• This record comes from PubMed

Anticonvulsant Action of GluN2A-Preferring Antagonist PEAQX in Developing Rats

. 2021 Mar 19 ; 13 (3) : . [epub] 20210319

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
18-09296S and 19-11931S Grantová Agentura České Republiky
under Grant Agreement No. 777554 European Union's Horizon 2020 programme
project "PharmaBrain" No. CZ.02.1.01/0.0/0.0/16_025/0007444 ERDF/ESF
67985823 support for long-term conceptual development of research organization RVO

Links

PubMed 33808912
PubMed Central PMC8003757
DOI 10.3390/pharmaceutics13030415
PII: pharmaceutics13030415
Knihovny.cz E-resources

The GluN2A subunit of N-methyl-D-aspartate (NMDA) receptors becomes dominant during postnatal development, overgrowing the originally dominant GluN2B subunit. The aim of our study was to show changes of anticonvulsant action of the GluN2A subunit-preferring antagonist during postnatal development of rats. Possible anticonvulsant action of GluN2A-preferring antagonist of NMDA receptors P = [[[(1S)-1-(4-bromophenyl)ethyl]amino](1,2,3,4-tetrahydro-2,3-dioxo-5-quinoxalinyl)methyl]phosphonic acid tetrasodium salt (PEAQX) (5, 10, 20 mg/kg s.c.) was tested in 12-, 18-, and 25-day-old rats in three models of convulsive seizures. Pentylenetetrazol-induced generalized seizures with a loss of righting reflexes generated in the brainstem were suppressed in all three age groups in a dose-dependent manner. Minimal clonic seizures with preserved righting ability exhibited only moderately prolonged latency after the highest dose of PEAQX. Anticonvulsant action of all three doses of PEAQX against cortical epileptic afterdischarges (generated in the forebrain) was found in the 25-day-old animals. The highest dose (20 mg/kg) was efficient also in the two younger groups, which might be due to lower specificity of PEAQX and its partial affinity to the GluN2B subunit. Our results are in agreement with the postero-anterior maturation gradient of subunit composition of NMDA receptors (i.e., an increase of GluN2A representation). In spite of the lower selectivity of PEAQX, our data demonstrate, for the first time, developmental differences in comparison with an antagonist of NMDA receptors with a dominant GluN2B subunit.

See more in PubMed

Hauser W.A., Hessdorfer D.C. Epilepsy: Frequency, Causes and Consequences. Demos; New York, NY, USA: 1990.

Pellock J.M., Brodie M.J. Felbamate: 1997 update. Epilepsia. 1997;38:1261–1264. doi: 10.1111/j.1528-1157.1997.tb00061.x. PubMed DOI

Hanada T. The AMPA receptor as a therapeutic target in epilepsy, preclinical and clinical evidence. J. Recept. Ligand Channel Res. 2014;7:39–50. doi: 10.2147/JRLCR.S51475. DOI

Chapman A. Excitatory amino acid antagonists and therapy of epilepsy. In: Meldrum B.S., editor. Excitatory Amino Acid Antagonists. Blackwell Scientific Publications; Oxford, UK: 1991. pp. 265–286.

Czuczwar S.J., Meldrum B. Protection against chemically induced seizures by 2-amino-7-phosphonoheptanoic acid. Eur. J. Pharmacol. 1982;83:335–338. doi: 10.1016/0014-2999(82)90273-4. PubMed DOI

Shimada A., Spangler E.L., London E.D., Ingram D.K. Spermidine potentiates dizocilpine-induced impairment of learning performance by rats in a 14-unit T-maze. Eur. J. Pharmacol. 1994;263:293–300. doi: 10.1016/0014-2999(94)90725-0. PubMed DOI

Watanabe M., Inoue Y., Sakimura K., Mishina M. Developmental changes in distribution of NMDA-receptor channel subunit mRNAs. Neuroreport. 1992;3:1138–1140. doi: 10.1097/00001756-199212000-00027. PubMed DOI

Monyer H., Burnashev N., Laurie D.J., Sakmann B., Seeburg P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12:529–540. doi: 10.1016/0896-6273(94)90210-0. PubMed DOI

Sans N., Petralia R.S., Wang Y.X., Blahos J., Hell J.W., Wenthold R.J. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J. Neurosci. 2000;20:1260–1271. doi: 10.1523/JNEUROSCI.20-03-01260.2000. PubMed DOI PMC

Neyton J., Paoletti P. Relating NMDA receptor function to receptor subunit composition: Limitations of the pharmacological approach. J. Neurosci. 2006;26:1331–1333. doi: 10.1523/JNEUROSCI.5242-05.2006. PubMed DOI PMC

Franchini L., Carrano N., Di Luca M., Gardoni F. Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int. J. Molecul. Sci. 2020;21:1538. doi: 10.3390/ijms21041538. PubMed DOI PMC

Wong E.H., Kemp J.A., Priestley T., Knight A.R., Woodruff G.N., Iversen L.L. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. USA. 1986;83:7104–7108. doi: 10.1073/pnas.83.18.7104. PubMed DOI PMC

Velíšek L., Mareš P. Developmental aspects of the anticonvulsant action of MK-801. In: Kamenka J.-M., Domino E.F., editors. NPP Books. NPP Books; Ann Arbor, MI, USA: 1992. pp. 779–795.

