Salivary Biomarkers for Dental Caries Detection and Personalized Monitoring
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
633780
Horizon 2020 Framework Programme
PubMed
33806927
PubMed Central
PMC8004821
DOI
10.3390/jpm11030235
PII: jpm11030235
Knihovny.cz E-zdroje
- Klíčová slova
- JAK, STAT, biomarkers, caries, diagnostics, interleukins, personalized monitoring, saliva, screening,
- Publikační typ
- časopisecké články MeSH
This study investigated the potential of salivary bacterial and protein markers for evaluating the disease status in healthy individuals or patients with gingivitis or caries. Saliva samples from caries- and gingivitis-free individuals (n = 18), patients with gingivitis (n = 17), or patients with deep caries lesions (n = 38) were collected and analyzed for 44 candidate biomarkers (cytokines, chemokines, growth factors, matrix metalloproteinases, a metallopeptidase inhibitor, proteolytic enzymes, and selected oral bacteria). The resulting data were subjected to principal component analysis and used as a training set for random forest (RF) modeling. This computational analysis revealed four biomarkers (IL-4, IL-13, IL-2-RA, and eotaxin/CCL11) to be of high importance for the correct depiction of caries in 37 of 38 patients. The RF model was then used to classify 10 subjects (five caries-/gingivitis-free and five with caries), who were followed over a period of six months. The results were compared to the clinical assessments of dental specialists, revealing a high correlation between the RF prediction and the clinical classification. Due to the superior sensitivity of the RF model, there was a divergence in the prediction of two caries and four caries-/gingivitis-free subjects. These findings suggest IL-4, IL-13, IL-2-RA, and eotaxin/CCL11 as potential salivary biomarkers for identifying noninvasive caries. Furthermore, we suggest a potential association between JAK/STAT signaling and dental caries onset and progression.
Austrian Institute of Technology Molecular Diagnostics Giefinggasse 4 1210 Wien Austria
Department of Dental Medicine Division of Oral Diseases Karolinska Institutet 141 04 Huddinge Sweden
Hahn Schickard Georges Koehler Allee 103 79110 Freiburg Germany
Zobrazit více v PubMed
Chapple I.L.C., Van Der Weijden F., Doerfer C., Herrera D., Shapira L., Polak D., Madianos P., Louropoulou A., Machtei E., Donos N., et al. Primary prevention of periodontitis: Managing gingivitis. J. Clin. Periodontol. 2015;42:S71–S76. doi: 10.1111/jcpe.12366. PubMed DOI
Sanz M., Beighton D.A., Curtis M., Cury J.A., Dige I., Dommisch H., Ellwood R., Giacaman R.A., Herrera D., Herzberg M.C., et al. Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease. J. Clin. Periodontol. 2017;44:S5–S11. doi: 10.1111/jcpe.12682. PubMed DOI
Socransky S.S., Haffajee A.D. Periodontal microbial ecology. Periodontol. 2000. 2005;38:135–187. doi: 10.1111/j.1600-0757.2005.00107.x. PubMed DOI
Marsh P.D. The significance of maintaining the stability of the natural microflora of the mouth. Br. Dent. J. 1991;171:174–177. doi: 10.1038/sj.bdj.4807647. PubMed DOI
Dewhirst F.E., Chen T., Izard J., Paster B.J., Tanner A.C.R., Yu W.-H., Lakshmanan A., Wade W.G. The Human Oral Microbiome. J. Bacteriol. 2010;192:5002–5017. doi: 10.1128/JB.00542-10. PubMed DOI PMC
Marsh P. Microbial Ecology of Dental Plaque and its Significance in Health and Disease. Adv. Dent. Res. 1994;8:263–271. doi: 10.1177/08959374940080022001. PubMed DOI
