Biosensors and Bioassays for the Medical Detection of Bacillus Anthracis and Diagnosis of Anthrax

. 2025 ; 32 (16) : 3123-3133.

Jazyk angličtina Země Spojené arabské emiráty Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39005126

Grantová podpora
DZRO-FVZ22-ZHN II Ministry of Defence of the Czech Republic

Bacillus anthracis is a causative agent of the highly mortal disease anthrax. This zoonosis is present in nature, but it is also considered one of the most powerful biological warfare agents. A timely diagnosis is necessary for proper therapy and setting of epidemiological countermeasures. Current diagnostic methods should be used in specialized laboratories or medical facilities because there are only a limited number of methods suitable as hand-held assays or even point-of-care tests for detecting B. anthracis or anthrax diagnosis. The lateral flow tests are an exception in this regard, but these tests also have some limitations. Significant progress has been achieved in point-of-care tests for B. anthracis detection and anthrax diagnosis in various biosensors and bioassays. This review focuses on current hand-held and point-of-care tests that can easily prove anthrax or its causative agent outside the context of specialized facilities.

Zobrazit více v PubMed

Blevins S.M.; Bronze M.S.; Robert Koch and the ‘golden age’ of bacteriology. Int J Infect Dis 2010,14(9),e744-e751 PubMed DOI

Morens D.M.; Characterizing a “new” disease: Epizootic and epidemic anthrax, 1769-1780. Am J Public Health 2003,93(6),886-893 PubMed DOI

Salton M.R.J.; Kim K.S.; Structure. Medical Microbiology, 4 edition. 1996

Carrera M.; Zandomeni R.O.; Fitzgibbon J.; Sagripanti J.L.; Difference between the spore sizes of Bacillus anthracis and other Bacillus species. J Appl Microbiol 2007,102(2),303-312 PubMed DOI

Barandongo Z.R.; Dolfi A.C.; Bruce S.A.; Rysava K.; Huang Y.H.; Joel H.; Hassim A.; Kamath P.L.; van Heerden H.; Turner W.C.; The persistence of time: The lifespan of Bacillus anthracis spores in environmental reservoirs. Res Microbiol 2023,174(6),104029 PubMed DOI

Driks A.; The Bacillus anthracis spore. Mol Aspects Med 2009,30(6),368-373 PubMed DOI

Hsieh H.Y.; Stewart G.C.; Does environmental replication contribute to Bacillus anthracis spore persistence and infectivity in soil? Res Microbiol 2023,174(5),104052 PubMed DOI

Sweeney D.A.; Hicks C.W.; Cui X.; Li Y.; Eichacker P.Q.; Anthrax Infection. Am J Respir Crit Care Med 2011,184(12),1333-1341 PubMed DOI

Broertjes J.; Franz E.; Friesema I.H.M.; Jansen H.J.; Reubsaet F.A.G.; Rutjes S.A.; Stijnis C.; Voordouw B.C.G.; de Vries M.C.; Notermans D.W.; Grobusch M.P.; Epidemiology of pathogens listed as potential bioterrorism agents, the Netherlands, 2009‒2019. Emerg Infect Dis 2023,29(7),1-9 PubMed DOI

Person M.K.; Cook R.; Bradley J.S.; Hupert N.; Bower W.A.; Hendricks K.; Systematic review of hospital treatment outcomes for naturally acquired and bioterrorism-related anthrax, 1880–2018. Clin Infect Dis 2022,75(Suppl. 3),S392-S401 PubMed DOI

Franz D.R.; Preparedness for an anthrax attack. Mol Aspects Med 2009,30(6),503-510 PubMed DOI

Carlson C.J.; Kracalik I.T.; Ross N.; Alexander K.A.; Hugh-Jones M.E.; Fegan M.; Elkin B.T.; Epp T.; Shury T.K.; Zhang W.; Bagirova M.; Getz W.M.; Blackburn J.K.; The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat Microbiol 2019,4(8),1337-1343 PubMed DOI

Kozytska T.; Bassiouny M.; Chechet O.; Ordynska D.; Galante D.; Neubauer H.; Wareth G.; Retrospective analysis of official data on anthrax in europe with a special reference to Ukraine. Microorganisms 2023,11(5),1294 PubMed DOI

