Anticonvulsant Action of GluN2A-Preferring Antagonist PEAQX in Developing Rats
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
18-09296S and 19-11931S
Grantová Agentura České Republiky
under Grant Agreement No. 777554
European Union's Horizon 2020 programme
project "PharmaBrain" No. CZ.02.1.01/0.0/0.0/16_025/0007444
ERDF/ESF
67985823
support for long-term conceptual development of research organization RVO
PubMed
33808912
PubMed Central
PMC8003757
DOI
10.3390/pharmaceutics13030415
PII: pharmaceutics13030415
Knihovny.cz E-resources
- Keywords
- GluN2A subunit, NMDA receptors, anticonvulsant action, cortical epileptic afterdischarges, immature rats, pentylenetetrazol-induced seizures,
- Publication type
- Journal Article MeSH
The GluN2A subunit of N-methyl-D-aspartate (NMDA) receptors becomes dominant during postnatal development, overgrowing the originally dominant GluN2B subunit. The aim of our study was to show changes of anticonvulsant action of the GluN2A subunit-preferring antagonist during postnatal development of rats. Possible anticonvulsant action of GluN2A-preferring antagonist of NMDA receptors P = [[[(1S)-1-(4-bromophenyl)ethyl]amino](1,2,3,4-tetrahydro-2,3-dioxo-5-quinoxalinyl)methyl]phosphonic acid tetrasodium salt (PEAQX) (5, 10, 20 mg/kg s.c.) was tested in 12-, 18-, and 25-day-old rats in three models of convulsive seizures. Pentylenetetrazol-induced generalized seizures with a loss of righting reflexes generated in the brainstem were suppressed in all three age groups in a dose-dependent manner. Minimal clonic seizures with preserved righting ability exhibited only moderately prolonged latency after the highest dose of PEAQX. Anticonvulsant action of all three doses of PEAQX against cortical epileptic afterdischarges (generated in the forebrain) was found in the 25-day-old animals. The highest dose (20 mg/kg) was efficient also in the two younger groups, which might be due to lower specificity of PEAQX and its partial affinity to the GluN2B subunit. Our results are in agreement with the postero-anterior maturation gradient of subunit composition of NMDA receptors (i.e., an increase of GluN2A representation). In spite of the lower selectivity of PEAQX, our data demonstrate, for the first time, developmental differences in comparison with an antagonist of NMDA receptors with a dominant GluN2B subunit.
See more in PubMed
Hauser W.A., Hessdorfer D.C. Epilepsy: Frequency, Causes and Consequences. Demos; New York, NY, USA: 1990.
Pellock J.M., Brodie M.J. Felbamate: 1997 update. Epilepsia. 1997;38:1261–1264. doi: 10.1111/j.1528-1157.1997.tb00061.x. PubMed DOI
Hanada T. The AMPA receptor as a therapeutic target in epilepsy, preclinical and clinical evidence. J. Recept. Ligand Channel Res. 2014;7:39–50. doi: 10.2147/JRLCR.S51475. DOI
Chapman A. Excitatory amino acid antagonists and therapy of epilepsy. In: Meldrum B.S., editor. Excitatory Amino Acid Antagonists. Blackwell Scientific Publications; Oxford, UK: 1991. pp. 265–286.
Czuczwar S.J., Meldrum B. Protection against chemically induced seizures by 2-amino-7-phosphonoheptanoic acid. Eur. J. Pharmacol. 1982;83:335–338. doi: 10.1016/0014-2999(82)90273-4. PubMed DOI
Shimada A., Spangler E.L., London E.D., Ingram D.K. Spermidine potentiates dizocilpine-induced impairment of learning performance by rats in a 14-unit T-maze. Eur. J. Pharmacol. 1994;263:293–300. doi: 10.1016/0014-2999(94)90725-0. PubMed DOI
Watanabe M., Inoue Y., Sakimura K., Mishina M. Developmental changes in distribution of NMDA-receptor channel subunit mRNAs. Neuroreport. 1992;3:1138–1140. doi: 10.1097/00001756-199212000-00027. PubMed DOI
Monyer H., Burnashev N., Laurie D.J., Sakmann B., Seeburg P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12:529–540. doi: 10.1016/0896-6273(94)90210-0. PubMed DOI
Sans N., Petralia R.S., Wang Y.X., Blahos J., Hell J.W., Wenthold R.J. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J. Neurosci. 2000;20:1260–1271. doi: 10.1523/JNEUROSCI.20-03-01260.2000. PubMed DOI PMC
Neyton J., Paoletti P. Relating NMDA receptor function to receptor subunit composition: Limitations of the pharmacological approach. J. Neurosci. 2006;26:1331–1333. doi: 10.1523/JNEUROSCI.5242-05.2006. PubMed DOI PMC
Franchini L., Carrano N., Di Luca M., Gardoni F. Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int. J. Molecul. Sci. 2020;21:1538. doi: 10.3390/ijms21041538. PubMed DOI PMC
Wong E.H., Kemp J.A., Priestley T., Knight A.R., Woodruff G.N., Iversen L.L. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. USA. 1986;83:7104–7108. doi: 10.1073/pnas.83.18.7104. PubMed DOI PMC
Velíšek L., Mareš P. Developmental aspects of the anticonvulsant action of MK-801. In: Kamenka J.-M., Domino E.F., editors. NPP Books. NPP Books; Ann Arbor, MI, USA: 1992. pp. 779–795.
