In Vivo Bioavailability of Selenium in Selenium-Enriched Streptococcus thermophilus and Enterococcus faecium in CD IGS Rats

. 2021 Mar 16 ; 10 (3) : . [epub] 20210316

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33809515

Grantová podpora
MZE-RO1421 Ministerstvo Zemědělství
COST LTC20014 the Ministry of Education, Youth and Sports of the Czech Republic

The selenium (Se) enrichment of yeasts and lactic acid bacteria (LAB) has recently emerged as a novel concept; the individual health effects of these beneficial microorganisms are combined by supplying the essential micronutrient Se in a more bioavailable and less toxic form. This study investigated the bioavailability of Se in the strains Enterococcus faecium CCDM 922A (EF) and Streptococcus thermophilus CCDM 144 (ST) and their respective Se-enriched forms, SeEF and SeST, in a CD (SD-Sprague Dawley) IGS rat model. Se-enriched LAB administration resulted in higher Se concentrations in the liver and kidneys of rats, where selenocystine was the prevalent Se species. The administration of both Se-enriched strains improved the antioxidant status of the animals. The effect of the diet was more pronounced in the heart tissue, where a lower glutathione reductase content was observed, irrespective of the Se fortification in LAB. Interestingly, rats fed diets with EF and SeEF had higher glutathione reductase activity. Reduced concentrations of serum malondialdehyde were noted following Se supplementation. Diets containing Se-enriched strains showed no macroscopic effects on the liver, kidneys, heart, and brain and had no apparent influence on the basic parameters of the lipid metabolism. Both the strains tested herein showed potential for further applications as promising sources of organically bound Se and Se nanoparticles.

Zobrazit více v PubMed

WHO . Cardiovascular Diseases (CVDs): Fact. Sheet N 317. WHO; Geneva, Switzerland: 2015.

Chua K.J., Kwok W.C., Aggarwal N., Sun T., Chang M.W. Designer Probiotics for the Prevention and Treatment of Human diseases. Curr. Opin. Chem. Biol. 2017;40:8–16. doi: 10.1016/j.cbpa.2017.04.011. PubMed DOI

Amaretti A., Di Nunzio M., Pompei A., Raimondi S., Rossi M., Bordoni A. Antioxidant Properties of Potentially Probiotic Bacteria: In Vitro and in Vivo Activities. Appl. Microbiol. Biotechnol. 2013;97:809–817. doi: 10.1007/s00253-012-4241-7. PubMed DOI

Steinbrenner H., Speckmann B., Klotz L.O. Selenoproteins: Antioxidant Selenoenzymes and Beyond. Arch. Biochem. Biophys. 2016;595:113–119. doi: 10.1016/j.abb.2015.06.024. PubMed DOI

Malyar R.M., Li H., Liu D., Abdulrahim Y., Farid R.A., Gan F., Ali W., Enayatullah H., Banuree S.A.H., Huang K., et al. Selenium/Zinc-Enriched Probiotics Improve Serum Enzyme Activity, Antioxidant Ability, Inflammatory Factors and Related Gene Expression of Wistar Rats Inflated Under Heat Stress. Life Sci. 2020;248:117464. doi: 10.1016/j.lfs.2020.117464. PubMed DOI

Samarghandian S., Farkhondeh T., Samini F., Borji A. Protective Effects of Carvacrol Against Oxidative Stress Induced by Chronic Stress in Rat‘S Brain, Liver and Kidney. Biochem. Res. Int. 2016;2016:2645237. doi: 10.1155/2016/2645237. PubMed DOI PMC

Brigelius-Flohé R. Selenium in Human Health and Disease: An Overview. Mol. Integr. Toxicol. 2018:3–26.