Bakhteeva I.; Timofeev V.; Some Peculiarities of anthrax epidemiology in herbivorous and carnivorous animals. Life 2022,12(6),870 PubMed DOI

Doganay M.; Dinc G.; Kutmanova A.; Baillie L.; Human Anthrax: Update of the diagnosis and treatment. Diagnostics 2023,13(6),1056 PubMed DOI

Popescu C.P.; Zaharia M.; Nica M.; Stanciu D.; Moroti R.; Benea S.; Melinte V.; Vasile T.; Ceausu E.; Ruta S.; Florescu S.A.; Anthrax meningoencephalitis complicated with brain abscess - A case report. Int J Infect Dis 2021,108,217-219 PubMed DOI

Caffes N.; Hendricks K.; Bradley J.S.; Twenhafel N.A.; Simard J.M.; Anthrax meningoencephalitis and intracranial hemorrhage. Clin Infect Dis 2022,75(Suppl. 3),S451-S458 PubMed DOI

Lombarte Espinosa E.; Villuendas Usón M.C.; Arribas García J.; Jado García I.; Huarte Lacunza R.; Zárate Chug P.; Claraco Vega L.M.; Jesús Santed Andrés M.; Ríos M.J.; Cook R.; Simard J.M.; Boyer A.E.; Rezusta A.; Survival of Patient with hemorrhagic meningitis associated with inhalation anthrax. Clin Infect Dis 2022,75(Suppl. 3),S364-S372 PubMed DOI

Hicks C.W.; Sweeney D.A.; Cui X.; Li Y.; Eichacker P.Q.; An overview of anthrax infection including the recently identified form of disease in injection drug users. Intensive Care Med 2012,38(7),1092-1104 PubMed DOI

Alam M.; Kamal M.; Rahman M.; Kabir A.; Islam M.; Hassan J.; Review of anthrax: A disease of farm animals. J Adv Vet Anim Res 2022,9(2),323-334 PubMed DOI

Eshraghi B.; Zarrin Y.; Fazel M.; Palpebral anthrax, a rare though important condition in villagers: A case report and literature review. Int J Infect Dis 2020,99,260-262 PubMed DOI

Meghji S.; Judd O.; Carr E.; Fatal cutaneous anthrax in a heroin user. J Laryngol Otol 2013,127(4),423-425 PubMed DOI

Ho J.; Duncan S.; Estimating aerosol hazards from an anthrax letter. J Aerosol Sci 2005,36(5-6),701-719 DOI

Greene C.M.; Reefhuis J.; Tan C.; Fiore A.E.; Goldstein S.; Beach M.J.; Redd S.C.; Valiante D.; Burr G.; Buehler J.; Pinner R.W.; Bresnitz E.; Bell B.P.; Investigati C.D.C.N.J.A.; Epidemiologic investigations of bioterrorism-related anthrax, New Jersey, 2001. Emerg Infect Dis 2002,8(10),1048-1055 PubMed DOI

Bravata D.M.; Holty J.E.C.; Wang E.; Lewis R.; Wise P.H.; McDonald K.M.; Owens D.K.; Inhalational, gastrointestinal, and cutaneous anthrax in children: A systematic review of cases: 1900 to 2005. Arch Pediatr Adolesc Med 2007,161(9),896-905 PubMed DOI

Pillai S.K.; Huang E.; Guarnizo J.T.; Hoyle J.D.; Katharios-Lanwermeyer S.; Turski T.K.; Bower W.A.; Hendricks K.A.; Meaney-Delman D.; Antimicrobial treatment for systemic anthrax: Analysis of cases from 1945 to 2014 identified through a systematic literature review. Health Secur 2015,13(6),355-364 PubMed DOI

Cai C.; Che J.; Xu L.; Guo Q.; Kong Y.; Fu L.; Xu J.; Cheng Y.; Chen W.; Tumor endothelium marker-8 based decoys exhibit superiority over capillary morphogenesis protein-2 based decoys as anthrax toxin inhibitors. PLoS One 2011,6(6),e20646 PubMed DOI