Shungin D., Haworth S., Divaris K., Agler C.S., Kamatani Y., Lee M.K., Grinde K., Hindy G., Alaraudanjoki V., Pesonen P., et al. Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data. Nat. Commun. 2019;10:1–13. doi: 10.1038/s41467-019-10630-1. PubMed DOI PMC
Zaura E., Cate J.T. Dental Plaque as a Biofilm: A Pilot Study of the Effects of Nutrients on Plaque pH and Dentin Demineralization. Caries Res. 2003;38:9–15. doi: 10.1159/000074357. PubMed DOI
Rosier B., Van Loveren C., Zaura E., Loos B., Keijser B., Crielaard W., Lagerweij M. Caries Incidence in a Healthy Young Adult Population in Relation to Diet. JDR Clin. Transl. Res. 2016;2:142–150. doi: 10.1177/2380084416683340. PubMed DOI
Hujoel P.P., Lingström P. Nutrition, dental caries and periodontal disease: A narrative review. J. Clin. Periodontol. 2017;44:S79–S84. doi: 10.1111/jcpe.12672. PubMed DOI
Selwitz R.H.I., Ismail A., Pitts N.B. Dental caries. Lancet. 2007;369:51–59. doi: 10.1016/S0140-6736(07)60031-2. PubMed DOI
Paqué P.N., Herz C., Jenzer J.S., Wiedemeier D.B., Attin T., Bostanci N., Belibasakis G.N., Bao K., Körner P., Fritz T., et al. Microbial Analysis of Saliva to Identify Oral Diseases Using a Point-of-Care Compatible qPCR Assay. J. Clin. Med. 2020;9:2945. doi: 10.3390/jcm9092945. PubMed DOI PMC
Trombelli L., Tatakis D.N., Scapoli C., Bottega S., Orlandini E., Tosi M. Modulation of clinical expression of plaque-induced gingivitis. II. Identification of “high-responder” and “low-responder” subjects. J. Clin. Periodontol. 2004;31:239–252. doi: 10.1111/j.1600-051x.2004.00478.x. PubMed DOI
Trombelli L., Scapoli C., Orlandini E., Tosi M., Bottega S., Tatakis D.N. Modulation of clinical expression of plaque-induced gingivitis. III. Response of “high responders” and “low responders” to therapy. J. Clin. Periodontol. 2004;31:253–259. doi: 10.1111/j.1600-051X.2004.00479.x. PubMed DOI
Larsen T., Fiehn N.-E. Dental biofilm infections—An update. APMIS. 2017;125:376–384. doi: 10.1111/apm.12688. PubMed DOI
Hajishengallis G., Darveau R.P., Curtis M.A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 2012;10:717–725. doi: 10.1038/nrmicro2873. PubMed DOI PMC
Löe H., Theilade E., Jensen S.B. Experimental Gingivitis in Man. J. Periodontol. 1965;36:177–187. doi: 10.1902/jop.1965.36.3.177. PubMed DOI
Bostanci N., Silbereisen A., Bao K., Grossmann J., Nanni P., Fernandez C., Nascimento G.G., Belibasakis G.N., Lopez R. Salivary proteotypes of gingivitis tolerance and resilience. J. Clin. Periodontol. 2020;47:1304–1316. doi: 10.1111/jcpe.13358. PubMed DOI PMC
Offenbacher S., Barros S., Mendoza L., Mauriello S., Preisser J., Moss K., De Jager M., Aspiras M. Changes in gingival crevicular fluid inflammatory mediator levels during the induction and resolution of experimental gingivitis in humans. J. Clin. Periodontol. 2010;37:324–333. doi: 10.1111/j.1600-051X.2010.01543.x. PubMed DOI PMC
Bostanci N., Ramberg P., Wahlander Å., Grossman J., Jönsson D., Barnes V.M., Papapanou P.N. Label-Free Quantitative Proteomics Reveals Differentially Regulated Proteins in Experimental Gingivitis. J. Proteome Res. 2013;12:657–678. doi: 10.1021/pr300761e. PubMed DOI
Gupta G. Gingival crevicular fluid as a periodontal diagnostic indicator- I: Host derived enzymes and tissue breakdown products. J. Med. Life. 2012;5:390–397. PubMed PMC
Farges J.-C., Keller J.-F., Carrouel F., Durand S.H., Romeas A., Bleicher F., Lebecque S., Staquet M.-J. Odontoblasts in the dental pulp immune response. J. Exp. Zool. Part B Mol. Dev. Evol. 2009;312B:425–436. doi: 10.1002/jez.b.21259. PubMed DOI
