Eye-tracking Analysis of Interactive 3D Geovisualization
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33828655
PubMed Central
PMC7141050
DOI
10.16910/jemr.10.3.2
Knihovny.cz E-resources
- Keywords
- 3D analysis tool, 3D model, 3D visualization, Geographic Information System, cartography, eye-tracking,
- Publication type
- Journal Article MeSH
This paper describes a new tool for eye-tracking data and their analysis with the use of interactive 3D models. This tool helps to analyse interactive 3D models easier than by time-consuming, frame-by-frame investigation of captured screen recordings with superimposed scanpaths. The main function of this tool, called 3DgazeR, is to calculate 3D coordinates (X, Y, Z coordinates of the 3D scene) for individual points of view. These 3D coordinates can be calculated from the values of the position and orientation of a virtual camera and the 2D coordinates of the gaze upon the screen. The functionality of 3DgazeR is introduced in a case study example using Digital Elevation Models as stimuli. The purpose of the case study was to verify the functionality of the tool and discover the most suitable visualization methods for geographic 3D models. Five selected methods are presented in the results section of the paper. Most of the output was created in a Geographic Information System. 3DgazeR works with the SMI eye-tracker and the low-cost EyeTribe tracker connected with open source application OGAMA, and can compute 3D coordinates from raw data and fixations.
See more in PubMed
Bleisch S, Burkhard J and Nebiker S (2009) Efficient Integration of data graphics into virtual 3D Environ-ments. Proceedings of 24th International Cartography Conference.
Gore A. (1998). The digital earth: understanding our planet in the 21st century. Australian surveyor, 43(2), 89–91. doi: 10.1080/00050348.1998.10558728 DOI
Çöltekin A., Lokka I., & Zahner M. (2016). On the Usability and Usefulness of 3D (Geo) Visualizations-A Focus on Virtual Reality Environments. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI(B2), 387–392. 10.5194/isprs-archives-xli-b2-387-2016 10.5194/isprsarchives-XLI-B2-387-2016 DOI
Hägerstraand T. (1970). What about people in regional science? Papers in Regional Science, 24(1), 7–24. 10.1111/j.1435-5597.1970.tb01464.x DOI
Kveladze I., Kraak M.-J., & van Elzakker C. P. (2013). A methodological framework for researching the usa-bility of the space-time cube. The Cartographic Journal, 50(3), 201–210. 10.1179/1743277413Y.0000000061 DOI
Li X., Çöltekin A., & Kraak M.-J. (2010). Visual exploration of eye movement data using the space-time-cube. Geographic Information Science, Springer, 295-309.
Wood J., Kirschenbauer S., Döllner J., Lopes A., & Bodum L. (2005). Using 3D in visualization In Dykes J. (Ed.),. Exploring Geovisualization (pp. 295–312). Elsevier; 10.1016/B978-008044531-1/50432-2 DOI
Kraak M. (1988) Computer-assisted cartographical 3D imaging techniques. Delft University Press, 175.
Haeberling C. (2002). 3D Map Presentation–A System-atic Evaluation of Important Graphic Aspects. Proceedings of ICA Mountain Cartography Workshop "Mount Hood", 1-11.
Góralski R. (2009). Three-dimensional interactive maps : theory and practice. Unpublished Ph.D. thesis. University of Glamorgan.
Ellis G., & Dix A. (2006). An explorative analysis of user evaluation studies in information visualisation. Proceedings of the 2006 AVI workshop, 1-7. doi: 10.1145/1168149.1168152 DOI
MacEachren A. M. (2004). How maps work: representation, visualization, and design. Guilford Press, 513.
Slocum T. A., Blok C., Jiang B., Koussoulakou A., Montello D. R., Fuhrmann S., & Hedley N. R. (2001). Cognitive and usability issues in geovisualization. Cartography and Geographic Information Science, 28(1), 61–75. 10.1559/152304001782173998 DOI
Petchenik B. B. (1977). Cognition in cartography. Cartographica. The International Journal for Geographic Information and Geovisualization, 14(1), 117–128. 10.3138/97R4-84N4-4226-0P24 DOI
Staněk K., Friedmannová L., Kubíček P., & Konečný M. (2010). Selected issues of cartographic communication optimization for emergency centers. International Journal of Digital Earth, 3(4), 316–339. 10.1080/17538947.2010.484511 DOI
Kubíček P., Šašinka Č., Stachoň Z., Štěrba Z., Apeltauer J., & Urbánek T. (2017). Cartographic Design and Usability of Visual Variables for Linear Features. The Cartographic Journal, 54(1), 91–102. 10.1080/00087041.2016.1168141 DOI
Haeberling C. (2003). Topografische 3D-Karten-Thesen für kartografische Gestaltungsgrundsätze. ETH Zürich; 10.3929/ethz-a-004709715 DOI
Petrovič D., & Mašera P. (2004). Analysis of user’s response on 3D cartographic presentations. Proceedings of 7th meeting of the ICA Commission on Mountain Cartography, 1-10.