Rayman M.P. Selenium and Human Health. Lancet. 2012;379:1256–1268. doi: 10.1016/S0140-6736(11)61452-9. PubMed DOI

Yi H.W., Zhu X.X., Huang X.L., Lai Y.Z., Tang Y. Selenium-Enriched Bifidobacterium Longum Protected Alcohol and High Fat Diet Induced Hepatic Injury in Mice. Chin. J. Nat. Med. 2020;18:169–177. doi: 10.1016/S1875-5364(20)30018-2. PubMed DOI

Sun Z., Xu Z., Wang D., Yao H., Li S. Selenium Deficiency Inhibits Differentiation and Immune Function and Imbalances the Th1/Th2 of Dendritic Cells. Metallomics. 2018;10:759–767. doi: 10.1039/C8MT00039E. PubMed DOI

Jamilian M., Mansury S., Bahmani F., Heidar Z., Amirani E., Asemi Z. The Effects of Probiotic and Selenium Co-Supplementation on Parameters of Mental Health, Hormonal Profiles, and Biomarkers of Inflammation and Oxidative Stress in Women with Polycystic Ovary Syndrome. J. Ovarian Res. 2018;11:80. doi: 10.1186/s13048-018-0457-1. PubMed DOI PMC

Ren Z., Zhao Z., Wang Y., Huang K. Preparation of Selenium/Zinc-Enriched Probiotics and Their Effect on Blood Selenium and Zinc Concentrations, Antioxidant Capacities, and Intestinal Microflora in Canine. Biol. Trace Elem. Res. 2011;141:170–183. doi: 10.1007/s12011-010-8734-x. PubMed DOI

Yang J., Huang K., Qin S., Wu X., Zhao Z., Chen F. Antibacterial Action of Selenium-Enriched Probiotics against Pathogenic Escherichia coli. Dig. Dis. Sci. 2009;54:246–254. doi: 10.1007/s10620-008-0361-4. PubMed DOI

Oraby M.M., Allababidy T., Ramadan E.M. The Bioavailability of Selenium in Saccharomyces cerevisiae. Ann. Agric. Sci. 2015;60:307–315. doi: 10.1016/j.aoas.2015.10.006. DOI

Lamberti C., Mangiapane E., Pessione A., Mazzoli R., Giunta C., Pessione E. Proteomic Characterization of a Selenium-Metabolizing Probiotic Lact. Reuteri Lb2 BM for Nutraceutical Applications. Proteomics. 2011;11:2212–2221. doi: 10.1002/pmic.201000747. PubMed DOI

Pescuma M., Gomez-Gomez B., Perez-Corona T., Font G., Madrid Y., Mozzi F. Food Prospects of Selenium Enriched-Lactobacillus acidophilus CRL 636 and Lactobacillus reuteri CRL 1101. J. Funct. Foods. 2017;35:466–473. doi: 10.1016/j.jff.2017.06.009. DOI

Pusztahelyi T., Kovács S., Pócsi I., Prokisch J. Selenite-Stress Selected Mutant Strains of Probiotic Bacteria for Se Source Production. J. Trace Elem. Med. Biol. 2015;30:96–101. doi: 10.1016/j.jtemb.2014.11.003. PubMed DOI

Nagy G., Benko I., Kiraly G., Voros O., Tanczos B., Sztrik A., Takács T., Pocsi I., Prokisch J., Banfalvi G. Cellular and Nephrotoxicity of Selenium Species. J. Trace Elem. Med. Biol. 2015;30:160–170. doi: 10.1016/j.jtemb.2014.12.011. PubMed DOI

Mrvčić J., Stanzer D., Solić E., Stehlik-Tomas V. Interaction of Lactic Acid Bacteria with Metal Ions: Opportunities for Improving Food Safety and Quality. World J. Microbiol. Biotechnol. 2012;28:2771–2782. doi: 10.1007/s11274-012-1094-2. PubMed DOI

Rother M., Hatfield D., Berry M., Gladyshev V. Selenium. Springer; New York, NY, USA: 2011. Selenium Metabolism in Prokaryotes. DOI