Giannobile W.V., Beikler T., Kinney J.S., Ramseier C.A., Morelli T., Wong D.T. Saliva as a diagnostic tool for periodontal disease: Current state and future directions. Periodontol. 2000. 2009;50:52–64. doi: 10.1111/j.1600-0757.2008.00288.x. PubMed DOI PMC
Kc S., Wang X.Z., Gallagher J.E., Sukriti K. Diagnostic sensitivity and specificity of host-derived salivary biomarkers in periodontal disease amongst adults: Systematic review. J. Clin. Periodontol. 2019;47:289–308. doi: 10.1111/jcpe.13218. PubMed DOI
Greenwood D., Afacan B., Emingil G., Bostanci N., Belibasakis G.N. Salivary Microbiome Shifts in Response to Periodontal Treatment Outcome. Proteom. Clin. Appl. 2020;14:e2000011. doi: 10.1002/prca.202000011. PubMed DOI
Lundmark A., Hu Y.O.O., Huss M., Johannsen G., Andersson A.F., Yucel-Lindberg T. Identification of Salivary Microbiota and Its Association With Host Inflammatory Mediators in Periodontitis. Front. Cell. Infect. Microbiol. 2019;9:216. doi: 10.3389/fcimb.2019.00216. PubMed DOI PMC
Korte D.L., Kinney J. Personalized medicine: An update of salivary biomarkers for periodontal diseases. Periodontol. 2000. 2015;70:26–37. doi: 10.1111/prd.12103. PubMed DOI
Jaedicke K.M., Preshaw P.M., Taylor J.J. Salivary cytokines as biomarkers of periodontal diseases. Periodontol. 2000. 2015;70:164–183. doi: 10.1111/prd.12117. PubMed DOI
Kinney J., Morelli T., Braun T., Ramseier C., Herr A., Sugai J., Shelburne C., Rayburn L., Singh A., Giannobile W. Saliva/Pathogen Biomarker Signatures and Periodontal Disease Progression. J. Dent. Res. 2011;90:752–758. doi: 10.1177/0022034511399908. PubMed DOI PMC
Silbereisen A., Alassiri S., Bao K., Grossmann J., Nanni P., Fernandez C., Tervahartiala T., Nascimento G.G., Belibasakis G.N., Heikkinen A., et al. Label-Free Quantitative Proteomics versus Antibody-Based Assays to Measure Neutrophil-Derived Enzymes in Saliva. Proteom. Clin. Appl. 2019;14 doi: 10.1002/prca.201900050. PubMed DOI
Akcalı A., Bostanci N., Özçaka Ö., Öztürk-Ceyhan B., Gümüş P., Buduneli N., Belibasakis G.N. Association between Polycystic Ovary Syndrome, Oral Microbiota and Systemic Antibody Responses. PLoS ONE. 2014;9:e108074. doi: 10.1371/journal.pone.0108074. PubMed DOI PMC
Ebersole J.L., Nagarajan R., Akers D., Miller C.S. Targeted salivary biomarkers for discrimination of periodontal health and disease(s) Front. Cell. Infect. Microbiol. 2015;5:62. doi: 10.3389/fcimb.2015.00062. PubMed DOI PMC
Sexton W.M., Lin Y., Kryscio R.J., Dawson D.R., Ebersole J.L., Miller C.S. Salivary biomarkers of periodontal disease in response to treatment. J. Clin. Periodontol. 2011;38:434–441. doi: 10.1111/j.1600-051X.2011.01706.x. PubMed DOI PMC
Rechenberg D.-K., Galicia J.C., Peters O.A. Biological Markers for Pulpal Inflammation: A Systematic Review. PLoS ONE. 2016;11:e0167289. doi: 10.1371/journal.pone.0167289. PubMed DOI PMC
Martins C., Buczynski A.K., Maia L.C., Siqueira W.L., Castro G.F.B.D.A. Salivary proteins as a biomarker for dental caries—A systematic review. J. Dent. 2013;41:2–8. doi: 10.1016/j.jdent.2012.10.015. PubMed DOI
Farges J.-C., Alliot-Licht B., Renard E., Ducret M., Gaudin A., Smith A.J., Cooper P.R. Dental Pulp Defence and Repair Mechanisms in Dental Caries. Mediat. Inflamm. 2015;2015:1–16. doi: 10.1155/2015/230251. PubMed DOI PMC
