Do Rural Second Homes Shape Commensal Microbiota of Urban Dwellers? A Pilot Study among Urban Elderly in Finland

. 2021 Apr 02 ; 18 (7) : . [epub] 20210402

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33918486

According to the hygiene and biodiversity hypotheses, increased hygiene levels and reduced contact with biodiversity can partially explain the high prevalence of immune-mediated diseases in developed countries. A disturbed commensal microbiota, especially in the gut, has been linked to multiple immune-mediated diseases. Previous studies imply that gut microbiota composition is associated with the everyday living environment and can be modified by increasing direct physical exposure to biodiverse materials. In this pilot study, the effects of rural-second-home tourism were investigated on the gut microbiota for the first time. Rural-second-home tourism, a popular form of outdoor recreation in Northern Europe, North America, and Russia, has the potential to alter the human microbiota by increasing exposure to nature and environmental microbes. The hypotheses were that the use of rural second homes is associated with differences in the gut microbiota and that the microbiota related to health benefits are more diverse or common among the rural-second-home users. Based on 16S rRNA Illumina MiSeq sequencing of stool samples from 10 urban elderly having access and 15 lacking access to a rural second home, the first hypothesis was supported: the use of rural second homes was found to be associated with lower gut microbiota diversity and RIG-I-like receptor signaling pathway levels. The second hypothesis was not supported: health-related microbiota were not more diverse or common among the second-home users. The current study encourages further research on the possible health outcomes or causes of the observed microbiological differences. Activities and diet during second-home visits, standard of equipment, surrounding environment, and length of the visits are all postulated to play a role in determining the effects of rural-second-home tourism on the gut microbiota.

Zobrazit více v PubMed

Lerner A., Jeremias P., Matthias T. The World Incidence and Prevalence of Autoimmune Diseases Is Increasing. IJCD. 2016;3:151–155. doi: 10.12691/ijcd-3-4-8. DOI

To T., Stanojevic S., Moores G., Gershon A.S., Bateman E.D., Cruz A.A., Boulet L.-P. Global Asthma Prevalence in Adults: Findings from the Cross-Sectional World Health Survey. BMC Public Health. 2012;12:204. doi: 10.1186/1471-2458-12-204. PubMed DOI PMC

Seto K.C., Güneralp B., Hutyra L.R. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools. Proc. Natl. Acad. Sci. USA. 2012;109:16083–16088. doi: 10.1073/pnas.1211658109. PubMed DOI PMC

United Nations, Department of Economic and Social Affairs, Population Division . World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420) United Nations; New York, NY, USA: 2019.

Strachan D.P. Hay Fever, Hygiene, and Household Size. BMJ. 1989;299:1259–1260. doi: 10.1136/bmj.299.6710.1259. PubMed DOI PMC

Stiemsma L.T., Reynolds L.A., Turvey S.E., Finlay B.B. The Hygiene Hypothesis: Current Perspectives and Future Therapies. Immunotargets Ther. 2015;4:143–157. doi: 10.2147/ITT.S61528. PubMed DOI PMC

Hanski I., von Hertzen L., Fyhrquist N., Koskinen K., Torppa K., Laatikainen T., Karisola P., Auvinen P., Paulin L., Mäkelä M.J., et al. Environmental Biodiversity, Human Microbiota, and Allergy Are Interrelated. Proc. Natl. Acad. Sci. USA. 2012;109:8334–8339. doi: 10.1073/pnas.1205624109. PubMed DOI PMC

Rook G.A.W., Adams V., Hunt J., Palmer R., Martinelli R., Brunet L.R. Mycobacteria and Other Environmental Organisms as Immunomodulators for Immunoregulatory Disorders. Springer Semin. Immun. 2004;25:237–255. doi: 10.1007/s00281-003-0148-9. PubMed DOI

Noverr M.C., Huffnagle G.B. The “microflora Hypothesis” of Allergic Diseases. Clin. Exp. Allergy. 2005;35:1511–1520. doi: 10.1111/j.1365-2222.2005.02379.x. PubMed DOI

Ege M.J., Mayer M., Schwaiger K., Mattes J., Pershagen G., van Hage M., Scheynius A., Bauer J., von Mutius E. Environmental Bacteria and Childhood Asthma. Allergy. 2012;67:1565–1571. doi: 10.1111/all.12028. PubMed DOI

Valkonen M., Wouters I.M., Täubel M., Rintala H., Lenters V., Vasara R., Genuneit J., Braun-Fahrländer C., Piarroux R., von Mutius E., et al. Bacterial Exposures and Associations with Atopy and Asthma in Children. PLoS ONE. 2015;10:e0131594. doi: 10.1371/journal.pone.0131594. PubMed DOI PMC

Stein M.M., Hrusch C.L., Gozdz J., Igartua C., Pivniouk V., Murray S.E., Ledford J.G., Marques dos Santos M., Anderson R.L., Metwali N., et al. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. N. Engl. J. Med. 2016;375:411–421. doi: 10.1056/NEJMoa1508749. PubMed DOI PMC