Zhang B., Zhou K., Zhang J., Chen Q., Liu G., Shang N., Qin W., Li P., Lin F. Accumulation and Species Distribution of Selenium in Se-Enriched Bacterial Cells of the Bifidobacterium animalis 01. Food Chem. 2009;115:727–734. doi: 10.1016/j.foodchem.2008.12.006. DOI

Krausova G., Kana A., Hyrslova I., Mrvikova I., Kavkova M. Development of Selenized Lactic Acid Bacteria and Their Selenium Bioaccummulation Capacity. Fermentation. 2020;6:91. doi: 10.3390/fermentation6030091. DOI

Hyrslova I., Krausova G., Bartova J., Kolesar L., Jaglic Z., Stankova B., Curda L. Characterization of Enterococcus Faecium CCDM 922 in Respect of its Technological and Probiotic Properties. Int. J. Curr. Microbiol. Appl. Sci. 2016;5:474–482. doi: 10.20546/ijcmas.2016.505.049. DOI

Shiobara Y., Ogra Y., Suzuki K.T. Exchange of Endogenous Selenium for Dietary Selenium as 82 Se-Enriched Selenite in Brain, Liver, Kidneys and Testes. Life Sci. 2000;67:3041–3049. doi: 10.1016/S0024-3205(00)00894-8. PubMed DOI

Takahashi K., Suzuki N., Ogra Y. Bioavailability Comparison of Nine Bioselenocompounds In Vitro and In Vivo. Int. J. Mol. Sci. 2017;18:506. doi: 10.3390/ijms18030506. PubMed DOI PMC

Shini S., Sultan A., Bryden W.L. Selenium Biochemistry and Bioavailability: Implications for Animal Agriculture. Agriculture. 2015;5:1277–1288. doi: 10.3390/agriculture5041277. DOI

Xu C., Guo Y., Qiao L., Ma L., Cheng Y., Roman A. Biogenic Synthesis of Novel Functionalized Selenium Nanoparticles by Lactobacillus casei ATCC 393 and its Protective Effects on Intestinal Barrier Dysfunction Caused by Enterotoxigenic Escherichia coli K88. Front. Microbiol. 2018;9:1129. doi: 10.3389/fmicb.2018.01129. PubMed DOI PMC

Nagy G., Pinczes G., Pinter G., Pocsi I., Prokisch J., Banfalvi G. In Situ Electron Microscopy of Lactomicroselenium Particles in Probiotic Bacteria. Int. J. Mol. Sci. 2016;17:1047. doi: 10.3390/ijms17071047. PubMed DOI PMC

Alam H., Khatoon N., Khan M.A., Husain S.A., Saravanan M., Sardar M. Synthesis of Selenium Nanoparticles Using Probiotic Bacteria Lactobacillus acidophilus and their Enhanced Antimicrobial Activity Against Resistant Bacteria. J. Clust. Sci. 2020;31:1003–1011. doi: 10.1007/s10876-019-01705-6. DOI

Pieniz S., Andreazza R., Mann M.B., Camargo F., Brandelli A. Bioaccumulation and Distribution of Selenium in Enterococcus durans. J. Trace Elem. Med. Biol. 2017;40:37–45. doi: 10.1016/j.jtemb.2016.12.003. PubMed DOI

Martínez F.G., Moreno-Martin G., Pescuma M., Madrid-Albarrán Y., Mozzi F. Biotransformation of Selenium by Lactic Acid Bacteria: Formation of Seleno-Nanoparticles and Seleno-Amino Acids. Front. Bioeng. Biotechnol. 2020;8:506. doi: 10.3389/fbioe.2020.00506. PubMed DOI PMC

Yang J., Li Y., Zhang L., Fan M., Wei X. Response Surface Design for Accumulation of Selenium by Different Lactic Acid Bacteria. 3 Biotech. 2017;7:52. doi: 10.1007/s13205-017-0709-6. PubMed DOI PMC