Roderer D.; Raunser S.; Tc toxin complexes: assembly, membrane permeation, and protein translocation. Annual Rev Microbiol 2019,73,247-265 DOI

Kelly-Cirino C.D.; Mantis N.J.; Neutralizing monoclonal antibodies directed against defined linear epitopes on domain 4 of anthrax protective antigen. Infect Immun 2009,77(11),4859-4867 PubMed DOI

Ouyang W.; Xie T.; Fang H.; Frucht D.M.; Development of a new cell-based AP-1 gene reporter potency assay for anti-anthrax toxin therapeutics. Toxins 2023,15(9),528 PubMed DOI

Sun J.; Jacquez P.; Roles of anthrax toxin receptor 2 in anthrax toxin membrane insertion and pore formation. Toxins 2016,8(2),34 PubMed DOI

Gnade B.T.; Moen S.T.; Chopra A.K.; Peterson J.W.; Yeager L.A.; Emergence of anthrax edema toxin as a master manipulator of macrophage and B cell functions. Toxins 2010,2(7),1881-1897 PubMed DOI

Zhao T.; Zhao X.; Liu J.; Meng Y.; Feng Y.; Fang T.; Zhang J.; Yang X.; Li J.; Xu J.; Chen W.; Diminished but not abolished effect of two His351 mutants of anthrax edema factor in a murine model. Toxins 2016,8(2),35 PubMed DOI

Kim J.; Yoon M.Y.; Anthrax lethal factor: Critical virulence factor of pathogenesis of anthrax toxins. Toxin Rev 2006,25(1),109-124 DOI

Banihashemi S.R.; Rahbarizadeh F.; Zavaran Hosseini A.; Ahmadvand D.; Khoshtinat Nikkhoi S.; Liposome-based nanocarriers loaded with anthrax lethal factor and armed with anti-CD19 VHH for effectively inhibiting MAPK pathway in B cells. Int Immunopharmacol 2021,100,107927 PubMed DOI

Vietri N.J.; Does anthrax antitoxin therapy have a role in the treatment of inhalational anthrax? Curr Opin Infect Dis 2018,31(3),257-262 PubMed DOI

Grabenstein J.D.; Anthrax vaccine: A review. Immunol Allergy Clin North Am 2003,23(4),713-730 PubMed DOI

Shearer J.D.; Henning L.; Sanford D.C.; Li N.; Skiadopoulos M.H.; Reece J.J.; Ionin B.; Savransky V.; Efficacy of the AV7909 anthrax vaccine candidate in guinea pigs and nonhuman primates following two immunizations two weeks apart. Vaccine 2021,39(1),1-5 PubMed DOI

Jelinski J.; Terwilliger A.; Green S.; Maresso A.; Progress towards the development of a NEAT vaccine for anthrax II: immunogen specificity and alum effectiveness in an inhalational model. Infect Immun 2020,88(8),e00082-20 PubMed DOI

Jauro S.; Ndumnego O.C.; Ellis C.; Buys A.; Beyer W.; van Heerden H.; Immunogenicity and protective efficacy of a non-living anthrax vaccine versus a live spore vaccine with simultaneous penicillin-G treatment in cattle. Vaccines 2020,8(4),595 PubMed DOI

Plotkin S.; Grabenstein J.D.; Vaccines: Countering anthrax: Vaccines and immunoglobulins. Clin Infect Dis 2008,46(1),129-136 PubMed DOI

Weiss S.; Kobiler D.; Levy H.; Pass A.; Ophir Y.; Rothschild N.; Tal A.; Schlomovitz J.; Altboum Z.; Antibiotics cure anthrax in animal models. Antimicrob Agents Chemother 2011,55(4),1533-1542 PubMed DOI

Kutmanova A.; Doganay M.; Zholdoshev S.; Human anthrax in Kyrgyz Republic: Epidemiology and clinical features. J Infect Public Health 2020,13(8),1161-1165 PubMed DOI

