay H., Montani J.P. Orthostatic intolerance in older persons: Etiology and countermeasures. Front. Physiol. 2017;8 doi: 10.3389/fphys.2017.00803. PubMed DOI PMC
Goswami N. Falls and fall-prevention in older persons: Geriatrics meets spaceflight! Front. Physiol. 2017;8:603. doi: 10.3389/fphys.2017.00603. PubMed DOI PMC
Harrison M.H., Kravik S.E., Geelen G., Keil L., Greenleaf J.E. Blood pressure and plasma renin activity as predictors of orthostatic intolerance. Aviat. Space Environ. Med. 1985;56:1059–1064. PubMed
Hinghofer-Szalkay H. Gravity, the hydrostatic indifference concept and the cardiovascular system. Eur. J. Appl. Physiol. 2011;111:1673–1674. doi: 10.1007/s00421-010-1646-9. PubMed DOI
Blaber A.P., Goswami N., Bondar R.L., Kassam M.S. Impairment of cerebral blood flow regulation in astronauts with post flight orthostatic intolerance. Stroke. 2011;42:1844–1850. doi: 10.1161/STROKEAHA.110.610576. PubMed DOI
Putz Z., Németh N., Istenes I., Martos T., Gandhi R.A., Körei A.E., Hermányi Z., Szathmári M., Jermendy G., Tesfaye S., et al. Autonomic dysfunction and circadian blood pressure variations in people with impaired glucose tolerance. Diabet. Med. 2013;30:358–362. doi: 10.1111/dme.12111. PubMed DOI
Goswami N., Roessler A., Hinghofer-Szalkay H., Montani J.P., Steptoe A. Delaying orthostatic syncope with mental challenge: A pilot study. Physiol. Behav. 2012;106:569–573. doi: 10.1016/j.physbeh.2012.02.022. PubMed DOI
Rapp K., Becker C., Cameron I.D., König H.H., Büchele G. Epidemiology of falls in residential aged care: Analysis of more than 70,000 falls from residents of bavarian nursing homes. J. Am. Med. Dir. Assoc. 2012;13:187–e181. doi: 10.1016/j.jamda.2011.06.011. PubMed DOI
Blaber A., Hinghofer-Szalkay H., Goswami N. Blood volume redistribution during hypovolemia. Aviat. Space Environ. Med. 2013;84:59–64. doi: 10.3357/ASEM.3424.2013. PubMed DOI
Gangavati A., Hajjar I., Quach L., Jones R.N., Kiely D.K., Gagnon P., Lipsitz L.A. Hypertension, orthostatic hypotension, and the risk of falls in a community-dwelling elderly population: The maintenance of balance, independent living, intellect, and zest in the elderly of Boston study. J. Am. Geriatr. Soc. 2011;59:383–389. doi: 10.1111/j.1532-5415.2011.03317.x. PubMed DOI PMC
Blaszczyk J.W., Lowe D.L., Hansen P.D. Ranges of postural stability and their changes in the elderly. Gait Posture. 1994;2:11–17. doi: 10.1016/0966-6362(94)90012-4. DOI
Tinetti M.E., Baker D.I., McAvay G., Claus E.B., Garrett P., Gottschalk M., Koch M.L., Trainor K., Horwitz R.I. A multifactorial intervention to reduce the risk of falling among elderly people living in the community. N. Engl. J. Med. 1994;331:821–827. doi: 10.1056/NEJM199409293311301. PubMed DOI
Mackey D.C., Robinovitch S.N. Mechanisms underlying age-related differences in ability to recover balance with the ankle strategy. Gait Posture. 2006;23:59–68. doi: 10.1016/j.gaitpost.2004.11.009. PubMed DOI
Hsiao-Wecksler E.T., Robinovitch S.N. The effect of step length on young and elderly women’s ability to recover balance. Clin. Biomech. 2007;22:574–580. doi: 10.1016/j.clinbiomech.2007.01.013. PubMed DOI
Esmer M., Keser I., Erer D., Kupeli B. Acute Cardiovascular Responses to the Application of Manual Lymphatic Drainage in Different Body Regions. Lymphat. Res. Biol. 2019;17:362–367. doi: 10.1089/lrb.2018.0043. PubMed DOI
Sachse C., Trozic I., Brix B., Roessler A., Goswami N. Sex differences in cardiovascular responses to orthostatic challenge in healthy older persons: A pilot study. Physiol. Int. 2019;106:236–249. doi: 10.1556/2060.106.2019.16. PubMed DOI
Trozic I., Platzer D., Fazekas F., Bondarenko A.I., Brix B., Rossler A., Goswami N. Postural hemodynamic parameters in older persons have a seasonal dependency: A pilot study. Z. Gerontol. Geriatr. 2020;53:145–155. doi: 10.1007/s00391-019-01525-3. PubMed DOI PMC
Blaber A.P., Landrock C.K., Souvestre P.A. Cardio-postural deconditioning: A model for post-flight orthostatic intolerance. Respir. Physiol. Neurobiol. 2009;169:S21–S25. doi: 10.1016/j.resp.2009.04.007. PubMed DOI
