Biosensors and Bioassays for the Medical Detection of Bacillus Anthracis and Diagnosis of Anthrax
Jazyk angličtina Země Spojené arabské emiráty Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
DZRO-FVZ22-ZHN II
Ministry of Defence of the Czech Republic
PubMed
39005126
DOI
10.2174/0109298673310620240704132204
PII: CMC-EPUB-141666
Knihovny.cz E-zdroje
- Klíčová slova
- Aptamer, Bacillus anthracis, bioanalysis, biological warfare agent, biological weapon, chemosensor, field test, hand-held assay, infection.,
- MeSH
- antrax * diagnóza MeSH
- Bacillus anthracis * izolace a purifikace MeSH
- biosenzitivní techniky * metody MeSH
- biotest * metody MeSH
- lidé MeSH
- vyšetření u lůžka MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Bacillus anthracis is a causative agent of the highly mortal disease anthrax. This zoonosis is present in nature, but it is also considered one of the most powerful biological warfare agents. A timely diagnosis is necessary for proper therapy and setting of epidemiological countermeasures. Current diagnostic methods should be used in specialized laboratories or medical facilities because there are only a limited number of methods suitable as hand-held assays or even point-of-care tests for detecting B. anthracis or anthrax diagnosis. The lateral flow tests are an exception in this regard, but these tests also have some limitations. Significant progress has been achieved in point-of-care tests for B. anthracis detection and anthrax diagnosis in various biosensors and bioassays. This review focuses on current hand-held and point-of-care tests that can easily prove anthrax or its causative agent outside the context of specialized facilities.
Zobrazit více v PubMed
Blevins S.M.; Bronze M.S.; Robert Koch and the ‘golden age’ of bacteriology. Int J Infect Dis 2010,14(9),e744-e751 PubMed DOI
Morens D.M.; Characterizing a “new” disease: Epizootic and epidemic anthrax, 1769-1780. Am J Public Health 2003,93(6),886-893 PubMed DOI
Salton M.R.J.; Kim K.S.; Structure. Medical Microbiology, 4 edition. 1996
Carrera M.; Zandomeni R.O.; Fitzgibbon J.; Sagripanti J.L.; Difference between the spore sizes of Bacillus anthracis and other Bacillus species. J Appl Microbiol 2007,102(2),303-312 PubMed DOI
Barandongo Z.R.; Dolfi A.C.; Bruce S.A.; Rysava K.; Huang Y.H.; Joel H.; Hassim A.; Kamath P.L.; van Heerden H.; Turner W.C.; The persistence of time: The lifespan of Bacillus anthracis spores in environmental reservoirs. Res Microbiol 2023,174(6),104029 PubMed DOI
Driks A.; The Bacillus anthracis spore. Mol Aspects Med 2009,30(6),368-373 PubMed DOI
Hsieh H.Y.; Stewart G.C.; Does environmental replication contribute to Bacillus anthracis spore persistence and infectivity in soil? Res Microbiol 2023,174(5),104052 PubMed DOI
Sweeney D.A.; Hicks C.W.; Cui X.; Li Y.; Eichacker P.Q.; Anthrax Infection. Am J Respir Crit Care Med 2011,184(12),1333-1341 PubMed DOI
Broertjes J.; Franz E.; Friesema I.H.M.; Jansen H.J.; Reubsaet F.A.G.; Rutjes S.A.; Stijnis C.; Voordouw B.C.G.; de Vries M.C.; Notermans D.W.; Grobusch M.P.; Epidemiology of pathogens listed as potential bioterrorism agents, the Netherlands, 2009‒2019. Emerg Infect Dis 2023,29(7),1-9 PubMed DOI