Kondrashova A., Seiskari T., Ilonen J., Knip M., Hyöty H. The ‘Hygiene Hypothesis’ and the Sharp Gradient in the Incidence of Autoimmune and Allergic Diseases between Russian Karelia and Finland. APMIS. 2013;121:478–493. doi: 10.1111/apm.12023. PubMed DOI

Sala O.E., Chapin F.S., III, Armesto J.J., Berlow E., Bloomfield J., Dirzo R., Huber-Sanwald E., Huenneke L.F., Jackson R.B. Global Biodiversity Scenarios for the Year 2100. Science. 2000;287:1770–1774. doi: 10.1126/science.287.5459.1770. PubMed DOI

Parajuli A., Grönroos M., Kauppi S., Płociniczak T., Roslund M.I., Galitskaya P., Laitinen O.H., Hyöty H., Jumpponen A., Strömmer R., et al. The Abundance of Health-Associated Bacteria Is Altered in PAH Polluted Soils—Implications for Health in Urban Areas? PLoS ONE. 2017;12:e0187852. doi: 10.1371/journal.pone.0187852. PubMed DOI PMC

Roslund M.I., Rantala S., Oikarinen S., Puhakka R., Hui N., Parajuli A., Laitinen O.H., Hyöty H., Rantalainen A.-L., Sinkkonen A., et al. Endocrine Disruption and Commensal Bacteria Alteration Associated with Gaseous and Soil PAH Contamination among Daycare Children. Environ. Int. 2019;130:104894. doi: 10.1016/j.envint.2019.06.004. PubMed DOI

Vari H.K., Roslund M.I., Oikarinen S., Nurminen N., Puhakka R., Parajuli A., Grönroos M., Siter N., Laitinen O.H., Hyöty H., et al. Associations between Land Cover Categories, Gaseous PAH Levels in Ambient Air and Endocrine Signaling Predicted from Gut Bacterial Metagenome of the Elderly. Chemosphere. 2020:128965. doi: 10.1016/j.chemosphere.2020.128965. PubMed DOI

von Hertzen L., Hanski I., Haahtela T. Natural Immunity. EMBO Rep. 2011;12:1089–1093. doi: 10.1038/embor.2011.195. PubMed DOI PMC

Haahtela T., Laatikainen T., Alenius H., Auvinen P., Fyhrquist N., Hanski I., von Hertzen L., Jousilahti P., Kosunen T.U., Markelova O., et al. Hunt for the Origin of Allergy—Comparing the Finnish and Russian Karelia. Clin. Exp. Allergy. 2015;45:891–901. doi: 10.1111/cea.12527. PubMed DOI

Haahtela T. A Biodiversity Hypothesis. Allergy. 2019;74:1445–1456. doi: 10.1111/all.13763. PubMed DOI

von Hertzen L., Haahtela T. Disconnection of Man and the Soil: Reason for the Asthma and Atopy Epidemic? J. Allergy Clin. Immunol. 2006;117:334–344. doi: 10.1016/j.jaci.2005.11.013. PubMed DOI

Ruokolainen L., von Hertzen L., Fyhrquist N., Laatikainen T., Lehtomäki J., Auvinen P., Karvonen A.M., Hyvärinen A., Tillmann V., Niemelä O., et al. Green Areas around Homes Reduce Atopic Sensitization in Children. Allergy. 2015;70:195–202. doi: 10.1111/all.12545. PubMed DOI PMC

Parajuli A., Hui N., Puhakka R., Oikarinen S., Grönroos M., Selonen V.A.O., Siter N., Kramna L., Roslund M.I., Vari H.K., et al. Yard Vegetation Is Associated with Gut Microbiota Composition. Sci. Total Environ. 2020;713:136707. doi: 10.1016/j.scitotenv.2020.136707. PubMed DOI

Lehtimäki J., Karkman A., Laatikainen T., Paalanen L., von Hertzen L., Haahtela T., Hanski I., Ruokolainen L. Patterns in the Skin Microbiota Differ in Children and Teenagers between Rural and Urban Environments. Sci. Rep. 2017;7:45651. doi: 10.1038/srep45651. PubMed DOI PMC

Parajuli A., Grönroos M., Siter N., Puhakka R., Vari H.K., Roslund M.I., Jumpponen A., Nurminen N., Laitinen O.H., Hyöty H., et al. Urbanization Reduces Transfer of Diverse Environmental Microbiota Indoors. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.00084. PubMed DOI PMC

Macpherson A.J., Harris N.L. Interactions between Commensal Intestinal Bacteria and the Immune System. Nat. Rev. Immunol. 2004;4:478–485. doi: 10.1038/nri1373. PubMed DOI