Parsons C.G., Danysz W., Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—A review of preclinical data. Neuropharmacology. 1999;38:735–767. doi: 10.1016/S0028-3908(99)00019-2. PubMed DOI

Tsuda M., Suzuki T., Misawa M. Age-related decrease in the antiseizure effect of ifenprodil against pentylenetetrazole in mice. Dev. Brain Res. 1997;104:201–204. doi: 10.1016/S0165-3806(97)00140-5. PubMed DOI

Mareš P., Mikulecká A. Different effects of two NMDA receptor antagonists on seizures, spontaneous behavior and motor performance in immature rats. Epilepsy Behav. 2009;14:32–39. doi: 10.1016/j.yebeh.2008.08.013. PubMed DOI

Bettini E., Sava A., Griffante C., Carignani C., Buson A., Capelli A.M., Negri M., Andreetta F., Senar-Sancho S.A., Guiral L., et al. Identification and characterization of novel NMDA receptor antagonists selective for NR2A-over NR2B-containing receptors. J. Pharmacol. Exp. Ther. 2010;335:636–644. doi: 10.1124/jpet.110.172544. PubMed DOI

Volkmann R.A., Fanger C.M., Anderson D.R., Sirivolu V.R., Pachetto K., Gordon E., Virginio C., Gleyzes M., Buisson B., Steidle E., et al. MPX-004 and MPX-007: New pharmacological tools to study the physiology of NMDA receptors containing the GluN2A subunit. PLoS ONE. 2016;11:e0148129. doi: 10.1371/journal.pone.0148129. PubMed DOI PMC

Auberson Y.P., Allgeier H., Bischoff S., Lingenhoehl K., Moretti R., Schmutz M. 5-Phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg. Med. Chem. Lett. 2002;12:1099–10102. doi: 10.1016/S0960-894X(02)00074-4. PubMed DOI

Frizelle P.A., Chen P.E., Wyllie D.J.A. Equilibrium constants for (R–[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-methyl-D-aspartate receptors: Implications for studies of synaptic transmission. Mol. Pharmacol. 2006;70:1022–1032. PubMed

Browning R.A., Nelson D.K. Modification of electroshock and pentylenetetrazol seizure patterns in rats after precollicular transections. Exp. Neurol. 1986;93:546–556. doi: 10.1016/0014-4886(86)90174-3. PubMed DOI

Mareš P. Generalized seizures in rodents—Only two patterns? In: Hirsch E., Andermann F., Chauvel P., Engel J., Lopes da Silva F., Luders H., editors. Generalized Seizures: From Clinical Phenomenology to Underlying Systems and Networks. John Libbey Eurotext; Arcueil, France: 2006. pp. 70–72.

Avanzini G., de Curtis M., Marescaux C., Panzica F., Spreafico R., Vergnes M. Role of the thalamic reticular nucleus in the generation of rhythmic thalamo-cortical activities subserving spike and waves. J. Neural. Transm. 1992;35:85–95. PubMed

Conklin P., Heggeness F.W. Maturation of temperature homeostasis in the rat. Am. J. Physiol. 1971;220:333–336. doi: 10.1152/ajplegacy.1971.220.2.333. PubMed DOI

Velíšek L., Kubová H., Pohl M., Staňková L., Mareš P., Schickerová R. Pentylenetetrazol-induced seizures in rats: An ontogenetic study. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1992;346:588–591. doi: 10.1007/BF00169017. PubMed DOI

De Casrilevitz M., Engelhardt E., Esberard C.A. Maturation of convulsogenic activity induced by leptazol in the albino rat. Br. J. Pharmacol. 1971;42:31–42. doi: 10.1111/j.1476-5381.1971.tb07084.x. PubMed DOI PMC

Pohl M., Mareš P. Flunarizine influences metrazol-induced seizures in developing rats. Epilepsy Res. 1987;1:302–305. doi: 10.1016/0920-1211(87)90006-4. PubMed DOI

Mareš P., Haugvicová R., Kubová H. Unequal development of thresholds for various phenomena induced by cortical stimulation in rats. Epilepsy Res. 2002;49:35–43. doi: 10.1016/S0920-1211(02)00009-8. PubMed DOI

Racine R.J. Modification of seizure activity by electrical stimulation. II. Motor seizures. Electroencephalogr. Clin. Neurophysiol. 1972;32:281–294. doi: 10.1016/0013-4694(72)90177-0. PubMed DOI

