Eunuchs or Females? Causes and Consequences of Gynodioecy on Morphology, Ploidy, and Ecology of Stellaria graminea L. (Caryophyllaceae)

. 2021 ; 12 () : 589093. [epub] 20210412

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33912199

Plant speciation results from intricate processes such as polyploidization, reproductive strategy shifts and adaptation. These evolutionary processes often co-occur, blurring their respective contributions and interactions in the speciation continuum. Here, relying on a large-scale study, we tested whether gynodioecy triggers the divergent evolution of flower morphology and genome between sexes, and contributes to the establishment of polyploids and colonization of ecological niches in Stellaria graminea. We found that gynodioecy in S. graminea leads to flower morphology divergence between females and hermaphrodites, likely due to sexual selection. Contrary to our expectations, gynodioecy occurs evenly in diploids and tetraploids, suggesting that this reproductive strategy was not involved in the establishment of polyploids. Both diploid and tetraploid females have a larger genome size than hermaphrodites, suggesting the presence of sex chromosomes. Finally, ecology differs between cytotypes and to a lesser extent between sexes, suggesting that the link between environment and presence of females is indirect and likely explained by other aspects of the species' life history. Our study shows that gynodioecy leads to the consistent evolution of sexual traits across a wide range of populations, cytotypes and environments within a given species, and this likely contributes to the phenotypic and genetic distinctiveness of the species from its sister clades.

Zobrazit více v PubMed

Abdusalam A., Tan D., Chang S. M. (2017). Sexual expression and reproductive output in the ephemeral Geranium transversale are correlated with environmental conditions. Am. J. Bot. 104 1920–1929. 10.3732/ajb.1700258 PubMed DOI

Alonso C., Herrera C. M. (2001). Neither vegetative nor reproductive advantages account for high frequency of male-steriles in southern Spanish gynodioecious Daphne laureola (Thymelaeaceae). Am. J. Bot. 88 1016–1024. 10.2307/2657083 PubMed DOI

Anderson M., Braak C. T. (2003). Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Sim. 73 85–113. 10.1080/00949650215733 DOI

Ashman T. L., Kwok A., Husband B. C. (2013). Revisiting the dioecy-polyploidy association: alternate pathways and research opportunities. Cytogenet. Genome Res. 140 241–255. 10.1159/000353306 PubMed DOI

Bachtrog D., Mank J. E., Peichel C. L., Kirkpatrick M., Otto S. P. (2014). Sex determination: why so many ways of doing it? PLoS Biol. 12:e1001899. 10.1371/journal.pbio.1001899 PubMed DOI PMC

Bačovský V., Čegan R., Šimoníková D., Hřibová E., Hobza R. (2020). The formation of sex chromosomes in Silene latifolia and S. dioica was accompanied by multiple chromosomal rearrangements. Front. Plant Sci. 11:205. 10.3389/fpls.2020.00205 PubMed DOI PMC

Bailey N. W., Marie-Orleach L., Moore A. J. (2017). Indirect genetic effects in behavioural ecology: does behaviour play a special role in evolution? Behav. Ecol. 29 1–11. 10.1093/beheco/arx127 PubMed DOI

Barrett S. C. H. (2002). Evolution of sex: the evolution of plant sexual diversity. Nat. Rev. Genet. 3 274–284. 10.1038/nrg776 PubMed DOI

Barrett S. C. H., Hough J. (2013). Sexual dimorphism in flowering plants. J. Exp. Bot. 64 67–82. 10.1093/jxb/ers308 PubMed DOI

Bateman A. J. (1948). Intra-sexual selection in Drosophila. Heredity 2 349–368. 10.1038/hdy.1948.21 PubMed DOI

Bates D., Maechler M., Bolker B., Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 1–48. 10.18637/jss.v067.i01 DOI

Bernasconi G., Antonovics J., Biere A., Charlesworth D., Delph L. F., Filatov D., et al. (2009). Silene as a model system in ecology and evolution. Heredity 103 5–14. 10.1038/hdy.2009.34 PubMed DOI

Bjornstad O. N. (2019). ncf: Spatial Covariance Functions. R Package Version 1.2–8.