Person M.K.; Cook R.; Bradley J.S.; Hupert N.; Bower W.A.; Hendricks K.; Systematic review of hospital treatment outcomes for naturally acquired and bioterrorism-related anthrax, 1880–2018. Clin Infect Dis 2022,75(Suppl. 3),S392-S401 PubMed DOI
Franz D.R.; Preparedness for an anthrax attack. Mol Aspects Med 2009,30(6),503-510 PubMed DOI
Carlson C.J.; Kracalik I.T.; Ross N.; Alexander K.A.; Hugh-Jones M.E.; Fegan M.; Elkin B.T.; Epp T.; Shury T.K.; Zhang W.; Bagirova M.; Getz W.M.; Blackburn J.K.; The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat Microbiol 2019,4(8),1337-1343 PubMed DOI
Kozytska T.; Bassiouny M.; Chechet O.; Ordynska D.; Galante D.; Neubauer H.; Wareth G.; Retrospective analysis of official data on anthrax in europe with a special reference to Ukraine. Microorganisms 2023,11(5),1294 PubMed DOI
Bakhteeva I.; Timofeev V.; Some Peculiarities of anthrax epidemiology in herbivorous and carnivorous animals. Life 2022,12(6),870 PubMed DOI
Doganay M.; Dinc G.; Kutmanova A.; Baillie L.; Human Anthrax: Update of the diagnosis and treatment. Diagnostics 2023,13(6),1056 PubMed DOI
Popescu C.P.; Zaharia M.; Nica M.; Stanciu D.; Moroti R.; Benea S.; Melinte V.; Vasile T.; Ceausu E.; Ruta S.; Florescu S.A.; Anthrax meningoencephalitis complicated with brain abscess - A case report. Int J Infect Dis 2021,108,217-219 PubMed DOI
Caffes N.; Hendricks K.; Bradley J.S.; Twenhafel N.A.; Simard J.M.; Anthrax meningoencephalitis and intracranial hemorrhage. Clin Infect Dis 2022,75(Suppl. 3),S451-S458 PubMed DOI
Lombarte Espinosa E.; Villuendas Usón M.C.; Arribas García J.; Jado García I.; Huarte Lacunza R.; Zárate Chug P.; Claraco Vega L.M.; Jesús Santed Andrés M.; Ríos M.J.; Cook R.; Simard J.M.; Boyer A.E.; Rezusta A.; Survival of Patient with hemorrhagic meningitis associated with inhalation anthrax. Clin Infect Dis 2022,75(Suppl. 3),S364-S372 PubMed DOI
Hicks C.W.; Sweeney D.A.; Cui X.; Li Y.; Eichacker P.Q.; An overview of anthrax infection including the recently identified form of disease in injection drug users. Intensive Care Med 2012,38(7),1092-1104 PubMed DOI
Alam M.; Kamal M.; Rahman M.; Kabir A.; Islam M.; Hassan J.; Review of anthrax: A disease of farm animals. J Adv Vet Anim Res 2022,9(2),323-334 PubMed DOI
Eshraghi B.; Zarrin Y.; Fazel M.; Palpebral anthrax, a rare though important condition in villagers: A case report and literature review. Int J Infect Dis 2020,99,260-262 PubMed DOI
Meghji S.; Judd O.; Carr E.; Fatal cutaneous anthrax in a heroin user. J Laryngol Otol 2013,127(4),423-425 PubMed DOI
Ho J.; Duncan S.; Estimating aerosol hazards from an anthrax letter. J Aerosol Sci 2005,36(5-6),701-719 DOI
Greene C.M.; Reefhuis J.; Tan C.; Fiore A.E.; Goldstein S.; Beach M.J.; Redd S.C.; Valiante D.; Burr G.; Buehler J.; Pinner R.W.; Bresnitz E.; Bell B.P.; Investigati C.D.C.N.J.A.; Epidemiologic investigations of bioterrorism-related anthrax, New Jersey, 2001. Emerg Infect Dis 2002,8(10),1048-1055 PubMed DOI
Bravata D.M.; Holty J.E.C.; Wang E.; Lewis R.; Wise P.H.; McDonald K.M.; Owens D.K.; Inhalational, gastrointestinal, and cutaneous anthrax in children: A systematic review of cases: 1900 to 2005. Arch Pediatr Adolesc Med 2007,161(9),896-905 PubMed DOI