Parsons C.G., Danysz W., Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—A review of preclinical data. Neuropharmacology. 1999;38:735–767. doi: 10.1016/S0028-3908(99)00019-2. PubMed DOI
Tsuda M., Suzuki T., Misawa M. Age-related decrease in the antiseizure effect of ifenprodil against pentylenetetrazole in mice. Dev. Brain Res. 1997;104:201–204. doi: 10.1016/S0165-3806(97)00140-5. PubMed DOI
Mareš P., Mikulecká A. Different effects of two NMDA receptor antagonists on seizures, spontaneous behavior and motor performance in immature rats. Epilepsy Behav. 2009;14:32–39. doi: 10.1016/j.yebeh.2008.08.013. PubMed DOI
Bettini E., Sava A., Griffante C., Carignani C., Buson A., Capelli A.M., Negri M., Andreetta F., Senar-Sancho S.A., Guiral L., et al. Identification and characterization of novel NMDA receptor antagonists selective for NR2A-over NR2B-containing receptors. J. Pharmacol. Exp. Ther. 2010;335:636–644. doi: 10.1124/jpet.110.172544. PubMed DOI
Volkmann R.A., Fanger C.M., Anderson D.R., Sirivolu V.R., Pachetto K., Gordon E., Virginio C., Gleyzes M., Buisson B., Steidle E., et al. MPX-004 and MPX-007: New pharmacological tools to study the physiology of NMDA receptors containing the GluN2A subunit. PLoS ONE. 2016;11:e0148129. doi: 10.1371/journal.pone.0148129. PubMed DOI PMC
Auberson Y.P., Allgeier H., Bischoff S., Lingenhoehl K., Moretti R., Schmutz M. 5-Phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg. Med. Chem. Lett. 2002;12:1099–10102. doi: 10.1016/S0960-894X(02)00074-4. PubMed DOI
Frizelle P.A., Chen P.E., Wyllie D.J.A. Equilibrium constants for (R–[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-methyl-D-aspartate receptors: Implications for studies of synaptic transmission. Mol. Pharmacol. 2006;70:1022–1032. PubMed
Browning R.A., Nelson D.K. Modification of electroshock and pentylenetetrazol seizure patterns in rats after precollicular transections. Exp. Neurol. 1986;93:546–556. doi: 10.1016/0014-4886(86)90174-3. PubMed DOI
Mareš P. Generalized seizures in rodents—Only two patterns? In: Hirsch E., Andermann F., Chauvel P., Engel J., Lopes da Silva F., Luders H., editors. Generalized Seizures: From Clinical Phenomenology to Underlying Systems and Networks. John Libbey Eurotext; Arcueil, France: 2006. pp. 70–72.
Avanzini G., de Curtis M., Marescaux C., Panzica F., Spreafico R., Vergnes M. Role of the thalamic reticular nucleus in the generation of rhythmic thalamo-cortical activities subserving spike and waves. J. Neural. Transm. 1992;35:85–95. PubMed
Conklin P., Heggeness F.W. Maturation of temperature homeostasis in the rat. Am. J. Physiol. 1971;220:333–336. doi: 10.1152/ajplegacy.1971.220.2.333. PubMed DOI
Velíšek L., Kubová H., Pohl M., Staňková L., Mareš P., Schickerová R. Pentylenetetrazol-induced seizures in rats: An ontogenetic study. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1992;346:588–591. doi: 10.1007/BF00169017. PubMed DOI
De Casrilevitz M., Engelhardt E., Esberard C.A. Maturation of convulsogenic activity induced by leptazol in the albino rat. Br. J. Pharmacol. 1971;42:31–42. doi: 10.1111/j.1476-5381.1971.tb07084.x. PubMed DOI PMC
Pohl M., Mareš P. Flunarizine influences metrazol-induced seizures in developing rats. Epilepsy Res. 1987;1:302–305. doi: 10.1016/0920-1211(87)90006-4. PubMed DOI
Mareš P., Haugvicová R., Kubová H. Unequal development of thresholds for various phenomena induced by cortical stimulation in rats. Epilepsy Res. 2002;49:35–43. doi: 10.1016/S0920-1211(02)00009-8. PubMed DOI
Racine R.J. Modification of seizure activity by electrical stimulation. II. Motor seizures. Electroencephalogr. Clin. Neurophysiol. 1972;32:281–294. doi: 10.1016/0013-4694(72)90177-0. PubMed DOI
Semple B.D., Blomgren K., Gimlin K., Ferriero D.M., Noble-Haeusslein L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 2013;106–107:1–16. doi: 10.1016/j.pneurobio.2013.04.001. PubMed DOI PMC
Dobbing J., Smart J.L. Vulnerability of developing brain and behaviour. Br. Med. Bull. 1974;30:164–168. doi: 10.1093/oxfordjournals.bmb.a071188. PubMed DOI
Ellingson R.J., Rose G.H. Ontogenesis of the electroencephalogram. In: Himwich W.A., Charles C., editors. Developmental Neurobiology. Thomas Publ.; Springfield, MO, USA: 1970. pp. 441–474.