Bjornstad O. N., Falck W. (2001). Nonparametric spatial covariance functions: estimation and testing. Environ. Ecol. Stat. 8 53–70. 10.1023/A:1009601932481 DOI

Blank C. M., Levin R. A., Miller J. S. (2014). Intraspecific variation in gender strategies in Lycium (Solanaceae): associations with ploidy and changes in floral form following the evolution of gender dimorphism. Am. J. Bot. 101 2160–2168. 10.3732/ajb.1400356 PubMed DOI

Bolker B. M., Brooks M. E., Clark C. J., Geange S. W., Poulsen J. R., Stevens M. H. H., et al. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24 127–135. 10.1016/j.tree.2008.10.008 PubMed DOI

Buide M. L., Del Valle J. C., Castilla A. R., Narbona E. (2018). Sex expression variation in response to shade in gynodioecious-gynomonoecious species: Silene littorea decreases flower production and increases female flower proportion. Environ. Exp. Bot. 146 54–61. 10.1016/j.envexpbot.2017.10.016 DOI

Caruso C. M., Case A. L. (2007). Sex ratio variation in gynodioecious Lobelia siphilitica: effects of population size and geographic location. J. Evol. Biol. 20 1396–1405. 10.1111/j.1420-9101.2007.01361.x PubMed DOI

Caruso C. M., Eisen K., Case A. L. (2016). An angiosperm-wide analysis of the correlates of gynodioecy. Int. J. Plant Sci. 177 115–121. 10.1086/684260 DOI

Čertner M., Kúr P., Kolář F., Suda J. (2019). Climatic conditions and human activities shape diploid–tetraploid coexistence at different spatial scales in the common weed Tripleurospermum inodorum (Asteraceae). J. Biogeogr. 46 1355–1366. 10.1111/jbi.13629 DOI

Chalopin D., Volff J.-N., Galiana D., Anderson J. L., Schartl M. (2015). Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res. 23 545–560. 10.1007/s10577-015-9490-8 PubMed DOI

Charlesworth B., Charlesworth D. (1978). A model for the evolution of dioecy and gynodioecy. Am. Nat. 112 975–997. 10.1086/283342 DOI

Charlesworth D. (2002). Plant sex determination and sex chromosomes. Heredity 88 94–101. 10.1038/sj.hdy.6800016 PubMed DOI

Chater A. O., Heywood V. H. (1993). “Stellaria L,” in Flora Europaea II, eds Tutin T. G., Heywood V. H., Burges N. A., Valentine D. H., Walters S. M., Webb D. A. (New York, NY: Cambridge University Press; ), 161–164.

Chinnappa C. C. (1985). Studies in the Stellaria longipes complex (Caryophyllaceae). Interspecific hybridization. I. Triploid meiosis. Can. J. Genet. Cytol. 27 318–321. 10.1139/g85-047 DOI

Chinnappa C. C., Donald G. M., Sasidharan R., Emery R. J. N. (2005). The biology of Stellaria longipes (Caryophyllaceae). Can. J. Bot. 83 1367–1383. 10.1139/b05-117 DOI

Dalton R., Koski M., Ashman T.-L. (2013). Maternal sex effects and inbreeding depression under varied environmental conditions in gynodioecious Fragaria vesca subsp. bracteata. Ann. Bot. 112 613–621. 10.1093/aob/mct120 PubMed DOI PMC

Dang T. T. T., Chinnappa C. C. (2007). The reproductive biology of Stellaria longipes Goldie (Caryophyllaceae) in North America. Flora 202 403–407. 10.1016/j.flora.2006.08.005 DOI

Darwin C. R. (1877). The Different Forms of Flowers on Plants of the Same Species. London: Murray.