Semple B.D., Blomgren K., Gimlin K., Ferriero D.M., Noble-Haeusslein L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 2013;106–107:1–16. doi: 10.1016/j.pneurobio.2013.04.001. PubMed DOI PMC

Dobbing J., Smart J.L. Vulnerability of developing brain and behaviour. Br. Med. Bull. 1974;30:164–168. doi: 10.1093/oxfordjournals.bmb.a071188. PubMed DOI

Ellingson R.J., Rose G.H. Ontogenesis of the electroencephalogram. In: Himwich W.A., Charles C., editors. Developmental Neurobiology. Thomas Publ.; Springfield, MO, USA: 1970. pp. 441–474.

Mareš P., Zouhar A., Brožek G. Ontogenetic development of electrocorticogram in the rat. Activ. Nerv. Super. 1979;21:218–225. PubMed

Dreyfus-Brisac C. The electroencephalogram of the premature infant and full-term newborn: Normal and abnormal development of waking and sleeping patterns. In: Kellaway P., Petersen I., editors. Neurological and EEG Correlative Studies in Infancy. Grune and Statton; New York, NY, USA: 1964. pp. 186–207.

Piacsek B.E., Statham N.J., Goodspeed M.P. Sexual maturation of male rats in continuous light. Am. J. Physiol. 1978;234:E262–E266. doi: 10.1152/ajpendo.1978.234.3.E262. PubMed DOI

Pohl M., Mareš P., Langmeier M. Localization of the origin of self-sustained after-discharges (SSADs) in the rat. I. The spike-and-wave (S+W) type of SSAD. Epilepsia. 1986;27:516–522. doi: 10.1111/j.1528-1157.1986.tb03577.x. PubMed DOI

Xing G.-G., Wang R., Yang B., Zhang D. Postnatal switching of NMDA receptor subunits from NR2B to NR2A in rat facial motor neurons. Eur. J. Neurosci. 2006;24:2987–2992. doi: 10.1111/j.1460-9568.2006.05188.x. PubMed DOI

Mareš P. Zonisamide suppresses the tonic phase but not the clonic phase of generalized seizures in developing rats. Epilepsy Res. 2010;92:244–248. doi: 10.1016/j.eplepsyres.2010.09.009. PubMed DOI

Mareš P. Anticonvulsant action of GABA-B receptor positive modulator CGP7930 in immature rats. Epilepsy Res. 2012;100:49–54. doi: 10.1016/j.eplepsyres.2012.01.007. PubMed DOI

Mareš P. Age- and dose-specific anticonvulsant action of bumetanide in immature rats. Physiol. Res. 2009;58:927–930. doi: 10.33549/physiolres.931897. PubMed DOI

Mareš P. Age and activation determines the anticonvulsant effect of ifenprodil in rats. Naunyn-Schmiedebergs Arch. Pharmacol. 2014;387:753–761. doi: 10.1007/s00210-014-0987-z. PubMed DOI

Mareš P., Kubová H. Developmental patterns of postictal refractoriness and potentiation akin to cortical stimulation. Epilepsia. 2015;56:e10–e14. doi: 10.1111/epi.12870. PubMed DOI

Moshé S.L., Albala B.J. Maturational changes in postictal refractoriness and seizure susceptibility in developing rats. Ann. Neurol. 1983;13:552–557. doi: 10.1002/ana.410130514. PubMed DOI

Mareš P., et al. Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic. 2021. Unpublished work.

Hsieh C.Y., Chen Y., Leslie F.M., Metherate R. Postnatal development of NR2A and NR2B mRNA expression in rat auditory cortex and thalamus. J. Assoc. Res. Otolaryngol. 2002;3:479–487. doi: 10.1007/s10162-002-2052-8. PubMed DOI PMC

Stocca G., Vicini S. Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. J. Physiol. 1998;507:13–24. doi: 10.1111/j.1469-7793.1998.013bu.x. PubMed DOI PMC

Szczurowska E., Mareš P. Different action of a specific NR2B/NMDA antagonist Ro 25-6981 on cortical evoked potentials and epileptic afterdischarges in immature rats. Brain Res. Bull. 2015;111:1–15. doi: 10.1016/j.brainresbull.2014.11.001. PubMed DOI

Sun Y., Xu Y., Cheng X., Chen X., Xie Y., Zhang L., Wang L., Hu J., Gao Z. The differences between GluN2A and GluN2B signaling in the brain. J. Neurosci. Res. 2018;96:1430–1443. doi: 10.1002/jnr.24251. PubMed DOI

Luo J., Wang Y., Yasuda R.P., Dunah A.W., Wolfe B.B. The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B) Mol. Pharmacol. 1997;51:79–86. doi: 10.1124/mol.51.1.79. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...