In Vivo Bioavailability of Selenium in Selenium-Enriched Streptococcus thermophilus and Enterococcus faecium in CD IGS Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MZE-RO1421
Ministerstvo Zemědělství
COST LTC20014
the Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33809515
PubMed Central
PMC7999548
DOI
10.3390/antiox10030463
PII: antiox10030463
Knihovny.cz E-zdroje
- Klíčová slova
- CD IGS rats, antioxidant capacity, glutathione peroxidase, glutathione reductase, lactic acid bacteria, oxidative stress, selenium-enriched Enterococcus faecium, selenium-enriched Streptococcus thermophilus,
- Publikační typ
- časopisecké články MeSH
The selenium (Se) enrichment of yeasts and lactic acid bacteria (LAB) has recently emerged as a novel concept; the individual health effects of these beneficial microorganisms are combined by supplying the essential micronutrient Se in a more bioavailable and less toxic form. This study investigated the bioavailability of Se in the strains Enterococcus faecium CCDM 922A (EF) and Streptococcus thermophilus CCDM 144 (ST) and their respective Se-enriched forms, SeEF and SeST, in a CD (SD-Sprague Dawley) IGS rat model. Se-enriched LAB administration resulted in higher Se concentrations in the liver and kidneys of rats, where selenocystine was the prevalent Se species. The administration of both Se-enriched strains improved the antioxidant status of the animals. The effect of the diet was more pronounced in the heart tissue, where a lower glutathione reductase content was observed, irrespective of the Se fortification in LAB. Interestingly, rats fed diets with EF and SeEF had higher glutathione reductase activity. Reduced concentrations of serum malondialdehyde were noted following Se supplementation. Diets containing Se-enriched strains showed no macroscopic effects on the liver, kidneys, heart, and brain and had no apparent influence on the basic parameters of the lipid metabolism. Both the strains tested herein showed potential for further applications as promising sources of organically bound Se and Se nanoparticles.
Zobrazit více v PubMed
WHO . Cardiovascular Diseases (CVDs): Fact. Sheet N 317. WHO; Geneva, Switzerland: 2015.
Chua K.J., Kwok W.C., Aggarwal N., Sun T., Chang M.W. Designer Probiotics for the Prevention and Treatment of Human diseases. Curr. Opin. Chem. Biol. 2017;40:8–16. doi: 10.1016/j.cbpa.2017.04.011. PubMed DOI
Amaretti A., Di Nunzio M., Pompei A., Raimondi S., Rossi M., Bordoni A. Antioxidant Properties of Potentially Probiotic Bacteria: In Vitro and in Vivo Activities. Appl. Microbiol. Biotechnol. 2013;97:809–817. doi: 10.1007/s00253-012-4241-7. PubMed DOI
Steinbrenner H., Speckmann B., Klotz L.O. Selenoproteins: Antioxidant Selenoenzymes and Beyond. Arch. Biochem. Biophys. 2016;595:113–119. doi: 10.1016/j.abb.2015.06.024. PubMed DOI
Malyar R.M., Li H., Liu D., Abdulrahim Y., Farid R.A., Gan F., Ali W., Enayatullah H., Banuree S.A.H., Huang K., et al. Selenium/Zinc-Enriched Probiotics Improve Serum Enzyme Activity, Antioxidant Ability, Inflammatory Factors and Related Gene Expression of Wistar Rats Inflated Under Heat Stress. Life Sci. 2020;248:117464. doi: 10.1016/j.lfs.2020.117464. PubMed DOI
Samarghandian S., Farkhondeh T., Samini F., Borji A. Protective Effects of Carvacrol Against Oxidative Stress Induced by Chronic Stress in Rat‘S Brain, Liver and Kidney. Biochem. Res. Int. 2016;2016:2645237. doi: 10.1155/2016/2645237. PubMed DOI PMC
Brigelius-Flohé R. Selenium in Human Health and Disease: An Overview. Mol. Integr. Toxicol. 2018:3–26.