Frank D.N., Amand A.L.S., Feldman R.A., Boedeker E.C., Harpaz N., Pace N.R. Molecular-Phylogenetic Characterization of Microbial Community Imbalances in Human Inflammatory Bowel Diseases. Proc. Natl. Acad. Sci. USA. 2007;104:13780–13785. doi: 10.1073/pnas.0706625104. PubMed DOI PMC

Round J.L., Mazmanian S.K. The Gut Microbiota Shapes Intestinal Immune Responses during Health and Disease. Nat. Rev. Immunol. 2009;9:313–323. doi: 10.1038/nri2515. PubMed DOI PMC

Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010;90:859–904. doi: 10.1152/physrev.00045.2009. PubMed DOI

Clarke G., Stilling R.M., Kennedy P.J., Stanton C., Cryan J.F., Dinan T.G. Minireview: Gut Microbiota: The Neglected Endocrine Organ. Mol. Endocrinol. 2014;28:1221–1238. doi: 10.1210/me.2014-1108. PubMed DOI PMC

Meng X., Zhang G., Cao H., Yu D., Fang X., de Vos W.M., Wu H. Gut Dysbacteriosis and Intestinal Disease: Mechanism and Treatment. J. Appl. Microbiol. 2020;129:787–805. doi: 10.1111/jam.14661. PubMed DOI PMC

Ott S.J., Musfeldt M., Wenderoth D.F., Hampe J., Brant O., Fölsch U.R., Timmis K.N., Schreiber S. Reduction in Diversity of the Colonic Mucosa Associated Bacterial Microflora in Patients with Active Inflammatory Bowel Disease. Gut. 2004;53:685–693. doi: 10.1136/gut.2003.025403. PubMed DOI PMC

Scher J.U., Ubeda C., Artacho A., Attur M., Isaac S., Reddy S.M., Marmon S., Neimann A., Brusca S., Patel T., et al. Decreased Bacterial Diversity Characterizes the Altered Gut Microbiota in Patients with Psoriatic Arthritis, Resembling Dysbiosis in Inflammatory Bowel Disease. Arthritis Rheumatol. 2015;67:128–139. doi: 10.1002/art.38892. PubMed DOI PMC

de Paiva C.S., Jones D.B., Stern M.E., Bian F., Moore Q.L., Corbiere S., Streckfus C.F., Hutchinson D.S., Ajami N.J., Petrosino J.F., et al. Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome. Sci. Rep. 2016;6:23561. doi: 10.1038/srep23561. PubMed DOI PMC

Manichanh C., Rigottier-Gois L., Bonnaud E., Gloux K., Pelletier E., Frangeul L., Nalin R., Jarrin C., Chardon P., Marteau P., et al. Reduced Diversity of Faecal Microbiota in Crohn’s Disease Revealed by a Metagenomic Approach. Gut. 2006;55:205–211. doi: 10.1136/gut.2005.073817. PubMed DOI PMC

Rajilić–Stojanović M., Biagi E., Heilig H.G.H.J., Kajander K., Kekkonen R.A., Tims S., de Vos W.M. Global and Deep Molecular Analysis of Microbiota Signatures in Fecal Samples From Patients With Irritable Bowel Syndrome. Gastroenterology. 2011;141:1792–1801. doi: 10.1053/j.gastro.2011.07.043. PubMed DOI

Louis P., Flint H.J. Diversity, Metabolism and Microbial Ecology of Butyrate-Producing Bacteria from the Human Large Intestine. Fems. Microbiol. Lett. 2009;294:1–8. doi: 10.1111/j.1574-6968.2009.01514.x. PubMed DOI

Plöger S., Stumpff F., Penner G., Schulzke J., Gäbel G., Martens H., Shen Z., Günzel D., Aschenbach J. Microbial Butyrate and Its Role for Barrier Function in the Gastrointestinal Tract. Ann. N. Y. Acad. Sci. 2012;1258:52–59. doi: 10.1111/j.1749-6632.2012.06553.x. PubMed DOI

Geirnaert A., Calatayud M., Grootaert C., Laukens D., Devriese S., Smagghe G., De Vos M., Boon N., Van de Wiele T. Butyrate-Producing Bacteria Supplemented in Vitro to Crohn’s Disease Patient Microbiota Increased Butyrate Production and Enhanced Intestinal Epithelial Barrier Integrity. Sci. Rep. 2017;7:11450. doi: 10.1038/s41598-017-11734-8. PubMed DOI PMC

Greenhalgh K., Meyer K.M., Aagaard K.M., Wilmes P. The Human Gut Microbiome in Health: Establishment and Resilience of Microbiota over a Lifetime. Environ. Microbiol. 2016;18:2103–2116. doi: 10.1111/1462-2920.13318. PubMed DOI PMC

Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019;7:14. doi: 10.3390/microorganisms7010014. PubMed DOI PMC

O’Toole P.W., Claesson M.J. Gut Microbiota: Changes throughout the Lifespan from Infancy to Elderly. Int. