Development of a set of three real-time loop-mediated isothermal amplification (LAMP) assays for detection of Bacillus anthracis, the causative agent of anthrax
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33834427
DOI
10.1007/s12223-021-00869-x
PII: 10.1007/s12223-021-00869-x
Knihovny.cz E-zdroje
- Klíčová slova
- Anthrax, Bacillus anthracis, Capsule, LAMP assay, Lethal factor, SYBR Green,
- MeSH
- antrax * mikrobiologie prevence a kontrola MeSH
- Bacillus anthracis * genetika MeSH
- diagnostické techniky molekulární * normy MeSH
- DNA bakterií genetika MeSH
- senzitivita a specificita MeSH
- techniky amplifikace nukleových kyselin * normy MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
Bacillus anthracis, the causative agent of anthrax is a Gram-positive, non-motile, spore forming bacterium. Its spores can persist in soil and water for years and can also be aerosolized. A rapid, sensitive and specific method to detect B. anthracis is important for clinical management and preventing spread of anthrax. Loop-mediated isothermal amplification (LAMP) assay is a rapid technique that amplifies target DNA in isothermal conditions with high sensitivity and specificity. In this study, a LAMP assay set targeting a chromosomal and two plasmid markers was developed. The individual assays of the LAMP set targeting pXO1 plasmid (lef), pXO2 plasmid (capB), and chromosome (BA5345) sequences could detect 10, 250, and 100 fg of genomic DNA and 10, 100, and 50 copies of the DNA targets harboured in recombinant plasmids, respectively. The lef and capB LAMP assays could detect ≥ 1 × 103 CFU per mL of bacteria in spiked human blood samples, while BA5345 LAMP assay could detect ≥ 1 × 104 CFU of bacteria per mL of spiked blood. The amplification was monitored in real-time by turbidimeter, and visual detection was also accomplished under normal and UV light after adding SYBR Green 1 dye on completion of the reaction. The assay set was found to be highly sensitive and did not cross-react with the closely related Bacillus spp. and other bacterial strains used in the study.
Zobrazit více v PubMed
Agren J, Hamidjaja RA, Hansen T, Ruuls R, Thierry S, Vigre H, Janse I, Sundstrom A, Segerman B, Koene M, Lofstrom C, Van Rotterdam B, Derzelle S (2013) In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences. Virulence 4:671–685. https://doi.org/10.4161/viru.26288 PubMed DOI PMC
Antonation KS, Grutzmacher K, Dupke S, Mabon P, Zimmermann F, Lankester F, Peller T, Feistner A, Todd A, Herbinger I, de Nys HM, Muyembe-Tamfun JJ, Karhemere S, Wittig RM, Couacy-Hymann E, Grunow R, Calvignac-Spencer S, Corbett CR, Klee SR, Leendertz FH (2016) Bacillus cereus biovar anthracis causing anthrax in Sub-Saharan Africa-chromosomal monophyly and broad geographic distribution. PLoS Negl Trop Dis 10:e0004923. https://doi.org/10.1371/journal.pntd.0004923 PubMed DOI PMC
Antwerpen MH, Zimmermann P, Bewley K, Frangoulidis D, Meyer H (2008) Real-time PCR system targeting a chromosomal marker specific for Bacillus anthracis. Mol Cell Probes 22:313–315 DOI
Collier RJ, Young JA (2003) Anthrax toxin. Annu Rev Cell Dev Biol 19:45–70. https://doi.org/10.1146/annurev.cellbio.19.111301.140655 PubMed DOI
Dixon TC, Meselson M, Guillemin J, Hanna PC (1999) Anthrax. N Engl J Med 341:815–826. https://doi.org/10.1056/NEJM199909093411107 PubMed DOI
Fayad N, Kallassy Awad M, Mahillon J (2019) Diversity of Bacillus cereus sensu lato mobilome. BMC Genomics 20:436. https://doi.org/10.1186/s12864-019-5764-4 PubMed DOI PMC
Goel AK (2015) Anthrax: A disease of biowarfare and public health importance. World J Clin Cases 3:20–33. https://doi.org/10.12998/wjcc.v3.i1.20 PubMed DOI PMC
Helgason E, Caugant DA, Olsen I, Kolsto AB (2000a) Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J Clin Microbiol 38:1615–1622 DOI
Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolsto AB (2000b) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis–one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630 DOI