Mareš P., Zouhar A., Brožek G. Ontogenetic development of electrocorticogram in the rat. Activ. Nerv. Super. 1979;21:218–225. PubMed
Dreyfus-Brisac C. The electroencephalogram of the premature infant and full-term newborn: Normal and abnormal development of waking and sleeping patterns. In: Kellaway P., Petersen I., editors. Neurological and EEG Correlative Studies in Infancy. Grune and Statton; New York, NY, USA: 1964. pp. 186–207.
Piacsek B.E., Statham N.J., Goodspeed M.P. Sexual maturation of male rats in continuous light. Am. J. Physiol. 1978;234:E262–E266. doi: 10.1152/ajpendo.1978.234.3.E262. PubMed DOI
Pohl M., Mareš P., Langmeier M. Localization of the origin of self-sustained after-discharges (SSADs) in the rat. I. The spike-and-wave (S+W) type of SSAD. Epilepsia. 1986;27:516–522. doi: 10.1111/j.1528-1157.1986.tb03577.x. PubMed DOI
Xing G.-G., Wang R., Yang B., Zhang D. Postnatal switching of NMDA receptor subunits from NR2B to NR2A in rat facial motor neurons. Eur. J. Neurosci. 2006;24:2987–2992. doi: 10.1111/j.1460-9568.2006.05188.x. PubMed DOI
Mareš P. Zonisamide suppresses the tonic phase but not the clonic phase of generalized seizures in developing rats. Epilepsy Res. 2010;92:244–248. doi: 10.1016/j.eplepsyres.2010.09.009. PubMed DOI
Mareš P. Anticonvulsant action of GABA-B receptor positive modulator CGP7930 in immature rats. Epilepsy Res. 2012;100:49–54. doi: 10.1016/j.eplepsyres.2012.01.007. PubMed DOI
Mareš P. Age- and dose-specific anticonvulsant action of bumetanide in immature rats. Physiol. Res. 2009;58:927–930. doi: 10.33549/physiolres.931897. PubMed DOI
Mareš P. Age and activation determines the anticonvulsant effect of ifenprodil in rats. Naunyn-Schmiedebergs Arch. Pharmacol. 2014;387:753–761. doi: 10.1007/s00210-014-0987-z. PubMed DOI
Mareš P., Kubová H. Developmental patterns of postictal refractoriness and potentiation akin to cortical stimulation. Epilepsia. 2015;56:e10–e14. doi: 10.1111/epi.12870. PubMed DOI
Moshé S.L., Albala B.J. Maturational changes in postictal refractoriness and seizure susceptibility in developing rats. Ann. Neurol. 1983;13:552–557. doi: 10.1002/ana.410130514. PubMed DOI
Mareš P., et al. Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic. 2021. Unpublished work.
Hsieh C.Y., Chen Y., Leslie F.M., Metherate R. Postnatal development of NR2A and NR2B mRNA expression in rat auditory cortex and thalamus. J. Assoc. Res. Otolaryngol. 2002;3:479–487. doi: 10.1007/s10162-002-2052-8. PubMed DOI PMC
Stocca G., Vicini S. Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. J. Physiol. 1998;507:13–24. doi: 10.1111/j.1469-7793.1998.013bu.x. PubMed DOI PMC
Szczurowska E., Mareš P. Different action of a specific NR2B/NMDA antagonist Ro 25-6981 on cortical evoked potentials and epileptic afterdischarges in immature rats. Brain Res. Bull. 2015;111:1–15. doi: 10.1016/j.brainresbull.2014.11.001. PubMed DOI
Sun Y., Xu Y., Cheng X., Chen X., Xie Y., Zhang L., Wang L., Hu J., Gao Z. The differences between GluN2A and GluN2B signaling in the brain. J. Neurosci. Res. 2018;96:1430–1443. doi: 10.1002/jnr.24251. PubMed DOI
Luo J., Wang Y., Yasuda R.P., Dunah A.W., Wolfe B.B. The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B) Mol. Pharmacol. 1997;51:79–86. doi: 10.1124/mol.51.1.79. PubMed DOI