Delph L. F. (1990). Sex-ratio variation in the gynodioecious shrub Hebe strictissima (Scrophulariaceae). Evolution 44 134–142. 10.1111/j.1558-5646.1990.tb04284.x PubMed DOI

Delph L. F., Galloway L. F., Stanton M. L. (1996). Sexual dimorphism in flower size. Am. Nat. 148 299–320. 10.1086/285926 DOI

Delph L. F., Touzet P., Bailey M. F. (2007). Merging theory and mechanism in studies of gynodioecy. Trends Ecol. Evol. 22 17–24. 10.1016/j.tree.2006.09.013 PubMed DOI

Desfeux C., Maurice S., Henry J. P., Lejeune B., Gouyon P. H. (1996). Evolution of reproductive systems in the genus Silene. Proc. R. Soc. B 263 409–414. 10.1098/rspb.1996.0062 PubMed DOI

Doležel J., Doleželová M., Novák F. J. (1994). Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol. Plant. 36 351–357. 10.1007/BF02920930 DOI

Dufay M., Lahiani E., Brachi B. (2010) Gender variation and inbreeding depression in gynodioecious-gynomonoecious Silene nutans (Caryophyllaceae). Int. J. Plant. Sci. 171 53–62. 10.1086/647916 DOI

Ehrendorfer F. (1980). “Polyploidy and distribution,” in Polyploidy. Biological Relevance, ed. Lewis W. H. (New York, NY: Plenum Press; ), 45–60. 10.1007/978-1-4613-3069-1_3 DOI

Fox J., Weisberg S. (2018). Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. J. Stat. Soft. 87:9. 10.18637/jss.v087.i09 DOI

Frank S. A. (1989). The evolutionary dynamics of cytoplasmic male sterility. Am. Nat. 133 345–376. 10.1086/284923 DOI

Gadella T. W. J. (1977). Cytotaxonomic studies in Stellaria graminea L. in the Netherlands. Proc. K. Ned. Akad. Wet. C 80 161–170.

Geber M. A., Dawson T. E., Delph L. F. (1999). Gender and Sexual Dimorphism in Flowering Plants. Berlin: Springer-Verlag.

Glick L., Sabath N., Ashman T. L., Goldberg E., Mayrose I. (2016). Polyploidy and sexual system in angiosperms: is there an association? Am. J. Bot. 103 1223–1235. 10.3732/ajb.1500424 PubMed DOI

Godin G. N. (2020). Distrbution of gynodioecy in flowering plants. [Распространение гинодиэции у цветковых растений]. Bot. Zhurn. (Moscow & Leningrad) 105 236–252. 10.31857/S0006813620030023 DOI

Godin V. N., Demyanova E. I. (2013). On the distribution of gynodioecy in flowering plants. Bot. Zhurn. 93 1465–1487.

Goldblatt P., Lowry P. P. (2011). The index to plant chromosome numbers (IPCN): three decades of publication by the missouri botanical garden come to an end. Ann. Missouri Bot. Gard. 98 226–227. 10.3417/2011027 DOI

Harmaja H. (1992). A new chromosome number for finnish Stellaria graminea (Caryophyllaceae). Ann. Bot. Fenn. 29 325–327.

Harrison X. A. (2014). Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2:e616. 10.7717/peerj.616 PubMed DOI PMC

Hodálová I., Mered’a P., Jr., Vinikárová A., Grulich V., Rotreklová O. (2010). A new cytotype of Jacobaea vulgaris (Asteraceae): frequency, morphology and origin. Nord. J. Bot. 28 413–427. 10.1111/j.1756-1051.2010.00603.x DOI

Holmgren P. K., Holmgren N. H., Barnett L. C. (1990). Index Herbariorum, Part I: The Herbaria of the World. New York, NY: The New York Botanic Garden Press.

Horne A. S. (1914). Variability in Stellaria graminea. New. Phytol. 8 42–73. 10.1111/j.1469-8137.1914.tb05739.x DOI

Hurdu B., I, Escalante T., Pus̨cas̨ M., Novikoff A., Bartha L., Zimmermann N. E. (2016). Exploring the different facets of plant endemism in the South-Eastern Carpathians: a manifold approach for the determination of biotic elements, centres and areas of endemism. Biol. J. Linn. Soc. 119 649–672. 10.1111/bij.12902 DOI

Käfer J., Marais G. A. B., Pannell J. R. (2017). On the rarity of dioecy in flowering plants. Mol. Ecol. 26 1225–1241. 10.1111/mec.14020 PubMed DOI

Kamath A., Levin R. A., Miller J. S. (2017). Floral size and shape evolution following the transition to gender dimorphism. Am. J. Bot. 104 451–460. 10.3732/ajb.1600442 PubMed DOI

Kliment J., Turis P., Janišová M. (2016). Taxa of vascular plants endemic to the Carpathian Mts. Preslia 88 19–76.