Manzulli V.; Fasanella A.; Parisi A.; Serrecchia L.; Donatiello A.; Rondinone V.; Caruso M.; Zange S.; Tscherne A.; Decaro N.; Pedarra C.; Galante D.; Evaluation of in vitro antimicrobial susceptibility of Bacillus anthracis strains isolated during anthrax outbreaks in Italy from 1984 to 2017. J Vet Sci 2019,20(1),58-62 PubMed DOI

Maison R.M.; Priore M.R.; Brown V.R.; Bodenchuk M.J.; Borlee B.R.; Bowen R.A.; Bosco-Lauth A.M.; Feral swine as indirect indicators of environmental anthrax contamination and potential mechanical vectors of infectious spores. Pathogens 2023,12(4),622 PubMed DOI

Galante D.; Manzulli V.; Donatiello A.; Fasanella A.; Chirullo B.; Francia M.; Rondinone V.; Serrecchia L.; Pace L.; Iatarola M.; Tarantino M.; Adone R.; Production of a Bacillus anthracis secretome with suitable characteristics as antigen in a complement fixation test. Life 2022,12(2),312 PubMed DOI

Guastalegname M.; Rondinone V.; Lucifora G.; Vallone A.; D’Argenio L.; Petracca G.; Giordano A.; Serrecchia L.; Manzulli V.; Pace L.; Fasanella A.; Simone D.; Cipolletta D.; Galante D.; An Outbreak of human systemic anthrax, including one case of anthrax meningitis, occurred in Calabria Region (Italy): A description of a successful one health approach. Life 2022,12(6),909 PubMed DOI

Ashenefe Wassie B.; Fantaw S.; Mekonene Y.; Teshale A.M.; Yitagesu Y.; Tsige E.; Getahun D.; Tasew G.; Abichu G.; Moges B.; Abate E.; Abayneh T.; Zeru T.; Belay Z.; Mor S.M.; First PCR confirmed anthrax outbreaks in ethiopia-amhara region, 2018–2019. PLoS Negl Trop Dis 2022,16(2),e0010181 PubMed DOI

Banger S.; Pal V.; Tripathi N.K.; Goel A.K.; Development of a set of three real-time loop-mediated isothermal amplification (LAMP) assays for detection of Bacillus anthracis, the causative agent of anthrax. Folia Microbiol 2021,66(4),587-596 PubMed DOI

Upadhyay L.; Chaturvedi V.K.; Gupta P.K.; Sunita S.C.; Sumithra T.G.; Prusty B.R.; Yadav A.K.; Development of a visible loop mediated isothermal amplification assay for rapid detection of Bacillus anthracis. Biologicals 2021,69,59-65 PubMed DOI

Avberšek J.; Mićunović J.; Cociancich V.; Paller T.; Kušar D.; Zajc U.; Ocepek M.; Špičić S.; Duvnjak S.; Pate M.; A suggested diagnostic approach for sporadic anthrax in cattle to protect public health. Microorganisms 2021,9(8),1567 PubMed DOI

Zheng C.; Ye J.; Song M.; Guo Y.; Gao W.; Hao J.; Feng Z.; Zhang L.; The second cutaneous anthrax infection diagnosed by metagenomic next-generation sequencing: A case report. Medicine 2024,103(3),e36921 PubMed DOI

Abdel-Glil M.Y.; Chiaverini A.; Garofolo G.; Fasanella A.; Parisi A.; Harmsen D.; Jolley K.A.; Elschner M.C.; Tomaso H.; Linde J.; Galante D.; A whole-genome-based gene-by-gene typing system for standardized high-resolution strain typing of Bacillus anthracis. J Clin Microbiol 2021,59(7),e02889-20 PubMed DOI

Hoang T.T.H.; Dang D.A.; Pham T.H.; Luong M.H.; Tran N.D.; Nguyen T.H.; Nguyen T.T.; Nguyen T.T.; Inoue S.; Morikawa S.; Okutani A.; Epidemiological and comparative genomic analysis of Bacillus anthracis isolated from northern Vietnam. PLoS One 2020,15(2),e0228116 PubMed DOI

Yildirim H.; Kabakus N.; Koc M.; Murat A.; İnceköy Girgin F.; Meningoencephalitis due to anthrax: CT and MR findings. Pediatr Radiol 2006,36(11),1190-1193 PubMed DOI

Wood B.J.; DeFranco B.; Ripple M.; Topiel M.; Chiriboga C.; Mani V.; Barry K.; Fowler D.; Masur H.; Borio L.; Inhalational anthrax: Radiologic and pathologic findings in two cases. AJR Am J Roentgenol 2003,181(4),1071-1078 PubMed DOI

van Dijk N.J.; Menting S.; Wentink-Bonnema E.M.S.; Broekhuizen-van Haaften P.E.; Withycombe E.; Schallig H.D.F.H.; Mens P.F.; Laboratory evaluation of the miniature direct-on-blood PCR nucleic acid lateral flow immunoassay (mini-dbPCR-NALFIA), a simplified molecular diagnostic test for Plasmodium. Malar J 2023,22(1),98 PubMed DOI

Acharya K.; Blackburn A.; Mohammed J.; Haile A.T.; Hiruy A.M.; Werner D.; Metagenomic water quality monitoring with a portable laboratory. Water Res 2020,184,116112 PubMed DOI

Liu W.; Warden A.; Sun J.; Shen G.; Ding X.; Simultaneous detection of multiple HPV DNA via bottom-well microfluidic chip within an infra-red PCR platform. Biomicrofluidics 2018,12(2),024109 PubMed DOI

Bentahir M.; Ambroise J.; Delcorps C.; Pilo P.; Gala J.L.; Sensitive and specific recombinase polymerase amplification assays for fast screening, detection, and identification of Bacillus anthracis in a field setting. Appl Environ Microbiol 2018,84(11),e00506-18 PubMed DOI

Panno S.; Matić S.; Tiberini A.; Caruso A.G.; Bella P.; Torta L.; Stassi R.; Davino S.; Loop mediated isothermal amplification: Principles and applications in plant virology. Plants 2020,9(4),461 PubMed DOI

Notomi T.; Okayama H.; Masubuchi H.; Yonekawa T.; Watanabe K.; Amino N.; Hase T.; Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 2000,28(12),63e-63 PubMed DOI

Zasada A.A.; Zacharczuk K.; Formińska K.; Wiatrzyk A.; Ziółkowski R.; Malinowska E.; Isothermal DNA amplification combined with lateral flow dipsticks for detection of biothreat agents. Anal Biochem 2018,560,60-66 PubMed DOI

Mattiello C.J.; Stickle D.F.; Characterization by image analysis of the dose vs. response curve for a qualitative serum hCG lateral flow immunoassay. Clin Chim Acta 2023,538,175-180 PubMed DOI

Krishnamoorthy A.; Chandrapalan S.; JalayeriNia G.; Hussain Y.; Bannaga A.; Lei I.I.; Arasaradnam R.; Influence of seasonal and operator variations on diagnostic accuracy of lateral flow devices during the COVID-19 pandemic: A systematic review and meta-analysis. Clin Med (Lond) 2023,23(2),144-150 PubMed DOI

Çam Derin D.; Gültekin E.; Gündüz E.; Otlu B.; Comparison of 6 aptamer-aptamer pairs on rapid detection of SARS-CoV-2 by lateral flow assay. J AOAC Int 2024,107(3),464-470 PubMed DOI

Spicuzza L.; Campagna D.; Di Maria C.; Sciacca E.; Mancuso S.; Vancheri C.; Sambataro G.; An update on lateral flow immunoassay for the rapid detection of SARS-CoV-2 antibodies. AIMS Microbiol 2023,9(2),375-401 PubMed DOI

Wu Y.; Fan Q.; Chen Y.; Sun X.; Shi G.; Production and selection of antibody–antigen pairs for the development of immunoenzyme assay and lateral flow immunoassay methods for carbofuran and its analogues. Biosensors (Basel) 2022,12(8),560 PubMed DOI

Jaisankar A.; Krishnan S.; Rangasamy L.; Recent developments of aptamer-based lateral flow assays for point-of- care (POC) diagnostics. Anal Biochem 2022,655,114874 PubMed DOI