Rayman M.P. Selenium and Human Health. Lancet. 2012;379:1256–1268. doi: 10.1016/S0140-6736(11)61452-9. PubMed DOI
Yi H.W., Zhu X.X., Huang X.L., Lai Y.Z., Tang Y. Selenium-Enriched Bifidobacterium Longum Protected Alcohol and High Fat Diet Induced Hepatic Injury in Mice. Chin. J. Nat. Med. 2020;18:169–177. doi: 10.1016/S1875-5364(20)30018-2. PubMed DOI
Sun Z., Xu Z., Wang D., Yao H., Li S. Selenium Deficiency Inhibits Differentiation and Immune Function and Imbalances the Th1/Th2 of Dendritic Cells. Metallomics. 2018;10:759–767. doi: 10.1039/C8MT00039E. PubMed DOI
Jamilian M., Mansury S., Bahmani F., Heidar Z., Amirani E., Asemi Z. The Effects of Probiotic and Selenium Co-Supplementation on Parameters of Mental Health, Hormonal Profiles, and Biomarkers of Inflammation and Oxidative Stress in Women with Polycystic Ovary Syndrome. J. Ovarian Res. 2018;11:80. doi: 10.1186/s13048-018-0457-1. PubMed DOI PMC
Ren Z., Zhao Z., Wang Y., Huang K. Preparation of Selenium/Zinc-Enriched Probiotics and Their Effect on Blood Selenium and Zinc Concentrations, Antioxidant Capacities, and Intestinal Microflora in Canine. Biol. Trace Elem. Res. 2011;141:170–183. doi: 10.1007/s12011-010-8734-x. PubMed DOI
Yang J., Huang K., Qin S., Wu X., Zhao Z., Chen F. Antibacterial Action of Selenium-Enriched Probiotics against Pathogenic Escherichia coli. Dig. Dis. Sci. 2009;54:246–254. doi: 10.1007/s10620-008-0361-4. PubMed DOI
Oraby M.M., Allababidy T., Ramadan E.M. The Bioavailability of Selenium in Saccharomyces cerevisiae. Ann. Agric. Sci. 2015;60:307–315. doi: 10.1016/j.aoas.2015.10.006. DOI
Lamberti C., Mangiapane E., Pessione A., Mazzoli R., Giunta C., Pessione E. Proteomic Characterization of a Selenium-Metabolizing Probiotic Lact. Reuteri Lb2 BM for Nutraceutical Applications. Proteomics. 2011;11:2212–2221. doi: 10.1002/pmic.201000747. PubMed DOI
Pescuma M., Gomez-Gomez B., Perez-Corona T., Font G., Madrid Y., Mozzi F. Food Prospects of Selenium Enriched-Lactobacillus acidophilus CRL 636 and Lactobacillus reuteri CRL 1101. J. Funct. Foods. 2017;35:466–473. doi: 10.1016/j.jff.2017.06.009. DOI
Pusztahelyi T., Kovács S., Pócsi I., Prokisch J. Selenite-Stress Selected Mutant Strains of Probiotic Bacteria for Se Source Production. J. Trace Elem. Med. Biol. 2015;30:96–101. doi: 10.1016/j.jtemb.2014.11.003. PubMed DOI
Nagy G., Benko I., Kiraly G., Voros O., Tanczos B., Sztrik A., Takács T., Pocsi I., Prokisch J., Banfalvi G. Cellular and Nephrotoxicity of Selenium Species. J. Trace Elem. Med. Biol. 2015;30:160–170. doi: 10.1016/j.jtemb.2014.12.011. PubMed DOI
Mrvčić J., Stanzer D., Solić E., Stehlik-Tomas V. Interaction of Lactic Acid Bacteria with Metal Ions: Opportunities for Improving Food Safety and Quality. World J. Microbiol. Biotechnol. 2012;28:2771–2782. doi: 10.1007/s11274-012-1094-2. PubMed DOI