Kolář F., Četner M., Suda J., Schönswetter P., Husband B. C. (2017). Mixed-ploidy species: progress and opportunities in polyploid research. Trends Plant Sci. 22 1041–1055. 10.1016/j.tplants.2017.09.011 PubMed DOI

Kolář F., Lučanová M., Záveská E., Fuxová G., Mandáková T., Španiel S., et al. (2016). Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of the Arabidopsis arenosa group (Brassicaceae). Biol. J. Linn. Soc. 119 673–688. 10.1111/bij.12479 DOI

Kurepin L. V., Pharis R. P., Emery R. J. N., Reid D. M., Chinnappa C. C. (2015). Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling, gibberellins and auxin. Plant Physiol. Biochem. 94 174–180. 10.1016/j.plaphy.2015.06.013 PubMed DOI

Kurtto A. (2001). “Caryophyllaceae,” in Flora nordica, vol. 2, Chenopodiaceae to Fumariaceae, ed. Jonsell B. (Stockholm: Bergius Foundation, Royal Academy of Sciences; ), 83–84.

Legendre P., Anderson M. J. (1999). Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69 1–24. 10.2307/2657192 DOI

Macdonald S. E., Chinnappa C. C., Reid D. M. (1988). Evolution of phenotypic plasticity in the Stellaria longipes complex: comparisons among cytotypes and habitats. Evolution 42 1036–1046. 10.1111/j.1558-5646.1988.tb02522.x PubMed DOI

Mártonfi P., Michálek J., Hadinec J., Mártonfiová L., Repčák M. (1999). Hypericum dubium - A new species of the Czech flora. Preslia 71 337–348.

McCauley D. E., Bailey M. F. (2009). Recent advances in the study of gynodioecy: the interface of theory and empiricism. Ann. Bot. 104 611–620. 10.1093/aob/mcp141 PubMed DOI PMC

McCullagh P., Nelder J. A. (1989). Generalized Linear Models, 2nd Edn. New York, NY: Chapman and Hall.

Miller J. S., Kamath A., Husband B. C., Levin R. A. (2016). Correlated polymorphism in cytotype and sexual system within a monophyletic species Lycium californicum. Ann. Bot. 117 307–317. 10.1093/aob/mcv167 PubMed DOI PMC

Miller J. S., Venable D. L. (2000). Polyploidy and the evolution of gender dimorphism in plants. Science 289 2355–2338. 10.1126/science.289.5488.2335 PubMed DOI

Ming R., Wang J., Moore P. H., Paterson A. H. (2007). Sex chromosomes in flowering plants. Am. J. Bot. 94 141–150. 10.3732/ajb.94.2.141 PubMed DOI

Morton J. K. (2005). “Stellaria,” in Flora of North America North of Mexico, Vol. 5 ed. Flora of North America Editorial Committee (New York, NY: Oxford University Press; ), 96–114.

Mráz P., Barabas D., Lengyelová L., Turis P., Schmotzer A., Janišová M., et al. (2016). Vascular plant endemism in the Western Carpathians: Spatial patterns, environmental correlates and taxon traits. Biol. J. Linn. Soc. 119 630–648. 10.1111/bij.12792 DOI

Mulcahy D. L. (1979). The rise of the angiosperms: a genecological factor. Science 171 1155–1156. 10.1126/science.206.4414.20 PubMed DOI

Murín A. (1960). Substitution of cellophane for glass covers to facilitate preparation of permanent squashes and smears. Stain Technol. 35 351–353. PubMed

Nakagawa S., Johnson P. C., Schielzeth H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14:e20170213. 10.1098/rsif.2017.0213 PubMed DOI PMC

Otto S. P. (2007). The evolutionary consequences of polyploidy. Cell 131 452–462. 10.1016/j.cell.2007.10.022 PubMed DOI

Ozenda P. (1985). La végétation de la Chaîne Alpine Dans L’espace Montag-Nard Européen. France: Masson.