Vealan K.; Joseph N.; Alimat S.; Karumbati A.S.; Thilakavathy K.; Lateral flow assay: A promising rapid point-of-care testing tool for infections and non-communicable diseases. Asian Biomed 2023,17(6),250-266 PubMed DOI

Wang K.; Wang M.; Ma T.; Li W.; Zhang H.; Review on the selection of aptamers and application in paper-based sensors. Biosensors (Basel) 2022,13(1),39 PubMed DOI

Pohanka M.; Point-of-care diagnoses and assays based on lateral flow test. Int J Anal Chem 2021,2021,1-9 DOI

Pohanka M.; Point-of-care diagnosis of COVID-19 disease based on antigen tests. Bratisl Med J 2021,122(11),763-770 PubMed DOI

Pohanka M.; Current trends in the biosensors for biological warfare agents assay. Materials (Basel) 2019,12(14),2303 PubMed DOI

Kolton C.B.; Marston C.K.; Stoddard R.A.; Cossaboom C.; Salzer J.S.; Kozel T.R.; Gates-Hollingsworth M.A.; Cleveland C.A.; Thompson A.T.; Dalton M.F.; Yabsley M.J.; Hoffmaster A.R.; Detection of Bacillus anthracis in animal tissues using InBios active anthrax detect rapid test lateral flow immunoassay. Lett Appl Microbiol 2019,68(6),480-484 PubMed DOI

Pillai S.P.; Prentice K.W.; Ramage J.G.; DePalma L.; Sarwar J.; Parameswaran N.; Bell M.; Plummer A.; Santos A.; Singh A.; Pillai C.A.; Thirunavvukarasu N.; Manickam G.; Avila J.R.; Sharma S.K.; Hoffmaster A.; Anderson K.; Morse S.A.; Venkateswaran K.V.; Hodge D.R.; Rapid presumptive identification of Bacillus anthracis isolates using the Tetracore RedLine Alert™ test. Health Secur 2019,17(4),334-343 PubMed DOI

Zasada A.A.; Formińska K.; Zacharczuk K.; Jacob D.; Grunow R.; Comparison of eleven commercially available rapid tests for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Lett Appl Microbiol 2015,60(5),409-413 PubMed DOI

Ramage J.G.; Prentice K.W.; DePalma L.; Venkateswaran K.S.; Chivukula S.; Chapman C.; Bell M.; Datta S.; Singh A.; Hoffmaster A.; Sarwar J.; Parameswaran N.; Joshi M.; Thirunavkkarasu N.; Krishnan V.; Morse S.; Avila J.R.; Sharma S.; Estacio P.L.; Stanker L.; Hodge D.R.; Pillai S.P.; Comprehensive laboratory evaluation of a highly specific lateral flow assay for the presumptive identification of Bacillus anthracis spores in suspicious white powders and environmental samples. Health Secur 2016,14(5),351-365 PubMed DOI

Ziegler I.; Vollmar P.; Knüpfer M.; Braun P.; Stoecker K.; Reevaluating limits of detection of 12 lateral flow immunoassays for the detection of Yersinia pestis, Francisella tularensis, and Bacillus anthracis spores using viable risk group-3 strains. J Appl Microbiol 2021,130(4),1173-1180 PubMed DOI

Mistry D.A.; Wang J.Y.; Moeser M.E.; Starkey T.; Lee L.Y.W.; A systematic review of the sensitivity and specificity of lateral flow devices in the detection of SARS-CoV-2. BMC Infect Dis 2021,21(1),828 PubMed DOI

Vilca-Alosilla J.J.; Candia-Puma M.A.; Coronel-Monje K.; Goyzueta-Mamani L.D.; Galdino A.S.; Machado-de-Ávila R.A.; Giunchetti R.C.; Ferraz Coelho E.A.; Chávez-Fumagalli M.A.; A systematic review and meta-analysis comparing the diagnostic accuracy tests of COVID-19. Diagnostics 2023,13(9),1549 PubMed DOI