Rother M., Hatfield D., Berry M., Gladyshev V. Selenium. Springer; New York, NY, USA: 2011. Selenium Metabolism in Prokaryotes. DOI
Zhang B., Zhou K., Zhang J., Chen Q., Liu G., Shang N., Qin W., Li P., Lin F. Accumulation and Species Distribution of Selenium in Se-Enriched Bacterial Cells of the Bifidobacterium animalis 01. Food Chem. 2009;115:727–734. doi: 10.1016/j.foodchem.2008.12.006. DOI
Krausova G., Kana A., Hyrslova I., Mrvikova I., Kavkova M. Development of Selenized Lactic Acid Bacteria and Their Selenium Bioaccummulation Capacity. Fermentation. 2020;6:91. doi: 10.3390/fermentation6030091. DOI
Hyrslova I., Krausova G., Bartova J., Kolesar L., Jaglic Z., Stankova B., Curda L. Characterization of Enterococcus Faecium CCDM 922 in Respect of its Technological and Probiotic Properties. Int. J. Curr. Microbiol. Appl. Sci. 2016;5:474–482. doi: 10.20546/ijcmas.2016.505.049. DOI
Shiobara Y., Ogra Y., Suzuki K.T. Exchange of Endogenous Selenium for Dietary Selenium as 82 Se-Enriched Selenite in Brain, Liver, Kidneys and Testes. Life Sci. 2000;67:3041–3049. doi: 10.1016/S0024-3205(00)00894-8. PubMed DOI
Takahashi K., Suzuki N., Ogra Y. Bioavailability Comparison of Nine Bioselenocompounds In Vitro and In Vivo. Int. J. Mol. Sci. 2017;18:506. doi: 10.3390/ijms18030506. PubMed DOI PMC
Shini S., Sultan A., Bryden W.L. Selenium Biochemistry and Bioavailability: Implications for Animal Agriculture. Agriculture. 2015;5:1277–1288. doi: 10.3390/agriculture5041277. DOI
Xu C., Guo Y., Qiao L., Ma L., Cheng Y., Roman A. Biogenic Synthesis of Novel Functionalized Selenium Nanoparticles by Lactobacillus casei ATCC 393 and its Protective Effects on Intestinal Barrier Dysfunction Caused by Enterotoxigenic Escherichia coli K88. Front. Microbiol. 2018;9:1129. doi: 10.3389/fmicb.2018.01129. PubMed DOI PMC
Nagy G., Pinczes G., Pinter G., Pocsi I., Prokisch J., Banfalvi G. In Situ Electron Microscopy of Lactomicroselenium Particles in Probiotic Bacteria. Int. J. Mol. Sci. 2016;17:1047. doi: 10.3390/ijms17071047. PubMed DOI PMC
Alam H., Khatoon N., Khan M.A., Husain S.A., Saravanan M., Sardar M. Synthesis of Selenium Nanoparticles Using Probiotic Bacteria Lactobacillus acidophilus and their Enhanced Antimicrobial Activity Against Resistant Bacteria. J. Clust. Sci. 2020;31:1003–1011. doi: 10.1007/s10876-019-01705-6. DOI
Pieniz S., Andreazza R., Mann M.B., Camargo F., Brandelli A. Bioaccumulation and Distribution of Selenium in Enterococcus durans. J. Trace Elem. Med. Biol. 2017;40:37–45. doi: 10.1016/j.jtemb.2016.12.003. PubMed DOI
Martínez F.G., Moreno-Martin G., Pescuma M., Madrid-Albarrán Y., Mozzi F. Biotransformation of Selenium by Lactic Acid Bacteria: Formation of Seleno-Nanoparticles and Seleno-Amino Acids. Front. Bioeng. Biotechnol. 2020;8:506. doi: 10.3389/fbioe.2020.00506. PubMed DOI PMC
Yang J., Li Y., Zhang L., Fan M., Wei X. Response Surface Design for Accumulation of Selenium by Different Lactic Acid Bacteria. 3 Biotech. 2017;7:52. doi: 10.1007/s13205-017-0709-6. PubMed DOI PMC
Eszenyi P., Sztrik A., Babka B., Prokisch J. Elemental, Nano-Sized (100–500 nm) Selenium Production by Probiotic Lactic Acid Bacteria. Int. J. Biosci. Biochem. Bioinformatics. 2011;1:148–152. doi: 10.7763/IJBBB.2011.V1.27. DOI
Hosnedlova B., Kepinska M., Skalickova S., Fernandez C., Ruttkay-Nedecky B., Peng Q., Baron M., Melcova M., Opatrilova R., Zidkova J., et al. Nano-Selenium and its Nanomedicine Applications: A Critical Review. Int. J. Nanomed. 2018;13:2107–2128. doi: 10.2147/IJN.S157541. PubMed DOI PMC
Behne D., Wolters W. Distribution of Selenium and Glutathione Peroxidase in the Rat. J. Nutr. 1983;113:456–461. doi: 10.1093/jn/113.2.456. PubMed DOI
Gu Q.P., Xia Y.M., Ha P.C., Butler J.A., Whanger P.D. Distribution of Selenium Between Plasma Fractions in Guinea Pigs and Humans with Various Intakes of Dietary Selenium. J. Trace Elem. Med. Biol. 1998;12:8–15. doi: 10.1016/S0946-672X(98)80015-1. PubMed DOI
Arteel G.E., Sies H. The Biochemistry of Selenium and the Glutathione System. Environ. Toxicol. Pharmacol. 2001;10:153–158. doi: 10.1016/S1382-6689(01)00078-3. PubMed DOI
Rýdlová M., Růnová K., Száková J., Fučíková A., Hakenová A., Mlejnek P., Zídek V., Tremlová J., Mestek O., Kaňa A., et al. The Response of Macro- and Micronutrient Nutrient Status and Biochemical Processes in Rats Fed on a Diet with Selenium-Enriched Defatted Rapeseed and/or Vitamin E Supplementation. BioMed Res. Int. 2017;2017:1–13. doi: 10.1155/2017/6759810. PubMed DOI PMC
Fujihara T., Orden E.A. The Effect of Dietary Vitamin E Level on Selenium Status in Rats. J. Anim. Physiol. Anim. Nutr. 2014;98:921–927. doi: 10.1111/jpn.12159. PubMed DOI
Arnaud J., van Dael P., Michalke B. Selenium. Molecular and Integrative Toxicology. Springer; Cham, Switzerland: 2018. Selenium Interactions with Other Trace Elements, with Nutrients (And Drugs) in Humans.
Benstoem C., Goetzenich A., Kraemer S., Borosch S., Manzanares W., Hardy G., Stoppe C. Selenium and its Supplementation in Cardiovascular Disease—What do We Know? Nutrients. 2015;7:3094–3118. doi: 10.3390/nu7053094. PubMed DOI PMC
Kurek E., Ruszczynska A., Wojciechowski M., Czauderna M., Bulska E. Study on Speciation of Selenium in Animal Tissues Using High Performance Liquid Chromatography with on-line Detection by Liquid Coupled Plasma Mass Spectrometry. Chem. Anal. 2009;54:43–57.
Qin S., Gao J., Huang K. Effects of Different Selenium Sources on Tissue Selenium Concentrations, Blood gsh-px Activities and Plasma Interleukin Levels in Finishing Lambs. Biol. Trace Elem. Res. 2007;116:91–102. doi: 10.1007/BF02685922. PubMed DOI
Han X.J., Qin P., Li W.X., Ma Q.G., Ji C., Zhang J.Y., Zhao L.H. Effect of Sodium Selenite and Selenium Yeast on Performance, Egg Quality, Antioxidant Capacity, and Selenium Deposition of Laying Hens. Poult. Sci. 2017;96:3973–3980. doi: 10.3382/ps/pex216. PubMed DOI
Sobeková A., Holovská K., Lenártová V., Holovská K., Jr., Javorský P., Boldižárová K., Grešáková L., Leng L. Effects of Feed Supplemented with Selenite or Se-Yeast on Antioxidant Enzyme Activities in Lamb Tissues. J. Anim. Feed Sci. 2006;15:569–577. doi: 10.22358/jafs/66926/2006. DOI
Zhou Y., Zhu H., Qi Y., Wu C., Zhang J., Shao L., Tan J., Chen D. Absorption and Distribution of Selenium Following Oral Administration of Selenium-Enriched Bifidobacterium Longum DD98, Selenized Yeast, or Sodium Selenite in Rats. Biol. Trace Elem. Res. 2020;197:599–605. doi: 10.1007/s12011-019-02011-y. PubMed DOI
Zhang B., Piao J., Gu L. Effects of selenium-enriched garlic on blood lipids and lipid peroxidation in Experimental Hyperlipidemic Rats. Wei Sheng Yan Jiu. 2002;31:93–96. PubMed
Marounek M., Dokoupilová A., Volek Z., Hoza I. Quality of Meat and Selenium Content in Tissues of Rabbits Fed Diets Supplemented with Sodium Selenite, Selenized Yeast and Selenized Algae. World Rabbit Sci. 2009;17:207–212. doi: 10.4995/wrs.2009.645. DOI
Zhao L., Sun L.H., Huang J.Q., Briens M., Qi D.S., Xu S.W., Lei X.G. A Novel Organic Selenium Compound Exerts Unique Regulation of Selenium Speciation, Selenogenome, and Selenoproteins in Broiler Chicks. J. Nutr. 2017;147:789–797. doi: 10.3945/jn.116.247338. PubMed DOI
Misra S., Peak D., Chen N., Hamilton C., Niyogi S. Tissue-Specific Accumulation and Speciation of Selenium in Rainbow Trout (Oncorhynchus mykiss) Exposed to Elevated Dietary Selenomethionine. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2012;155:560–565. doi: 10.1016/j.cbpc.2012.01.005. PubMed DOI
Sánchez-Martínez M., Pérez-Corona T., Martínez-Villaluenga C., Frías J., Peñas E., Porres J.M., Urbano G., Cámara C., Madrid Y. Synthesis of 77Se-Methylselenocysteine when Preparing Sauerkraut in the Presence of 77Se-Selenite. Metabolic Transformation of 77Se-Methylselenocysteine in Wistar Rats Determined by LC–IDA–ICP–MS. Anal. Bioanal. Chem. 2014;406:7949–7958. doi: 10.1007/s00216-014-8224-7. PubMed DOI
Juniper D.T., Phipps R.H., Ramos-Morales E., Bertin G. Selenium Persistency and Speciation in the Tissues of Lambs Following the Withdrawal of Dietary High-Dose Selenium-Enriched Yeast. Animal. 2008;2:375–380. doi: 10.1017/S1751731107001395. PubMed DOI
Gawor A., Ruszczynska A., Czauderna M., Bulska E. Determination of Selenium Species in Muscle, Heart, and Liver Tissues of Lambs Using Mass Spectrometry Methods. Animals. 2020;10:808. doi: 10.3390/ani10050808. PubMed DOI PMC
Cheng Y., Huang Y., Liu K., Pan S., Qin Z., Wu T., Xu X. Cardamine Hupingshanensis Aqueous Extract Improves Intestinal Redox Status and Gut Microbiota in Se-deficient Rats. J. Sci. Food Agric. 2021;101:989–996. doi: 10.1002/jsfa.10707. PubMed DOI