Pannell J. R., Obbard D. J., Buggs R. J. A. (2004). Polyploidy and the sexual system: what can we learn from Mercurialis annua? Biol. J. Linn. Soc. 82 547–560. 10.1111/j.1095-8312.2004.00340.x DOI

Paterno G. P., Silveira C. L., Kollman J., Westoby M., Fonseca C. R. (2020). The maleness of larger angiosperm flowers. Proc. Natl. Acad. Sci. U.S.A. 117 10921–10926. 10.1073/pnas.1910631117 PubMed DOI PMC

Pawłowski B. (1970). Remarques sur l’endéemisme dans la flore des Alpes et des Carpates. Plant Ecol. 21:181. 10.1007/BF02269663 DOI

Peterson R., Slovin J. P., Chen C. (2010). A simplified method for differential staining of aborted and non-aborted pollen grains. Int. J. Plant Biol. 1:e13. 10.4081/pb.2010.e13 DOI

Philipp M. (1980). Reproductive biology of Stellaria longipes Goldie as revealed by a cultivation experiment. New Phytol. 85 557–569. 10.1111/j.1469-8137.1980.tb00771.x DOI

Pinheiro J. C., Bates D. M. (2000). Mixed-Effects Models in S and SPLUS. New York, NY: Springer.

Quinn G. P., Keough M. J. (2002). Experimental Design and Data Analysis for Biologists. New York, NY: Cambridge University Press.

R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Ramsey J., Schemske D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29 467–501. 10.1146/annurev.ecolsys.29.1.467 DOI

Rao C. R. (1964). The use and interpretation of principal component analysis in applied research. Sankhya Ser. A 26 329–358.

Renner S. S. (2014). The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101 1588–1596. 10.3732/ajb.1400196 PubMed DOI

Rice A., Glick L., Abadi S., Einhorn M., Kopelman N. M., Salman-Minkov A., et al. (2015). The chromosome counts database (CCDB) – a community resource of plant chromosome numbers. New Phytol. 206 19–26. 10.1111/nph.13191 PubMed DOI

Richards A. J. (1997). Plant Breeding Systems. London: Chapman & Hall.

Rivkin L. R., Case A. L., Caruso C. M. (2016). Why is gynodioecy a rare but widely distributed sexual system? Lessons from the Lamiaceae. New Phytol. 211 688–696. 10.1111/nph.13926 PubMed DOI

Rodríguez-Riaño T., Dafni A. (2007). Pollen-stigma interference in two gynodioecious species of Lamiaceae with intermediate individuals. Ann. Bot. 100 423–431. 10.1093/aob/mcl168 PubMed DOI PMC

Ruffatto D., Zaya D. N., Molano-Flores B. (2015). Reproductive success of the gynodioecious Lobelia spicata Lam. (Campanulaceae): female frequency, population demographics, and latitudinal patterns. Int. J. Plant Sci. 176 120–130. 10.1086/679460 DOI

Schnable P. S., Wise R. P. (1998). The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3 175–180. 10.1016/S1360-1385(98)01235-7 DOI

Schönswetter P., Suda J., Popp M., Weiss-Schneeweiss H., Brochmann C. (2007). Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol. Phylogenet. Evol. 42 92–103. 10.1016/j.ympev.2006.06.016 PubMed DOI

Shykoff J. A., Kolokotronis S. O., Collin C. L., López-Villavincencio M. (2003). Effects of male sterility on reproductive traits in gynodioecious plants: a meta-analysis. Oecologia 135 1–9. 10.1007/s00442-002-1133-z PubMed DOI

Singmann H., Bolker B., Westfall J., Aust F. (2019). afex: Analysis of factorial experiments. R package version 0.23–20.