Ayad M., Van Wuyckhuyse B., Minaguchi K., Raubertas R., Bedi G., Billings R., Bowen W., Tabak L. The association of basic proline-rich peptides from human parotid gland secretions with caries experience. J. Dent. Res. 2000;79:976–982. doi: 10.1177/00220345000790041401. PubMed DOI
Tulunoglu O., Demirtas S. Total antioxidant levels of saliva in children related to caries, age, and gender. Int. J. Paediatr. Dent. 2006;16:186–191. doi: 10.1111/j.1365-263X.2006.00733.x. PubMed DOI
Roa N.S., Chaves M., Gómez M., Jaramillo L.M. Association of salivary proteins with dental caries in a Colombian population. Acta Odontol Latinoam. 2008;21:69–75. PubMed
Yoshizawa J.M., Schafer C.A., Schafer J.J., Farrell J.J., Paster B.J., Wong D.T.W. Salivary Biomarkers: Toward Future Clinical and Diagnostic Utilities. Clin. Microbiol. Rev. 2013;26:781–791. doi: 10.1128/CMR.00021-13. PubMed DOI PMC
Streckfus C.F., Bigler L.R. Saliva as a diagnostic fluid. Oral Dis. 2002;8:69–76. doi: 10.1034/j.1601-0825.2002.1o834.x. PubMed DOI
Mitsakakis K., Stumpf F., Strohmeier O., Klein V., Mark D., Von Stetten F., Peham J.R., Herz C., Paqué P., Wegehaupt F., et al. Chair/bedside diagnosis of oral and respiratory tract infections, and identification of antibiotic resistances for personalised monitoring and treatment. Stud. Health Technol. Inform. 2016;224:61–66. PubMed
Belibasakis G.N., Bostanci N., Marsh P.D., Zaura E. Applications of the oral microbiome in personalized dentistry. Arch. Oral Biol. 2019;104:7–12. doi: 10.1016/j.archoralbio.2019.05.023. PubMed DOI
Proctor G.B. The physiology of salivary secretion. Periodontol. 2000. 2016;70:11–25. doi: 10.1111/prd.12116. PubMed DOI
Dige I., Schlafer S., Nyvad B. Difference in initial dental biofilm accumulation between night and day. Acta Odontol. Scand. 2011;70:441–447. doi: 10.3109/00016357.2011.634833. PubMed DOI
Navazesh M., Kumar S.K. Measuring salivary flow. J. Am. Dent. Assoc. 2008;139:35S–40S. doi: 10.14219/jada.archive.2008.0353. PubMed DOI
4Hong I., Pae H.-C., Song Y.W., Cha J.-K., Lee J.-S., Paik J.-W., Choi S.-H. Oral Fluid Biomarkers for Diagnosing Gingivitis in Human: A Cross-Sectional Study. J. Clin. Med. 2020;9:1720. doi: 10.3390/jcm9061720. PubMed DOI PMC
Costantini E., Sinjari B., Piscopo F., Porreca A., Reale M., Caputi S., Murmura G. Evaluation of Salivary Cytokines and Vitamin D Levels in Periodontopathic Patients. Int. J. Mol. Sci. 2020;21:2669. doi: 10.3390/ijms21082669. PubMed DOI PMC
Verhulst M.J.L., Teeuw W.J., Bizzarro S., Muris J., Su N., Nicu E.A., Nazmi K., Bikker F.J., Loos B.G. A rapid, non-invasive tool for periodontitis screening in a medical care setting. BMC Oral Health. 2019;19:87. doi: 10.1186/s12903-019-0784-7. PubMed DOI PMC
Nucleotide: Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. [(accessed on 6 May 2017)];1988 Available online: https://www.ncbi.nlm.nih.gov/nucleotide/
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. doi: 10.1093/nar/gks596. PubMed DOI PMC
Assembly: Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. [(accessed on 6 May 2017)];2012 Available online: https://www.ncbi.nlm.nih.gov/nucleotide/
Wei R., Wang J., Su M., Jia E., Chen S., Chen T., Ni Y. Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-017-19120-0. PubMed DOI PMC
Paluszynska A., Biecek P., Jiang Y. randomForestExplainer: Explaining and Visualizing Random Forests in Terms of Variable Importance. R package version 0.10.1. [(accessed on 9 March 2020)]; Available online: https://CRAN.R-project.org/package=randomForestExplainer.