Pillai S.K.; Huang E.; Guarnizo J.T.; Hoyle J.D.; Katharios-Lanwermeyer S.; Turski T.K.; Bower W.A.; Hendricks K.A.; Meaney-Delman D.; Antimicrobial treatment for systemic anthrax: Analysis of cases from 1945 to 2014 identified through a systematic literature review. Health Secur 2015,13(6),355-364 PubMed DOI
Cai C.; Che J.; Xu L.; Guo Q.; Kong Y.; Fu L.; Xu J.; Cheng Y.; Chen W.; Tumor endothelium marker-8 based decoys exhibit superiority over capillary morphogenesis protein-2 based decoys as anthrax toxin inhibitors. PLoS One 2011,6(6),e20646 PubMed DOI
Roderer D.; Raunser S.; Tc toxin complexes: assembly, membrane permeation, and protein translocation. Annual Rev Microbiol 2019,73,247-265 DOI
Kelly-Cirino C.D.; Mantis N.J.; Neutralizing monoclonal antibodies directed against defined linear epitopes on domain 4 of anthrax protective antigen. Infect Immun 2009,77(11),4859-4867 PubMed DOI
Ouyang W.; Xie T.; Fang H.; Frucht D.M.; Development of a new cell-based AP-1 gene reporter potency assay for anti-anthrax toxin therapeutics. Toxins 2023,15(9),528 PubMed DOI
Sun J.; Jacquez P.; Roles of anthrax toxin receptor 2 in anthrax toxin membrane insertion and pore formation. Toxins 2016,8(2),34 PubMed DOI
Gnade B.T.; Moen S.T.; Chopra A.K.; Peterson J.W.; Yeager L.A.; Emergence of anthrax edema toxin as a master manipulator of macrophage and B cell functions. Toxins 2010,2(7),1881-1897 PubMed DOI
Zhao T.; Zhao X.; Liu J.; Meng Y.; Feng Y.; Fang T.; Zhang J.; Yang X.; Li J.; Xu J.; Chen W.; Diminished but not abolished effect of two His351 mutants of anthrax edema factor in a murine model. Toxins 2016,8(2),35 PubMed DOI
Kim J.; Yoon M.Y.; Anthrax lethal factor: Critical virulence factor of pathogenesis of anthrax toxins. Toxin Rev 2006,25(1),109-124 DOI
Banihashemi S.R.; Rahbarizadeh F.; Zavaran Hosseini A.; Ahmadvand D.; Khoshtinat Nikkhoi S.; Liposome-based nanocarriers loaded with anthrax lethal factor and armed with anti-CD19 VHH for effectively inhibiting MAPK pathway in B cells. Int Immunopharmacol 2021,100,107927 PubMed DOI
Vietri N.J.; Does anthrax antitoxin therapy have a role in the treatment of inhalational anthrax? Curr Opin Infect Dis 2018,31(3),257-262 PubMed DOI
Grabenstein J.D.; Anthrax vaccine: A review. Immunol Allergy Clin North Am 2003,23(4),713-730 PubMed DOI
Shearer J.D.; Henning L.; Sanford D.C.; Li N.; Skiadopoulos M.H.; Reece J.J.; Ionin B.; Savransky V.; Efficacy of the AV7909 anthrax vaccine candidate in guinea pigs and nonhuman primates following two immunizations two weeks apart. Vaccine 2021,39(1),1-5 PubMed DOI
Jelinski J.; Terwilliger A.; Green S.; Maresso A.; Progress towards the development of a NEAT vaccine for anthrax II: immunogen specificity and alum effectiveness in an inhalational model. Infect Immun 2020,88(8),e00082-20 PubMed DOI
Jauro S.; Ndumnego O.C.; Ellis C.; Buys A.; Beyer W.; van Heerden H.; Immunogenicity and protective efficacy of a non-living anthrax vaccine versus a live spore vaccine with simultaneous penicillin-G treatment in cattle. Vaccines 2020,8(4),595 PubMed DOI
Plotkin S.; Grabenstein J.D.; Vaccines: Countering anthrax: Vaccines and immunoglobulins. Clin Infect Dis 2008,46(1),129-136 PubMed DOI
Weiss S.; Kobiler D.; Levy H.; Pass A.; Ophir Y.; Rothschild N.; Tal A.; Schlomovitz J.; Altboum Z.; Antibiotics cure anthrax in animal models. Antimicrob Agents Chemother 2011,55(4),1533-1542 PubMed DOI