Small D.M., Bond M.G., Waugh D., Prack M., Sawyer J.K. Physicochemical and histological changes in the arterial wall of nonhuman primates during progression and regression of atherosclerosis. J. Clin. Investig. 1984;73:1590–1605. doi: 10.1172/JCI111366. PubMed DOI PMC
Wang X., Rader D.J. Molecular regulation of macrophage reverse cholesterol transport. Curr. Opin. Cardiol. 2007;22:368–372. doi: 10.1097/HCO.0b013e3281ec5113. PubMed DOI
Lim H.Y., Thiam C.H., Yeo K.P., Bisoendial R., Hii C.S., McGrath K.C., Tan K.W., Heather A., Alexander J.S., Angeli V. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 2013;17:671–684. doi: 10.1016/j.cmet.2013.04.002. PubMed DOI
Randolph G.J., Miller N.E. Lymphatic transport of high-density lipoproteins and chylomicrons. J. Clin. Investig. 2014;124:929–935. doi: 10.1172/JCI71610. PubMed DOI PMC
Martel C., Li W., Fulp B., Platt A.M., Gautier E.L., Westerterp M., Bittman R., Tall A.R., Chen S.-H., Thomas M.J., et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J. Clin. Investing. 2013;123:1571–1579. doi: 10.1172/JCI63685. PubMed DOI PMC
Vuorio T., Nurmi H., Moulton K., Kurkipuro J., Robciuc M.R., Ohman M., Heinonen S.E., Samaranayake H., Heikura T., Alitalo K., et al. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arter. Thromb. Vasc. Biol. 2014;34:1162–1170. doi: 10.1161/ATVBAHA.114.302528. PubMed DOI PMC
Münzel T., Sinning C., Post F., Warnholtz A., Schulz E. Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Ann. Med. 2008;40:180–196. doi: 10.1080/07853890701854702. PubMed DOI
Levick J.R. An Introduction to Cardiovascular Physiology. 5th ed. Hodder Education; London, UK: 2012.
Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflüg. Arch. Eur. J. Physiol. 2010;459:793–806. doi: 10.1007/s00424-009-0767-7. PubMed DOI
Konukoglu D., Uzun H. Endothelial Dysfunction and Hypertension. Adv. Exp. Med. Biol. 2017;956:511–540. doi: 10.1007/5584_2016_90. PubMed DOI
Vita J.A. Endothelial function. Circulation. 2011;124:e906–e912. doi: 10.1161/CIRCULATIONAHA.111.078824. PubMed DOI
Brix B., Apich G., Ure C., Roessler A., Goswami N. Physical therapy affects endothelial function in lymphedema patients. Lymphology. 2020;53:109–117. PubMed
Thijssen D.H., Black M.A., Pyke K.E., Padilla J., Atkinson G., Harris R.A., Parker B., Widlansky M.E., Tschakovsky M.E., Green D.J. Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. American journal of physiology. Heart Circ. Physiol. 2011;300:H2–H12. doi: 10.1152/ajpheart.00471.2010. PubMed DOI PMC
Thijssen D.H.J., Bruno R.M., van Mil A., Holder S.M., Faita F., Greyling A., Zock P.L., Taddei S., Deanfield J.E., Luscher T., et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 2019;40:2534–2547. doi: 10.1093/eurheartj/ehz350. PubMed DOI
Yamashina A., Tomiyama H., Arai T., Hirose K., Koji Y., Hirayama Y., Yamamoto Y., Hori S. Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk. Hypertens. Res. 2003;26:615–622. doi: 10.1291/hypres.26.615. PubMed DOI
Everson F., De Boever P., Nawrot T.S., Goswami N., Mthethwa M., Webster I., Martens D.S., Mashele N., Charania S., Kamau F., et al. Personal NO(2) and Volatile Organic Compounds Exposure Levels are Associated with Markers of Cardiovascular Risk in Women in the Cape Town Region of South Africa. Int. J. Environ. Res. Public Health. 2019;16:2284. doi: 10.3390/ijerph16132284. PubMed DOI PMC
Louwies T., Int Panis L., Alders T., Bonne K., Goswami N., Nawrot T.S., Dendale P., De Boever P. Microvascular reactivity in rehabilitating cardiac patients based on measurements of retinal blood vessel diameters. Microvasc. Res. 2019;124:25–29. doi: 10.1016/j.mvr.2019.02.006. PubMed DOI
Matušková V., Zeman T., Ewerlingová L., Hlinomazová Z., Souček J., Vlková E., Goswami N., Balcar V.J., Šerý O. An association of neovascular age-related macular degeneration with polymorphisms of CFH, ARMS2, HTRA1 and C3 genes in Czech population. Acta Ophthalmol. 2020;98:e691–e699. doi: 10.1111/aos.14357. PubMed DOI
Vaes A.W., Spruit M.A., Theunis J., Goswami N., Vanfleteren L.E., Franssen F.M.E., Wouters E.F.M., De Boever P. Looking into the eye of patients with chronic obstructive pulmonary disease: An opportunity for better microvascular profiling of these complex patients. Acta Ophthalmol. 2018;96:539–549. doi: 10.1111/aos.13765. PubMed DOI