Ehrlinger J. ggRandomForests: Visually Exploring Random Forests. R package version 2.0.1. [(accessed on 17 March 2021)]; Available online: https://CRAN.R-project.org/package=ggRandomForests.
R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2018. [(accessed on 4 February 2021)]. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016. p. 213.
Pohlert T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended. R package version 1.4.4. [(accessed on 4 February 2021)];2020 Available online: https://CRAN.R-project.org/package=PMCMRplus.
Liaw A., Wiener M. Classification and Regression by randomForest. R News. 2002;2:18–22.
Lê S., Josse J., Husson F. FactoMineR: AnRPackage for Multivariate Analysis. J. Stat. Softw. 2008;25:1–18. doi: 10.18637/jss.v025.i01. DOI
Paul W.E. History of interleukin-4. Cytokine. 2015;75:3–7. doi: 10.1016/j.cyto.2015.01.038. PubMed DOI PMC
Minty A., Chalon P., Derocq J.-M., Dumont X., Guillemot J.-C., Kaghad M., Labit C., Leplatois P., Liauzun P., Miloux B., et al. lnterleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nat. Cell Biol. 1993;362:248–250. doi: 10.1038/362248a0. PubMed DOI
Zurawski G., De Vries J.E. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol. Today. 1994;15:19–26. doi: 10.1016/0167-5699(94)90021-3. PubMed DOI
Bhattacharjee A., Shukla M., Yakubenko V.P., Mulya A., Kundu S., Cathcart M.K. IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free. Radic. Biol. Med. 2013;54:1–16. doi: 10.1016/j.freeradbiomed.2012.10.553. PubMed DOI PMC
Malabarba M.G., Rui H., Deutsch H.H.J., Chung J., Kalthoff F.S., Farrar W.L., Kirken R.A. Interleukin-13 is a potent activator of JAK3 and STAT6 in cells expressing interleukin-2 receptor-γ and interleukin-4 receptor-α. Biochem. J. 1996;319:865–872. doi: 10.1042/bj3190865. PubMed DOI PMC
Hosokawa Y., Hosokawa I., Shindo S., Ozaki K., Matsuo T. IL-4 Modulates CCL11 and CCL20 Productions from IL-1β-Stimulated Human Periodontal Ligament Cells. Cell. Physiol. Biochem. 2016;38:153–159. doi: 10.1159/000438617. PubMed DOI
Weijden G.A., Timmerman M.F., Nijboer A., Reijerse E., Velden U. Comparison of different approaches to assess bleeding on probing as indicators of gingivitis. J. Clin. Periodontol. 1994;21:589–594. doi: 10.1111/j.1600-051X.1994.tb00748.x. PubMed DOI
Lopez R., Hujoel P., Belibasakis G.N. On putative periodontal pathogens: An epidemiological perspective. Virulence. 2015;6:249–257. doi: 10.1080/21505594.2015.1014266. PubMed DOI PMC
Bostanci N., Bao K., Greenwood D., Silbereisen A., Belibasakis G.N. Periodontal disease: From the lenses of light microscopy to the specs of proteomics and next-generation sequencing. Adv. Clin. Chem. 2019;93:263–290. doi: 10.1016/bs.acc.2019.07.006. PubMed DOI
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Fine D.H., Markowitz K., Furgang D., Velliyagounder K. Aggregatibacter actinomycetemcomitansas an Early Colonizer of Oral Tissues: Epithelium as a Reservoir? J. Clin. Microbiol. 2010;48:4464–4473. doi: 10.1128/JCM.00964-10. PubMed DOI PMC
Cavalla F., Hernandez-Rios P., Sorsa T., Biguetti C., Hernandez M. Matrix Metalloproteinases as Regulators of Periodontal Inflammation. Int. J. Mol. Sci. 2017;18:440. doi: 10.3390/ijms18020440. PubMed DOI PMC
Schwendicke F., Brouwer F., Paris S., Stolpe M. Detecting Proximal Secondary Caries Lesions. J. Dent. Res. 2015;95:152–159. doi: 10.1177/0022034515617937. PubMed DOI
Brouwer F., Askar H., Paris S., Schwendicke F. Detecting Secondary Caries Lesions. J. Dent. Res. 2016;95:143–151. doi: 10.1177/0022034515611041. PubMed DOI