Eszenyi P., Sztrik A., Babka B., Prokisch J. Elemental, Nano-Sized (100–500 nm) Selenium Production by Probiotic Lactic Acid Bacteria. Int. J. Biosci. Biochem. Bioinformatics. 2011;1:148–152. doi: 10.7763/IJBBB.2011.V1.27. DOI

Hosnedlova B., Kepinska M., Skalickova S., Fernandez C., Ruttkay-Nedecky B., Peng Q., Baron M., Melcova M., Opatrilova R., Zidkova J., et al. Nano-Selenium and its Nanomedicine Applications: A Critical Review. Int. J. Nanomed. 2018;13:2107–2128. doi: 10.2147/IJN.S157541. PubMed DOI PMC

Behne D., Wolters W. Distribution of Selenium and Glutathione Peroxidase in the Rat. J. Nutr. 1983;113:456–461. doi: 10.1093/jn/113.2.456. PubMed DOI

Gu Q.P., Xia Y.M., Ha P.C., Butler J.A., Whanger P.D. Distribution of Selenium Between Plasma Fractions in Guinea Pigs and Humans with Various Intakes of Dietary Selenium. J. Trace Elem. Med. Biol. 1998;12:8–15. doi: 10.1016/S0946-672X(98)80015-1. PubMed DOI

Arteel G.E., Sies H. The Biochemistry of Selenium and the Glutathione System. Environ. Toxicol. Pharmacol. 2001;10:153–158. doi: 10.1016/S1382-6689(01)00078-3. PubMed DOI

Rýdlová M., Růnová K., Száková J., Fučíková A., Hakenová A., Mlejnek P., Zídek V., Tremlová J., Mestek O., Kaňa A., et al. The Response of Macro- and Micronutrient Nutrient Status and Biochemical Processes in Rats Fed on a Diet with Selenium-Enriched Defatted Rapeseed and/or Vitamin E Supplementation. BioMed Res. Int. 2017;2017:1–13. doi: 10.1155/2017/6759810. PubMed DOI PMC

Fujihara T., Orden E.A. The Effect of Dietary Vitamin E Level on Selenium Status in Rats. J. Anim. Physiol. Anim. Nutr. 2014;98:921–927. doi: 10.1111/jpn.12159. PubMed DOI

Arnaud J., van Dael P., Michalke B. Selenium. Molecular and Integrative Toxicology. Springer; Cham, Switzerland: 2018. Selenium Interactions with Other Trace Elements, with Nutrients (And Drugs) in Humans.

Benstoem C., Goetzenich A., Kraemer S., Borosch S., Manzanares W., Hardy G., Stoppe C. Selenium and its Supplementation in Cardiovascular Disease—What do We Know? Nutrients. 2015;7:3094–3118. doi: 10.3390/nu7053094. PubMed DOI PMC

Kurek E., Ruszczynska A., Wojciechowski M., Czauderna M., Bulska E. Study on Speciation of Selenium in Animal Tissues Using High Performance Liquid Chromatography with on-line Detection by Liquid Coupled Plasma Mass Spectrometry. Chem. Anal. 2009;54:43–57.

Qin S., Gao J., Huang K. Effects of Different Selenium Sources on Tissue Selenium Concentrations, Blood gsh-px Activities and Plasma Interleukin Levels in Finishing Lambs. Biol. Trace Elem. Res. 2007;116:91–102. doi: 10.1007/BF02685922. PubMed DOI

Han X.J., Qin P., Li W.X., Ma Q.G., Ji C., Zhang J.Y., Zhao L.H. Effect of Sodium Selenite and Selenium Yeast on Performance, Egg Quality, Antioxidant Capacity, and Selenium Deposition of Laying Hens. Poult. Sci. 2017;96:3973–3980. doi: 10.3382/ps/pex216. PubMed DOI

Sobeková A., Holovská K., Lenártová V., Holovská K., Jr., Javorský P., Boldižárová K., Grešáková L., Leng L. Effects of Feed Supplemented with Selenite or Se-Yeast on Antioxidant Enzyme Activities in Lamb Tissues. J. Anim. Feed Sci. 2006;15:569–577. doi: 10.22358/jafs/66926/2006. DOI