Kutmanova A.; Doganay M.; Zholdoshev S.; Human anthrax in Kyrgyz Republic: Epidemiology and clinical features. J Infect Public Health 2020,13(8),1161-1165 PubMed DOI
Manzulli V.; Fasanella A.; Parisi A.; Serrecchia L.; Donatiello A.; Rondinone V.; Caruso M.; Zange S.; Tscherne A.; Decaro N.; Pedarra C.; Galante D.; Evaluation of in vitro antimicrobial susceptibility of Bacillus anthracis strains isolated during anthrax outbreaks in Italy from 1984 to 2017. J Vet Sci 2019,20(1),58-62 PubMed DOI
Maison R.M.; Priore M.R.; Brown V.R.; Bodenchuk M.J.; Borlee B.R.; Bowen R.A.; Bosco-Lauth A.M.; Feral swine as indirect indicators of environmental anthrax contamination and potential mechanical vectors of infectious spores. Pathogens 2023,12(4),622 PubMed DOI
Galante D.; Manzulli V.; Donatiello A.; Fasanella A.; Chirullo B.; Francia M.; Rondinone V.; Serrecchia L.; Pace L.; Iatarola M.; Tarantino M.; Adone R.; Production of a Bacillus anthracis secretome with suitable characteristics as antigen in a complement fixation test. Life 2022,12(2),312 PubMed DOI
Guastalegname M.; Rondinone V.; Lucifora G.; Vallone A.; D’Argenio L.; Petracca G.; Giordano A.; Serrecchia L.; Manzulli V.; Pace L.; Fasanella A.; Simone D.; Cipolletta D.; Galante D.; An Outbreak of human systemic anthrax, including one case of anthrax meningitis, occurred in Calabria Region (Italy): A description of a successful one health approach. Life 2022,12(6),909 PubMed DOI
Ashenefe Wassie B.; Fantaw S.; Mekonene Y.; Teshale A.M.; Yitagesu Y.; Tsige E.; Getahun D.; Tasew G.; Abichu G.; Moges B.; Abate E.; Abayneh T.; Zeru T.; Belay Z.; Mor S.M.; First PCR confirmed anthrax outbreaks in ethiopia-amhara region, 2018–2019. PLoS Negl Trop Dis 2022,16(2),e0010181 PubMed DOI
Banger S.; Pal V.; Tripathi N.K.; Goel A.K.; Development of a set of three real-time loop-mediated isothermal amplification (LAMP) assays for detection of Bacillus anthracis, the causative agent of anthrax. Folia Microbiol 2021,66(4),587-596 PubMed DOI
Upadhyay L.; Chaturvedi V.K.; Gupta P.K.; Sunita S.C.; Sumithra T.G.; Prusty B.R.; Yadav A.K.; Development of a visible loop mediated isothermal amplification assay for rapid detection of Bacillus anthracis. Biologicals 2021,69,59-65 PubMed DOI
Avberšek J.; Mićunović J.; Cociancich V.; Paller T.; Kušar D.; Zajc U.; Ocepek M.; Špičić S.; Duvnjak S.; Pate M.; A suggested diagnostic approach for sporadic anthrax in cattle to protect public health. Microorganisms 2021,9(8),1567 PubMed DOI
Zheng C.; Ye J.; Song M.; Guo Y.; Gao W.; Hao J.; Feng Z.; Zhang L.; The second cutaneous anthrax infection diagnosed by metagenomic next-generation sequencing: A case report. Medicine 2024,103(3),e36921 PubMed DOI
Abdel-Glil M.Y.; Chiaverini A.; Garofolo G.; Fasanella A.; Parisi A.; Harmsen D.; Jolley K.A.; Elschner M.C.; Tomaso H.; Linde J.; Galante D.; A whole-genome-based gene-by-gene typing system for standardized high-resolution strain typing of Bacillus anthracis. J Clin Microbiol 2021,59(7),e02889-20 PubMed DOI
Hoang T.T.H.; Dang D.A.; Pham T.H.; Luong M.H.; Tran N.D.; Nguyen T.H.; Nguyen T.T.; Nguyen T.T.; Inoue S.; Morikawa S.; Okutani A.; Epidemiological and comparative genomic analysis of Bacillus anthracis isolated from northern Vietnam. PLoS One 2020,15(2),e0228116 PubMed DOI
