Ancient noeggerathialean reveals the seed plant sister group diversified alongside the primary seed plant radiation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33836571
PubMed Central
PMC7980368
DOI
10.1073/pnas.2013442118
PII: 2013442118
Knihovny.cz E-zdroje
- Klíčová slova
- Noeggererathiales, Permian, evolution, progymnosperm, seed plant,
- MeSH
- biologická evoluce * MeSH
- rostliny klasifikace embryologie MeSH
- semena rostlinná růst a vývoj MeSH
- zkameněliny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Noeggerathiales are enigmatic plants that existed during Carboniferous and Permian times, ∼323 to 252 Mya. Although their morphology, diversity, and distribution are well known, their systematic affinity remained enigmatic because their anatomy was unknown. Here, we report from a 298-My-old volcanic ash deposit, an in situ, complete, anatomically preserved noeggerathialean. The plant resolves the group's affinity and places it in a key evolutionary position within the seed plant sister group. Paratingia wuhaia sp. nov. is a small tree producing gymnospermous wood with a crown of pinnate, compound megaphyllous leaves and fertile shoots each with Ω-shaped vascular bundles. The heterosporous (containing both microspores and megaspores), bisporangiate fertile shoots appear cylindrical and cone-like, but their bilateral vasculature demonstrates that they are complex, three-dimensional sporophylls, representing leaf homologs that are unique to Noeggerathiales. The combination of heterospory and gymnospermous wood confirms that Paratingia, and thus the Noeggerathiales, are progymnosperms. Progymnosperms constitute the seed plant stem group, and Paratingia extends their range 60 My, to the end of the Permian. Cladistic analysis resolves the position of the Noeggerathiales as the most derived members of a heterosporous progymnosperm clade that are the seed plant sister group, altering our understanding of the relationships within the seed plant stem lineage and the transition from pteridophytic spore-based reproduction to the seed. Permian Noeggerathiales show that the heterosporous progymnosperm sister group to seed plants diversified alongside the primary radiation of seed plants for ∼110 My, independently evolving sophisticated cone-like fertile organs from modified leaves.
Center for Excellence in Life and Paleoenvironment Chinese Academy of Sciences Nanjing 210008 China
Centre of Palaeobiodiversity West Bohemian Museum in Plzeň 301 36 Plzeň Czech Republic
Department of Earth and Environmental Science University of Pennsylvania Philadelphia PA 19104 6316
Department of Geology and Atmospheric Science Indiana University Bloomington IN 47405
Department of Paleontology Geozentrum University of Vienna 1090 Vienna Austria
Indiana Geological and Water Survey Bloomington IN 47404;
University of Chinese Academy of Sciences Shijingshan District Beijing 100049 China
Zobrazit více v PubMed
Bateman R. M., DiMichele W. A., Heterospory: The most iterative key innovation in the evolutionary history of the plant kingdom. Biol. Rev. Camb. Philos. Soc. 69, 345–417 (1994).
Bateman R. M., et al. ., Early evolution of land plants: Phylogeny, physiology and ecology of the primary terrestrial radiation. Annu. Rev. Ecol. Syst. 29, 263–292 (1998).
Taylor T. N., Taylor E. L., Krings M., Palaeobotany: The Biology and Evolution of Fossil Plants (Academic Press, 2007).
Beck C. B., Wight D. C., “Progymnosperms” in Origin and Evolution of Gymnosperms, Beck C., Ed. (Columbia University Press, 1998), pp. 1–84.
Stubblefield S. P., Rothwell G. W., Cecropsis luculentum gen. et spec. nov.: Evidence for heterosporous progymnosperms in the Upper Pennsylvanian of North America. Am. J. Bot. 76, 1415–1428 (1989).
Doyle J. A., Donoghue M. J., Seed plant phylogeny and the origin of angiosperms: An experimental cladistics approach. Bot. Rev. 52, 321–431 (1986).
Kenrick P., Crane P. R., The Origin and Early Diversification of Land Plants: A Cladistics Study (Smithsonian Institution Press, 1997).
Hilton J., Bateman R. M., Pteridosperms are the backbone of seed–plant phylogeny. J. Torrey Bot. Soc. 133, 119–168 (2006).
Wang S. J., et al. ., Anatomically preserved “strobili” and leaves from the Permian of China (Dorsalistachyaceae, fam. nov.) broaden knowledge of Noeggerathiales and constrain their possible taxonomic affinities. Am. J. Bot. 104, 127–149 (2017). PubMed
Pfefferkorn H. W., Wang J., Paleoecology of Noeggerathiales, an enigmatic, extinct plant group of Carboniferous and Permian times. Palaeogeog. Palaeclim. Palaeoecol. 448, 141–150 (2016).
Boureau E., Traité de Paléobotanique, Vol. III. Sphenophyta, Noeggerathiophyta (Masson et Cie, 1964).