Hrdina J., Banning A., Kipp A., Loh G., Blaut M., Brigelius-Flohé R. The Gastrointestinal Microbiota Affects the Selenium Status and Selenoprotein Expression in Mice. J. Nutr. Biochem. 2009;20:638–648. doi: 10.1016/j.jnutbio.2008.06.009. PubMed DOI
Kasaikina M.V., Kravtsova M.A., Lee B.C., Seravalli J., Peterson D.A., Walter J., Legge R., Benson A.K., Hatfield D.L., Gladyshev V.N. Dietary Selenium Affects Host Selenoproteome Expression by Influencing the Gut Microbiota. FASEB J. 2011;25:2492–2499. doi: 10.1096/fj.11-181990. PubMed DOI PMC
Takahashi K., Suzuki N., Ogra Y. Effect of Gut Microflora on Nutritional Availability of Selenium. Food Chem. 2020;319:126537. doi: 10.1016/j.foodchem.2020.126537. PubMed DOI
Zhai Q., Cen S., Li P., Tian F., Zhao J., Zhang H., Chen W. Effects of Dietary Selenium Supplementation on Intestinal Barrier and Immune Responses Associated with its Modulation of Gut Microbiota. Environ. Sci. Technol. Lett. 2018;5:724–730. doi: 10.1021/acs.estlett.8b00563. DOI
Zhu H., Zhou Y., Qi Y., Ji R., Zhang J., Qian Z., Wu C., Tan J., Shao L., Chen D. Preparation and Characterization of Selenium Enriched-Bifidobacterium Longum DD98 and its Repairing Effects on Antibiotic-Induced Intestinal Dysbacteriosis in Mice. Food Funct. 2019;10:4975–4984. doi: 10.1039/C9FO00960D. PubMed DOI
Yang S., Li L., Yu L., Sun L., Li K., Tong C., Xu W., Cui G., Long M., Li P. Selenium-Enriched Yeast Reduces Caecal Pathological Injuries and Intervenes Changes of the Diversity of Caecal Microbiota Caused by Ochratoxin-A in broilers. Food Chem. Toxicol. 2020;137:111139. doi: 10.1016/j.fct.2020.111139. PubMed DOI
Gangadoo S., Dinev I., Chapman J., Hughes R.J., Van T.T.H., Moore R.J., Stanley D. Selenium Nanoparticles in Poultry Feed Modify Gut Microbiota and Increase Abundance Faecalibacterium Prausnitzii. Appl. Microbiol. Biotechnol. 2018;102:1455–1466. doi: 10.1007/s00253-017-8688-4. PubMed DOI
Gangadoo S., Bauer B.W., Bajagai Y.S., Van T.T.H., Moore R.J., Stanley D. In Vitro Growth of Gut Microbiota with Selenium Nanoparticles. Anim. Nutr. 2019;5:424–431. doi: 10.1016/j.aninu.2019.06.004. PubMed DOI PMC
Zhang Y., Xiao L., Hao Q., Li X., Liu F. Ferrihydrite Reduction Exclusively Stimulated Hydrogen Production by Clostridium with Community Metabolic Pathway Bifurcation. ACS Sustain. Chem. Eng. 2020;8:7574–7580. doi: 10.1021/acssuschemeng.9b07702. DOI
List C., Hosseini Z., Lederballe Meibom K., Hatzimanikatis V., Bernier-Latmani R. Impact of Iron Reduction on the Metabolism of Clostridium Acetobutylicum. Environ. Microbiol. 2019;21:3548–3563. doi: 10.1111/1462-2920.14640. PubMed DOI PMC
Butel M.J., Roland N., Hibert A., Popot F., Favre A., Tessedre A.C., Bensaada M., Rimbault A., Szylit O. Clostridial Pathogenicity in Experimental Necrotising Enterocolitis in Gnotobiotic Quails and Protective Role of Bifidobacteria. J. Med. Microbiol. 1998;47:391–399. doi: 10.1099/00222615-47-5-391. PubMed DOI
Rada V., Nevoral J., Trojanová I., Tománková E., Smehilová M., Killer J. Growth of Infant Faecal Bifidobacteria and Clostridia on Prebiotic Oligosaccharides in in vitro Conditions. Anaerobe. 2008;14:205–208. doi: 10.1016/j.anaerobe.2008.05.003. PubMed DOI
Zare H., Vahidi H., Owlia P., Khujin M.H., Khamisabadi A. Yeast Enriched with Selenium: A Promising Source of Selenomethionine and Seleno-Proteins. Trends Pept. Protein Sci. 2017;1:130–134.