Biagini R.E.; Sammons D.L.; Smith J.P.; MacKenzie B.A.; Striley C.A.F.; Snawder J.E.; Robertson S.A.; Quinn C.P.; Rapid, sensitive, and specific lateral-flow immunochromatographic device to measure anti-anthrax protective antigen immunoglobulin g in serum and whole blood. Clin Vaccine Immunol 2006,13(5),541-546 PubMed DOI

Zasada A.A.; Detection and identification of Bacillus anthracis: From conventional to molecular microbiology methods. Microorganisms 2020,8(1),125 PubMed DOI

Bhardwaj S.K.; Bhardwaj N.; Kumar V.; Bhatt D.; Azzouz A.; Bhaumik J.; Kim K.H.; Deep A.; Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. Environ Int 2021,146,106183 PubMed DOI

Tyśkiewicz R.; Fedorowicz M.; Nakonieczna A.; Zielińska P.; Kwiatek M.; Mizak L.; Electrochemical, optical and mass-based immunosensors: A comprehensive review of Bacillus anthracis detection methods. Anal Biochem 2023,675,115215 PubMed DOI

Sadeghpour S.D.; Karimi F.; Alizadeh H.; Predictive and fluorescent nanosensing experimental methods for evaluating anthrax protective antigen and lethal factor interactions for therapeutic applications. Int J Biol Macromol 2020,160,1158-1167 PubMed DOI

Cheng H.W.; Huan S.Y.; Yu R.Q.; Nanoparticle-based substrates for surface-enhanced Raman scattering detection of bacterial spores. Analyst 2012,137(16),3601-3608 PubMed DOI

Sabei F.Y.; Colorimetric and fluorescent sensors based on nanomaterials for the detection of dipicolinic acid: A comprehensive review. J Nanopart Res 2023,25(12),250 DOI

Zhang Q.; Wang C.F.; Lv Y.K.; Luminescent switch sensors for the detection of biomolecules based on metal–organic frameworks. Analyst 2018,143(18),4221-4229 PubMed DOI

Miller S.E.; Teplensky M.H.; Moghadam P.Z.; Fairen-Jimenez D.; Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 2016,6(4),20160027 PubMed DOI

Liang T.; Chen J.; Yan R.; Jiang H.; Li H.; Research on detection of ultra-low concentration anthrax protective antigen using graphene field-effect transistor biosensor. Sensors 2023,23(13),5820 PubMed DOI

Karimi F.; Dabbagh S.; Gel green fluorescence ssDNA aptasensor based on carbon nanotubes for detection of anthrax protective antigen. Int J Biol Macromol 2019,140,842-850 PubMed DOI

Su P.; Wang X.; Wang T.; Feng X.; Zhang M.; Liang L.; Cao J.; Liu W.; Tang Y.; Eu/Tb supramolecular assembly hybrids for ultrasensitive and ratiometric detection of anthrax spore biomarker in water solution and actual spore samples. Talanta 2021,225,122063 PubMed DOI

Ma F.; Deng L.; Wang T.; Zhang A.; Yang M.; Li X.; Chen X.; Determination of 2, 6-dipicolinic acid as an Anthrax biomarker based on the enhancement of copper nanocluster fluorescence by reversible aggregation-induced emission. Mikrochim Acta 2023,190(8),291 PubMed DOI

Norouzi S.; Dashtian K.; Amourizi F.; Zare-Dorabei R.; Red-emissive carbon nanostructure-anchored molecularly imprinted Er-BTC MOF: A biosensor for visual anthrax monitoring. Analyst 2023,148(14),3379-3391 PubMed DOI

Lin X.; Wu H.; Zeng S.; Peng T.; Zhang P.; Wan X.; Lang Y.; Zhang B.; Jia Y.; Shen R.; Yin B.; A self-designed device integrated with a Fermat spiral microfluidic chip for ratiometric and automated point-of-care testing of anthrax biomarker in real samples. Biosens Bioelectron 2023,230,115283 PubMed DOI

Wu J.; Chen P.; Chen J.; Ye X.; Cao S.; Sun C.; Jin Y.; Zhang L.; Du S.; Integrated ratiometric fluorescence probe-based acoustofluidic platform for visual detection of anthrax biomarker. Biosens Bioelectron 2022,214,114538 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...