Zhou Y., Zhu H., Qi Y., Wu C., Zhang J., Shao L., Tan J., Chen D. Absorption and Distribution of Selenium Following Oral Administration of Selenium-Enriched Bifidobacterium Longum DD98, Selenized Yeast, or Sodium Selenite in Rats. Biol. Trace Elem. Res. 2020;197:599–605. doi: 10.1007/s12011-019-02011-y. PubMed DOI

Zhang B., Piao J., Gu L. Effects of selenium-enriched garlic on blood lipids and lipid peroxidation in Experimental Hyperlipidemic Rats. Wei Sheng Yan Jiu. 2002;31:93–96. PubMed

Marounek M., Dokoupilová A., Volek Z., Hoza I. Quality of Meat and Selenium Content in Tissues of Rabbits Fed Diets Supplemented with Sodium Selenite, Selenized Yeast and Selenized Algae. World Rabbit Sci. 2009;17:207–212. doi: 10.4995/wrs.2009.645. DOI

Zhao L., Sun L.H., Huang J.Q., Briens M., Qi D.S., Xu S.W., Lei X.G. A Novel Organic Selenium Compound Exerts Unique Regulation of Selenium Speciation, Selenogenome, and Selenoproteins in Broiler Chicks. J. Nutr. 2017;147:789–797. doi: 10.3945/jn.116.247338. PubMed DOI

Misra S., Peak D., Chen N., Hamilton C., Niyogi S. Tissue-Specific Accumulation and Speciation of Selenium in Rainbow Trout (Oncorhynchus mykiss) Exposed to Elevated Dietary Selenomethionine. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2012;155:560–565. doi: 10.1016/j.cbpc.2012.01.005. PubMed DOI

Sánchez-Martínez M., Pérez-Corona T., Martínez-Villaluenga C., Frías J., Peñas E., Porres J.M., Urbano G., Cámara C., Madrid Y. Synthesis of 77Se-Methylselenocysteine when Preparing Sauerkraut in the Presence of 77Se-Selenite. Metabolic Transformation of 77Se-Methylselenocysteine in Wistar Rats Determined by LC–IDA–ICP–MS. Anal. Bioanal. Chem. 2014;406:7949–7958. doi: 10.1007/s00216-014-8224-7. PubMed DOI

Juniper D.T., Phipps R.H., Ramos-Morales E., Bertin G. Selenium Persistency and Speciation in the Tissues of Lambs Following the Withdrawal of Dietary High-Dose Selenium-Enriched Yeast. Animal. 2008;2:375–380. doi: 10.1017/S1751731107001395. PubMed DOI

Gawor A., Ruszczynska A., Czauderna M., Bulska E. Determination of Selenium Species in Muscle, Heart, and Liver Tissues of Lambs Using Mass Spectrometry Methods. Animals. 2020;10:808. doi: 10.3390/ani10050808. PubMed DOI PMC

Cheng Y., Huang Y., Liu K., Pan S., Qin Z., Wu T., Xu X. Cardamine Hupingshanensis Aqueous Extract Improves Intestinal Redox Status and Gut Microbiota in Se-deficient Rats. J. Sci. Food Agric. 2021;101:989–996. doi: 10.1002/jsfa.10707. PubMed DOI

Hrdina J., Banning A., Kipp A., Loh G., Blaut M., Brigelius-Flohé R. The Gastrointestinal Microbiota Affects the Selenium Status and Selenoprotein Expression in Mice. J. Nutr. Biochem. 2009;20:638–648. doi: 10.1016/j.jnutbio.2008.06.009. PubMed DOI

Kasaikina M.V., Kravtsova M.A., Lee B.C., Seravalli J., Peterson D.A., Walter J., Legge R., Benson A.K., Hatfield D.L., Gladyshev V.N. Dietary Selenium Affects Host Selenoproteome Expression by Influencing the Gut Microbiota. FASEB J. 2011;25:2492–2499. doi: 10.1096/fj.11-181990. PubMed DOI PMC