Yildirim H.; Kabakus N.; Koc M.; Murat A.; İnceköy Girgin F.; Meningoencephalitis due to anthrax: CT and MR findings. Pediatr Radiol 2006,36(11),1190-1193 PubMed DOI
Wood B.J.; DeFranco B.; Ripple M.; Topiel M.; Chiriboga C.; Mani V.; Barry K.; Fowler D.; Masur H.; Borio L.; Inhalational anthrax: Radiologic and pathologic findings in two cases. AJR Am J Roentgenol 2003,181(4),1071-1078 PubMed DOI
van Dijk N.J.; Menting S.; Wentink-Bonnema E.M.S.; Broekhuizen-van Haaften P.E.; Withycombe E.; Schallig H.D.F.H.; Mens P.F.; Laboratory evaluation of the miniature direct-on-blood PCR nucleic acid lateral flow immunoassay (mini-dbPCR-NALFIA), a simplified molecular diagnostic test for Plasmodium. Malar J 2023,22(1),98 PubMed DOI
Acharya K.; Blackburn A.; Mohammed J.; Haile A.T.; Hiruy A.M.; Werner D.; Metagenomic water quality monitoring with a portable laboratory. Water Res 2020,184,116112 PubMed DOI
Liu W.; Warden A.; Sun J.; Shen G.; Ding X.; Simultaneous detection of multiple HPV DNA via bottom-well microfluidic chip within an infra-red PCR platform. Biomicrofluidics 2018,12(2),024109 PubMed DOI
Bentahir M.; Ambroise J.; Delcorps C.; Pilo P.; Gala J.L.; Sensitive and specific recombinase polymerase amplification assays for fast screening, detection, and identification of Bacillus anthracis in a field setting. Appl Environ Microbiol 2018,84(11),e00506-18 PubMed DOI
Panno S.; Matić S.; Tiberini A.; Caruso A.G.; Bella P.; Torta L.; Stassi R.; Davino S.; Loop mediated isothermal amplification: Principles and applications in plant virology. Plants 2020,9(4),461 PubMed DOI
Notomi T.; Okayama H.; Masubuchi H.; Yonekawa T.; Watanabe K.; Amino N.; Hase T.; Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 2000,28(12),63e-63 PubMed DOI
Zasada A.A.; Zacharczuk K.; Formińska K.; Wiatrzyk A.; Ziółkowski R.; Malinowska E.; Isothermal DNA amplification combined with lateral flow dipsticks for detection of biothreat agents. Anal Biochem 2018,560,60-66 PubMed DOI
Mattiello C.J.; Stickle D.F.; Characterization by image analysis of the dose vs. response curve for a qualitative serum hCG lateral flow immunoassay. Clin Chim Acta 2023,538,175-180 PubMed DOI
Krishnamoorthy A.; Chandrapalan S.; JalayeriNia G.; Hussain Y.; Bannaga A.; Lei I.I.; Arasaradnam R.; Influence of seasonal and operator variations on diagnostic accuracy of lateral flow devices during the COVID-19 pandemic: A systematic review and meta-analysis. Clin Med (Lond) 2023,23(2),144-150 PubMed DOI
Çam Derin D.; Gültekin E.; Gündüz E.; Otlu B.; Comparison of 6 aptamer-aptamer pairs on rapid detection of SARS-CoV-2 by lateral flow assay. J AOAC Int 2024,107(3),464-470 PubMed DOI
Spicuzza L.; Campagna D.; Di Maria C.; Sciacca E.; Mancuso S.; Vancheri C.; Sambataro G.; An update on lateral flow immunoassay for the rapid detection of SARS-CoV-2 antibodies. AIMS Microbiol 2023,9(2),375-401 PubMed DOI
Wu Y.; Fan Q.; Chen Y.; Sun X.; Shi G.; Production and selection of antibody–antigen pairs for the development of immunoenzyme assay and lateral flow immunoassay methods for carbofuran and its analogues. Biosensors (Basel) 2022,12(8),560 PubMed DOI
Jaisankar A.; Krishnan S.; Rangasamy L.; Recent developments of aptamer-based lateral flow assays for point-of- care (POC) diagnostics. Anal Biochem 2022,655,114874 PubMed DOI