Hoffmaster AR, Hill KK, Gee JE, Marston CK, De BK, Popovic T, Sue D, Wilkins PP, Avashia SB, Drumgoole R, Helma CH, Ticknor LO, Okinaka RT, Jackson PJ (2006) Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J Clin Microbiol 44:3352–3360. https://doi.org/10.1128/JCM.00561-06 PubMed DOI PMC
Hurtle W, Bode E, Kulesh DA, Kaplan RS, Garrison J, Bridge D, House M, Frye MS, Loveless B, Norwood D (2004) Detection of the Bacillus anthracis gyrA gene by using a minor groove binder probe. J Clin Microbiol 42:179–185. https://doi.org/10.1128/jcm.42.1.179-185.2004 PubMed DOI PMC
Irenge LM, Gala JL (2012) Rapid detection methods for Bacillus anthracis in environmental samples: a review. Appl Microbiol Biotechnol 93:1411–1422. https://doi.org/10.1007/s00253-011-3845-7 PubMed DOI
Jain N, Kumar JS, Parida MM, Merwyn S, Rai GP, Agarwal GS (2011) Real-time loop-mediated isothermal amplification assay for rapid and sensitive detection of anthrax spores in spiked soil and talcum powder. World J Microbiol Biotechnol 27:1407–1413. https://doi.org/10.1007/s11274-010-0592-3 PubMed DOI
Kurosaki Y, Sakuma T, Fukuma A, Fujinami Y, Kawamoto K, Kamo N, Makino SI, Yasuda J (2009) A simple and sensitive method for detection of Bacillus anthracis by loop-mediated isothermal amplification. J Appl Microbiol 107:1947–1956. https://doi.org/10.1111/j.1365-2672.2009.04379.x PubMed DOI
Liang X, Zhang H, Zhang E, Wei J, Li W, Wang B, Dong S, Zhu J (2016) Identification of the pXO1 plasmid in attenuated Bacillus anthracis vaccine strains. Virulence 7:578–586. https://doi.org/10.1080/21505594.2016.1164366 PubMed DOI PMC
Marston CK, Gee JE, Popovic T, Hoffmaster AR (2006) Molecular approaches to identify and differentiate Bacillus anthracis from phenotypically similar Bacillus species isolates. BMC Microbiol 6:22. https://doi.org/10.1186/1471-2180-6-22 PubMed DOI PMC
Ogawa H, Fujikura D, Ohnuma M, Ohnishi N, Hang’ombe BM, Mimuro H, Ezaki T, Mweene AS, Higashi H, (2015) A novel multiplex PCR discriminates Bacillus anthracis and its genetically related strains from other Bacillus cereus group species. PLoS ONE 10:e0122004. https://doi.org/10.1371/journal.pone.0122004 PubMed DOI PMC
Pal V, Saxena A, Singh S, Goel AK, Kumar JS, Parida MM, Rai GP (2018) Development of a real-time loop-mediated isothermal amplification assay for detection of Burkholderia mallei. Transbound Emerg Dis 65:e32–e39. https://doi.org/10.1111/tbed.12665 PubMed DOI
Parida M, Sannarangaiah S, Dash PK, Rao PV, Morita K (2008) Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev Med Virol 18:407–421. https://doi.org/10.1002/rmv.593 PubMed DOI PMC
Qiao YM, Guo YC, Zhang XE, Zhou YF, Zhang ZP, Wei HP, Yang RF, Wang DB (2007) Loop-mediated isothermal amplification for rapid detection of Bacillus anthracis spores. Biotechnol Lett 29:1939–1946. https://doi.org/10.1007/s10529-007-9472-9 PubMed DOI
Saxena A, Pal V, Tripathi NK, Goel AK (2019) A real-time loop mediated isothermal amplification assay for molecular detection of Burkholderia mallei, the aetiological agent of a zoonotic and re-emerging disease glanders. Acta Trop 194:189–194. https://doi.org/10.1016/j.actatropica.2019.04.004 PubMed DOI
Sozhamannan S, Chute MD, McAfee FD, Fouts DE, Akmal A, Galloway DR, Mateczun A, Baillie LW, Read TD (2006) The Bacillus anthracis chromosome contains four conserved, excision-proficient, putative prophages. BMC Microbiol 6:34. https://doi.org/10.1186/1471-2180-6-34 PubMed DOI PMC
Turnbull PC (1999) Definitive identification of Bacillus anthracis–a review. J Appl Microbiol 87:237–240. https://doi.org/10.1046/j.1365-2672.1999.00876.x PubMed DOI
Vahedi F, Moazeni Jula G, Kianizadeh M, Mahmoudi M (2009) Characterization of Bacillus anthracis spores isolates from soil by biochemical and multiplex PCR analysis. East Mediterr Health J 15:149–156 DOI
Wilson MK, Vergis JM, Alem F, Palmer JR, Keane-Myers AM, Brahmbhatt TN, Ventura CL, O’Brien AD (2011) Bacillus cereus G9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis Sterne in rabbits and mice. Infect Immun 79:3012–3019. https://doi.org/10.1128/IAI.00205-11 PubMed DOI PMC
Wong YP, Othman S, Lau YL, Radu S, Chee HY (2018) Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J Appl Microbiol 124:626–643. https://doi.org/10.1111/jam.13647 PubMed DOI