Slancarova V., Zdanska J., Janousek B., Talianova M., Zschach C., Zluvova J., et al. (2013). Evolution of sex determination systems with heterogametic males and females in Silene. Evolution 67 3669–3677. 10.1111/evo.12223 PubMed DOI

Slovák M., Kučera J., Goliašová K. (2012). “Stellaria L,” in Flóra Slovenska 6/3, eds Goliašová K., Michalková E. (Bratislava: Veda; ), 249–280.

Soltis P. S., Soltis D. E. (2009). The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60 561–588. 10.1146/annurev.arplant.043008.092039 PubMed DOI

Sonnleitner M., Flatscher R., Escobar Garcıa P., Rauchová J., Suda J., Schneeweiss G. M., et al. (2010). Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Ann. Bot. 106 967–977. 10.1093/aob/mcq192 PubMed DOI PMC

Spigler R. B., Ashman T.-L. (2011). Sex ratio and subdioecy in Fragaria virginiana: the roles of plasticity and gene flow examined. New Phytol. 190 1058–1068. 10.1111/j.1469-8137.2011.03657.x PubMed DOI

Stephenson A. G., Travers S. E., Mena-Ali J. I., Winsor J. A. (2003). Pollen performance before and during the autotrophic-heterotrophic transition of pollen tube growth. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358 1009–1018. 10.1098/rstb.2003.1290 PubMed DOI PMC

Van de Paer C., Saumitou-Laprade P., Vernet P., Billiard S. (2015). The joint evolution and maintenance of self-incompatibility with gynodioecy or androdioecy. J. Theor. Biol. 371 90–101. 10.1016/j.jtbi.2015.02.003 PubMed DOI

Van de Peer Y., Maere S., Meyer A. (2009). The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10 725–732. 10.1038/nrg2600 PubMed DOI

Vaughton G., Ramsey M. (2005). Dry environments promote the establishment of females in monomorphic populations of Wurmbea biglanulosa (Colchicaceae). Evol. Ecol. 18 323–341. 10.1007/s10682-004-2003-4 DOI

Vaughton G., Ramsey M. (2012). Gender plasticity and sexual system stability in Wurmbea. Ann. Bot. 109 521–553. 10.1093/aob/mcr163 PubMed DOI PMC

Vyskot B., Hobza R. (2015). The genomics of plant sex chromosomes. Plant Sci. 236 126–135. 10.1016/j.plantsci.2015.03.019 PubMed DOI

Wang L. L., Zhang Z. Q., Yang Y. P., Duan Y. W. (2019). The coexistence of hermaphroditic and dioecious plants is associated with polyploidy and gender dimorphism in Dasiphora fruticosa. Plant Divers. 41 323–329. 10.1016/j.pld.2019.06.002 PubMed DOI PMC

Wei N., Cronn R., Liston A., Ashman T. L. (2019). Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. New Phytol. 221 2286–2297. 10.1111/nph.15508 PubMed DOI PMC

Weiss-Schneeweiss H., Emadzade K., Jang T. S., Schneeweiss G. M. (2013). Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet. Genome Res. 140 137–150. 10.1159/000351727 PubMed DOI PMC

Wise R. P., Pring D. R. (2002). Nuclear-mediated mitochondrial gene regulation and male fertility in higher plants: light at the end of the tunnel? Proc. Natl. Acad. Sci. U.S.A. 99 10240–10242. 10.1073/pnas.172388899 PubMed DOI PMC

Yu Q., Navajas-Pérez R., Tong E., Robertson J., Moore P. H. (2008). Recent origin of dioecious and gynodioecious Y chromosomes in papaya. Trop. Plant Biol. 1 49–57. 10.1007/s12042-007-9005-7 DOI

Zhang D. (2017). A coefficient of determination for generalized linear models. Am. Stat. 71 310–316. 10.1080/00031305.2016.1256839 DOI

Zhang D. (2020). rsq: R-Squared and Related Measures. R Package Version 2.0.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Reversibility of sex changes in the plant kingdom: more important than we thought?

. 2025 Dec ; 100 (6) : 2199-2216. [epub] 20250601

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...