Vealan K.; Joseph N.; Alimat S.; Karumbati A.S.; Thilakavathy K.; Lateral flow assay: A promising rapid point-of-care testing tool for infections and non-communicable diseases. Asian Biomed 2023,17(6),250-266 PubMed DOI
Wang K.; Wang M.; Ma T.; Li W.; Zhang H.; Review on the selection of aptamers and application in paper-based sensors. Biosensors (Basel) 2022,13(1),39 PubMed DOI
Pohanka M.; Point-of-care diagnoses and assays based on lateral flow test. Int J Anal Chem 2021,2021,1-9 DOI
Pohanka M.; Point-of-care diagnosis of COVID-19 disease based on antigen tests. Bratisl Med J 2021,122(11),763-770 PubMed DOI
Pohanka M.; Current trends in the biosensors for biological warfare agents assay. Materials (Basel) 2019,12(14),2303 PubMed DOI
Kolton C.B.; Marston C.K.; Stoddard R.A.; Cossaboom C.; Salzer J.S.; Kozel T.R.; Gates-Hollingsworth M.A.; Cleveland C.A.; Thompson A.T.; Dalton M.F.; Yabsley M.J.; Hoffmaster A.R.; Detection of Bacillus anthracis in animal tissues using InBios active anthrax detect rapid test lateral flow immunoassay. Lett Appl Microbiol 2019,68(6),480-484 PubMed DOI
Pillai S.P.; Prentice K.W.; Ramage J.G.; DePalma L.; Sarwar J.; Parameswaran N.; Bell M.; Plummer A.; Santos A.; Singh A.; Pillai C.A.; Thirunavvukarasu N.; Manickam G.; Avila J.R.; Sharma S.K.; Hoffmaster A.; Anderson K.; Morse S.A.; Venkateswaran K.V.; Hodge D.R.; Rapid presumptive identification of Bacillus anthracis isolates using the Tetracore RedLine Alert™ test. Health Secur 2019,17(4),334-343 PubMed DOI
Zasada A.A.; Formińska K.; Zacharczuk K.; Jacob D.; Grunow R.; Comparison of eleven commercially available rapid tests for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Lett Appl Microbiol 2015,60(5),409-413 PubMed DOI
Ramage J.G.; Prentice K.W.; DePalma L.; Venkateswaran K.S.; Chivukula S.; Chapman C.; Bell M.; Datta S.; Singh A.; Hoffmaster A.; Sarwar J.; Parameswaran N.; Joshi M.; Thirunavkkarasu N.; Krishnan V.; Morse S.; Avila J.R.; Sharma S.; Estacio P.L.; Stanker L.; Hodge D.R.; Pillai S.P.; Comprehensive laboratory evaluation of a highly specific lateral flow assay for the presumptive identification of Bacillus anthracis spores in suspicious white powders and environmental samples. Health Secur 2016,14(5),351-365 PubMed DOI
Ziegler I.; Vollmar P.; Knüpfer M.; Braun P.; Stoecker K.; Reevaluating limits of detection of 12 lateral flow immunoassays for the detection of Yersinia pestis, Francisella tularensis, and Bacillus anthracis spores using viable risk group-3 strains. J Appl Microbiol 2021,130(4),1173-1180 PubMed DOI
Mistry D.A.; Wang J.Y.; Moeser M.E.; Starkey T.; Lee L.Y.W.; A systematic review of the sensitivity and specificity of lateral flow devices in the detection of SARS-CoV-2. BMC Infect Dis 2021,21(1),828 PubMed DOI
Vilca-Alosilla J.J.; Candia-Puma M.A.; Coronel-Monje K.; Goyzueta-Mamani L.D.; Galdino A.S.; Machado-de-Ávila R.A.; Giunchetti R.C.; Ferraz Coelho E.A.; Chávez-Fumagalli M.A.; A systematic review and meta-analysis comparing the diagnostic accuracy tests of COVID-19. Diagnostics 2023,13(9),1549 PubMed DOI
Biagini R.E.; Sammons D.L.; Smith J.P.; MacKenzie B.A.; Striley C.A.F.; Snawder J.E.; Robertson S.A.; Quinn C.P.; Rapid, sensitive, and specific lateral-flow immunochromatographic device to measure anti-anthrax protective antigen immunoglobulin g in serum and whole blood. Clin Vaccine Immunol 2006,13(5),541-546 PubMed DOI