Takahashi K., Suzuki N., Ogra Y. Effect of Gut Microflora on Nutritional Availability of Selenium. Food Chem. 2020;319:126537. doi: 10.1016/j.foodchem.2020.126537. PubMed DOI

Zhai Q., Cen S., Li P., Tian F., Zhao J., Zhang H., Chen W. Effects of Dietary Selenium Supplementation on Intestinal Barrier and Immune Responses Associated with its Modulation of Gut Microbiota. Environ. Sci. Technol. Lett. 2018;5:724–730. doi: 10.1021/acs.estlett.8b00563. DOI

Zhu H., Zhou Y., Qi Y., Ji R., Zhang J., Qian Z., Wu C., Tan J., Shao L., Chen D. Preparation and Characterization of Selenium Enriched-Bifidobacterium Longum DD98 and its Repairing Effects on Antibiotic-Induced Intestinal Dysbacteriosis in Mice. Food Funct. 2019;10:4975–4984. doi: 10.1039/C9FO00960D. PubMed DOI

Yang S., Li L., Yu L., Sun L., Li K., Tong C., Xu W., Cui G., Long M., Li P. Selenium-Enriched Yeast Reduces Caecal Pathological Injuries and Intervenes Changes of the Diversity of Caecal Microbiota Caused by Ochratoxin-A in broilers. Food Chem. Toxicol. 2020;137:111139. doi: 10.1016/j.fct.2020.111139. PubMed DOI

Gangadoo S., Dinev I., Chapman J., Hughes R.J., Van T.T.H., Moore R.J., Stanley D. Selenium Nanoparticles in Poultry Feed Modify Gut Microbiota and Increase Abundance Faecalibacterium Prausnitzii. Appl. Microbiol. Biotechnol. 2018;102:1455–1466. doi: 10.1007/s00253-017-8688-4. PubMed DOI

Gangadoo S., Bauer B.W., Bajagai Y.S., Van T.T.H., Moore R.J., Stanley D. In Vitro Growth of Gut Microbiota with Selenium Nanoparticles. Anim. Nutr. 2019;5:424–431. doi: 10.1016/j.aninu.2019.06.004. PubMed DOI PMC

Zhang Y., Xiao L., Hao Q., Li X., Liu F. Ferrihydrite Reduction Exclusively Stimulated Hydrogen Production by Clostridium with Community Metabolic Pathway Bifurcation. ACS Sustain. Chem. Eng. 2020;8:7574–7580. doi: 10.1021/acssuschemeng.9b07702. DOI

List C., Hosseini Z., Lederballe Meibom K., Hatzimanikatis V., Bernier-Latmani R. Impact of Iron Reduction on the Metabolism of Clostridium Acetobutylicum. Environ. Microbiol. 2019;21:3548–3563. doi: 10.1111/1462-2920.14640. PubMed DOI PMC

Butel M.J., Roland N., Hibert A., Popot F., Favre A., Tessedre A.C., Bensaada M., Rimbault A., Szylit O. Clostridial Pathogenicity in Experimental Necrotising Enterocolitis in Gnotobiotic Quails and Protective Role of Bifidobacteria. J. Med. Microbiol. 1998;47:391–399. doi: 10.1099/00222615-47-5-391. PubMed DOI

Rada V., Nevoral J., Trojanová I., Tománková E., Smehilová M., Killer J. Growth of Infant Faecal Bifidobacteria and Clostridia on Prebiotic Oligosaccharides in in vitro Conditions. Anaerobe. 2008;14:205–208. doi: 10.1016/j.anaerobe.2008.05.003. PubMed DOI

Zare H., Vahidi H., Owlia P., Khujin M.H., Khamisabadi A. Yeast Enriched with Selenium: A Promising Source of Selenomethionine and Seleno-Proteins. Trends Pept. Protein Sci. 2017;1:130–134.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...