Wang J., Shan W., Kerp H., Bek J., Wang S. J., A whole noeggerathialean plant Tingia unita Wang from the earliest Permian peat-forming flora, Wuda Coalfield. Rev. Palaeobot. Palynol., 10.1016/j.revpalbo.2020.104204 (2020). DOI
Feng Z., Lv Y., Guo Y., Wei H. B., Kerp H., Leaf anatomy of a late Palaeozoic cycad. Biol. Lett. 13, 2–170456 (2017). PubMed PMC
Pfefferkorn H. W., Wang J., Early J., Permian coal-forming floras preserved as compressions from the Wuda District (Inner Mongolia, China). Int. J. Coal Geol. 69, 1107–1119 (2007).
Wang J., Pfefferkorn H. W., Zhang Y., Feng Z., Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia. Proc. Natl. Acad. Sci. U.S.A. 109, 4927–4932 (2012). PubMed PMC
Schmitz M., Pfefferkorn H. W., Shen S. Z., Wang J., A volcanic tuff near the Carboniferous–Permian boundary, Taiyuan Formation, North China: Radioisotopic dating and global correlation. Rev. Palaeobot. Palynol., 10.1016/j.revpalbo.2020.104244 (2020). DOI
Wang J., Pfefferkorn H. W., Bek J., Paratingia wudensis sp. nov., a whole noeggerathialean plant preserved in an earliest Permian air fall tuff in Inner Mongolia, China. Am. J. Bot. 96, 1676–1689 (2009). PubMed
Walton J., On Protopitys (Göppert): With a description of a fertile specimen Protopitys scotica sp. nov. from the Calciferous Sandstone Series of Dunbartonshire. Trans. R. Soc. Edinb. 63, 333–340 (1957).
Zhang W., et al. ., Fossil Woods of China (China Forest Publishing House, 2006).
Rothwell G. W., Serbet R., Lignophyte phylogeny and the evolution of spermatophytes: A numerical cladistic analysis. Syst. Bot. 19, 443–482 (1994).
Beck C. B., “Archaeopteris and its role in vascular plant evolution” in Paleobotany, Paleoecology and Evolution, Niklas K. J., Ed. (Praeger, 1981), vol. 1, pp. 193–230.
Dannenhoffer J. M., Bonamo P. M., The wood of Rellimia from the middle Devonian of New York. Int. J. Plant Sci. 164, 429–441 (2003).
Rothwell G. W., Erwin D. M., Origins of seed plants—an aneurophyte seed-fern link elaborated. Am. J. Bot. 74, 970–973 (1987).
Scheckler S. E., Skogg J. E., Banks H. P., Langoxylon asterochlaenoideum Stockmans: Anatomy and relationships of a fern-like plant from the middle Devonian of Belgium. Rev. Palaeobot. Palynol. 142, 193–217 (2006).
Toledo S., Bippus A. C., Tomescu A. M. F., Buried deep beyond the veil of extinction: Euphyllophyte relationships at the base of the spermatophyte clade. Am. J. Bot. 105, 1264–1285 (2018). PubMed
Leary R. L., Pfefferkorn H. W., An early Pennsylvanian flora with Megalopteris and Noeggerathiales from west-central Illinois. Ill. State Geol. Surv. Circ. 500, 1–77 (1977).
Rudall P. J., Hilton J., Vergara-Silva F., Bateman R. M., Recurrent abnormalities in conifer cones and the evolutionary origins of flower-like structures. Trends Plant Sci. 16, 151–159 (2011). PubMed
Leslie A. B., Predation and protection in the macroevolutionary history of conifer cones. Proc. Biol. Sci. 278, 3003–3008 (2011). PubMed PMC
Tomlinson P. B., Ricciardi A., Huggett B. A., Cracking the omega code: Hydraulic architecture of the cycad leaf axis. Ann. Bot. 121, 483–488 (2018). PubMed PMC
Zhang H., et al. ., The terrestrial end-Permian mass extinction in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 108–124 (2016).
Jiao Y., et al. ., Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011). PubMed
Retallack G. J., Huang C., Ecology and evolution of Devonian trees in New York, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 110–128 (2011).
Sun K., Deng S. H., Carboniferous and Permian flora in the northern part of the Helan Mountains. Geoscience 17, 259–284 (2003).
Fairon-Demaret M., Hilton J., Berry C. M., “Dégagement” inFossil Plants and Spores: Modern Techniques, Jones T. P., Rowe N. P., Eds. (Geological Society of London, 1999), pp. 33–35.
Galtier J., Phillips T. L., “The acetate peel technique” in Fossil Plants and Spores: Modern Techniques, Jones T. P., Rowe N. P., Eds. (Geological Society of London, 1999), pp. 33–35.
Maddison W. P., Maddison D. R., Mesquite: A modular system for evolutionary analysis (Version 3.31, 2017). http://mesquiteproject.org. Accessed 19 February 2021.
Goloboff P., Farris J., Nixon K., TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).