Savage D. M., Wiebe E. N., & Devine H. A. (2004). Performance of 2d versus 3d topographic representations for different task types. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 48(16), 1793–1797. 10.1177/154193120404801601 DOI
Wilkening J., & Fabrikant S. I. (2013). How users interact with a 3D geo-browser under time pressure. Cartography and Geographic Information Science, 40(1), 40–52. 10.1080/15230406.2013.762140 DOI
Bleisch S, Burkhard J and Nebiker S (2009) Efficient Integration of data graphics into virtual 3D Environ-ments. Proceedings of 24th International Cartography Conference.
Lokka I., & Çöltekin A. (2016). Simulating navigation with virtual 3D geovisualizations–A focus on memory related factors. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI(B2), 671–673. 10.5194/isprsarchives-XLI-B2-671-2016 DOI
Špriňarová K., Juřík V., Šašinka Č., Herman L., Štěrba Z., Stachoň Z., Chmelík J., Kozlíková B. (2015). Human-Computer Interaction in Real-3D and Pseudo-3D Cartographic Visualization: A Comparative Study Cartography-Maps Connecting the World, Springer, 59-73. doi: 10.1007/978-3-319-17738-0_5 DOI
Herman L., & Stachoň Z. (2016). Comparison of User Performance with Interactive and Static 3D Visualization–Pilot Study. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI(B2), 655–661. 10.5194/isprs-archives-XLI-B2-655-2016 10.5194/isprsarchives-XLI-B2-655-2016 DOI
Enoch J. M. (1959). Effect of the size of a complex display upon visual search. JOSA, 49(3), 280–286. 10.1364/JOSA.49.000280 PubMed DOI
Steinke T. R. (1987). Eye movement studies in cartography and related fields.. Cartographica. The International Journal for Geographic Information and Geo-visualization, 24(2), 40–73. 10.3138/J166-635U-7R56-X2L1 DOI
Wang S., Chen Y., Yuan Y., Ye H., & Zheng S. (2016). Visualizing the Intellectual Structure of Eye Movement Research in Cartography. ISPRS International Journal of Geo-Information, 5(10), 168 10.3390/ijgi5100168 DOI
Popelka S., Brychtova A., Svobodova J., Brus J., & Dolezal J. (2013). Advanced visibility analyses and visibility evaluation using eye-tracking. Proceedings of 21st International Conference on Geoinformatics, 1-6. doi: 10.1109/Geoinformatics.2013.6626176 DOI
Brychtova A., Popelka S., & Dobesova Z. (2012). Eye - tracking methods for investigation of cartographic principles. 12th International Multidisciplinary Scientific Geoconference. SGEM, II, 1041–1048. 10.5593/sgem2012/s09.v2016 DOI
Fabrikant S. I., Rebich-Hespanha S., Andrienko N., Andrienko G., & Montello D. R. (2008). Novel method to measure inference affordance in static small-multiple map displays representing dynamic processes. The Cartographic Journal, 45(3), 201–215. 10.1179/000870408X311396 DOI
Fabrikant S. I., Hespanha S. R., & Hegarty M. (2010). Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making. Annals of the Association of American Geographers, 100(1), 13–29. 10.1080/00045600903362378 DOI
Çöltekin A., Fabrikant S., & Lacayo M. (2010). Explor-ing the efficiency of users’ visual analytics strategies based on sequence analysis of eye movement recordings. International Journal of Geographical Information Science, 24(10), 1559–1575. 10.1080/13658816.2010.511718 DOI
Incoul A., Ooms K., & De Maeyer P. (2015). Comparing paper and digital topographic maps using eye tracking. Modern Trends in Cartography, Springer, 339-356. doi: 10.1007/978-3-319-07926-4_26 DOI
Ooms K., De Maeyer P., & Fack V. (2014). Study of the attentive behavior of novice and expert map users using eye tracking. Cartography and Geographic Information Science, 41(1), 37–54. 10.1080/15230406.2013.860255 DOI
Ooms K., Çöltekin A., De Maeyer P., Dupont L., Fabrikant S., Incoul A., et al. Van der Haegen L. (2015). Combining user logging with eye tracking for interactive and dynamic applications. Behavior Research Methods, 47(4), 977–993. 10.3758/s13428-014-0542-3 PubMed DOI
Fuhrmann S., Komogortsev O., & Tamir D. (2009). Investigating Hologram‐Based Route Planning. Transactions in GIS, 13(s1), 177–196. 10.1111/j.1467-9671.2009.01158.x DOI
Putto K., Kettunen P., Torniainen J., Krause C. M., & Tiina Sarjakoski L. (2014). Effects of cartographic elevation visualizations and map-reading tasks on eye movements. The Cartographic Journal, 51(3), 225–236. 10.1179/1743277414Y.0000000087 DOI
Popelka S., & Brychtova A. (2013). Eye-tracking Study on Different Perception of 2D and 3D Terrain Visual-isation. The Cartographic Journal, 50(3), 240–246. 10.1179/1743277413y.0000000058 10.1179/1743277413Y.0000000058 DOI
Dolezalova J., & Popelka S. (2016). Evaluation of the user strategy on 2D and 3D city maps based on novel scanpath comparison method and graph visualization. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 637-640. 10.5194/isprsarchives-XLI-B2-637-2016 DOI
Popelka S., & Dedkova P. (2014). Extinct village 3D visualization and its evaluation with eye-movement recording. Lecture Notes in Computer Science, 8579, 786–795. 10.1007/978-3-319-09144-0_54 DOI
Popelka S. (2014). The role of hill-shading in tourist maps. CEUR Workshop Proceedings, 17-21
Pfeiffer T. (2012). Measuring and visualizing attention in space with 3d attention volumes. Proceedings of the Symposium on Eye Tracking Research and Applications. ACM, 29-36. doi: 10.1145/2168556.2168560 DOI
Stellmach S., Nacke L., & Dachselt R. (2010. a). 3d attentional maps: aggregated gaze visualizations in three-dimensional virtual environments. Proceedings of the international conference on advanced visual interfaces, ACM, 345-348. 10.1145/1842993.1843058 DOI
Blascheck T., Kurzhals K., Raschke M., Burch M., Weiskopf D., & Ertl T. (2014). State-of-the-art of visualization for eye tracking data. Proceedings of EuroVis. doi: 10.2312/eurovisstar.20141173 DOI
Stellmach S., Nacke L., & Dachselt R. (2010. b). Ad-vanced gaze visualizations for three-dimensional virtual environments. Proceedings of the 2010 symposium on eye-tracking research & Applications, ACM, 109-112.
Ramloll R., Trepagnier C., Sebrechts M., & Beedasy J. (2004). Gaze data visualization tools: opportunities and challenges. Proceedings of Eighth International Conference on Information Visualisation, 173-180. doi: 10.1109/IV.2004.1320141 DOI
Duchowski A., Medlin E., Cournia N., Murphy H., Gramopadhye A., Nair S., et al. Melloy B. (2002). 3-D eye movement analysis. Behavior Research Methods, Instruments, & Computers, 34(4), 573–591. 10.3758/BF03195486 PubMed DOI
Baldauf M., Fröhlich P., & Hutter S. (2010) KIBITZ-ER: a wearable system for eye-gaze-based mobile ur-ban exploration. Proceedings of the 1st Augmented Human International Conference. ACM, 9-13. doi: 10.1145/1785455.1785464 DOI
Paletta L., Santner K., Fritz G., Mayer H., & Schrammel J. (2013). 3D attention: measurement of visual saliency using eye tracking glasses. CHI'13 Extended Abstracts on Human Factors in Computing Systems. ACM, 199-204. doi: 10.1145/2468356.2468393 DOI
Behr J., Eschler P., Jung Y., & Zöllner M. (2009). X3DOM: a DOM-based HTML5/X3D integration model. Proceedings of the 14th International Conference on 3D Web Technology, ACM, 127-135. doi: 10.1145/1559764.1559784 DOI
Behr J., Jung Y., Keil J., Drevensek T., Zoellner M., Eschler P., & Fellner D. (2010). A scalable architecture for the HTML5/X3D integration model X3DOM. Proceedings of the 15th International Conference on Web 3D Technology, ACM. doi: 10.1145/1836049.1836077 DOI
Herman L., & Reznik T. (2015). 3D web visualization of environmental information-integration of heterogeneous data sources when providing navigation and interaction. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-3(W3), 479–485. 10.5194/isprsarchives-XL-3-W3-479-2015 DOI
Herman L., & Russnák J. (2016). X3DOM: Open Web Platform for Presenting 3D Geographical Data and E-learning. Proceedings of 23rd Central European Conference, 31-40.
Hughes J. F., Van Dam A., Foley J. D., & Feiner S. K. (2014). Computer graphics: principles and practice. Pearson Education, 1264.
Popelka S., Stachoň Z., Šašinka Č., & Doležalová J. (2016). EyeTribe Tracker Data Accuracy Evaluation and Its Interconnection with Hypothesis Software for Cartographic Purposes. Computational Intelligence and Neuroscience, 2016, 1-14. 10.1155/2016/9172506 PubMed DOI PMC
Vosskühler A., Nordmeier V., Kuchinke L., & Jacobs A. M. (2008). OGAMA (Open Gaze and Mouse Analyzer): Open-source software designed to analyze eye and mouse movements in slideshow study designs. Behavior Research Methods, 40(4), 1150–1162. 10.3758/BRM.40.4.1150 PubMed DOI