Zasada A.A.; Detection and identification of Bacillus anthracis: From conventional to molecular microbiology methods. Microorganisms 2020,8(1),125 PubMed DOI
Bhardwaj S.K.; Bhardwaj N.; Kumar V.; Bhatt D.; Azzouz A.; Bhaumik J.; Kim K.H.; Deep A.; Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. Environ Int 2021,146,106183 PubMed DOI
Tyśkiewicz R.; Fedorowicz M.; Nakonieczna A.; Zielińska P.; Kwiatek M.; Mizak L.; Electrochemical, optical and mass-based immunosensors: A comprehensive review of Bacillus anthracis detection methods. Anal Biochem 2023,675,115215 PubMed DOI
Sadeghpour S.D.; Karimi F.; Alizadeh H.; Predictive and fluorescent nanosensing experimental methods for evaluating anthrax protective antigen and lethal factor interactions for therapeutic applications. Int J Biol Macromol 2020,160,1158-1167 PubMed DOI
Cheng H.W.; Huan S.Y.; Yu R.Q.; Nanoparticle-based substrates for surface-enhanced Raman scattering detection of bacterial spores. Analyst 2012,137(16),3601-3608 PubMed DOI
Sabei F.Y.; Colorimetric and fluorescent sensors based on nanomaterials for the detection of dipicolinic acid: A comprehensive review. J Nanopart Res 2023,25(12),250 DOI
Zhang Q.; Wang C.F.; Lv Y.K.; Luminescent switch sensors for the detection of biomolecules based on metal–organic frameworks. Analyst 2018,143(18),4221-4229 PubMed DOI
Miller S.E.; Teplensky M.H.; Moghadam P.Z.; Fairen-Jimenez D.; Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 2016,6(4),20160027 PubMed DOI
Liang T.; Chen J.; Yan R.; Jiang H.; Li H.; Research on detection of ultra-low concentration anthrax protective antigen using graphene field-effect transistor biosensor. Sensors 2023,23(13),5820 PubMed DOI
Karimi F.; Dabbagh S.; Gel green fluorescence ssDNA aptasensor based on carbon nanotubes for detection of anthrax protective antigen. Int J Biol Macromol 2019,140,842-850 PubMed DOI
Su P.; Wang X.; Wang T.; Feng X.; Zhang M.; Liang L.; Cao J.; Liu W.; Tang Y.; Eu/Tb supramolecular assembly hybrids for ultrasensitive and ratiometric detection of anthrax spore biomarker in water solution and actual spore samples. Talanta 2021,225,122063 PubMed DOI
Ma F.; Deng L.; Wang T.; Zhang A.; Yang M.; Li X.; Chen X.; Determination of 2, 6-dipicolinic acid as an Anthrax biomarker based on the enhancement of copper nanocluster fluorescence by reversible aggregation-induced emission. Mikrochim Acta 2023,190(8),291 PubMed DOI
Norouzi S.; Dashtian K.; Amourizi F.; Zare-Dorabei R.; Red-emissive carbon nanostructure-anchored molecularly imprinted Er-BTC MOF: A biosensor for visual anthrax monitoring. Analyst 2023,148(14),3379-3391 PubMed DOI
Lin X.; Wu H.; Zeng S.; Peng T.; Zhang P.; Wan X.; Lang Y.; Zhang B.; Jia Y.; Shen R.; Yin B.; A self-designed device integrated with a Fermat spiral microfluidic chip for ratiometric and automated point-of-care testing of anthrax biomarker in real samples. Biosens Bioelectron 2023,230,115283 PubMed DOI
Wu J.; Chen P.; Chen J.; Ye X.; Cao S.; Sun C.; Jin Y.; Zhang L.; Du S.; Integrated ratiometric fluorescence probe-based acoustofluidic platform for visual detection of anthrax biomarker. Biosens Bioelectron 2022,214,114538 PubMed DOI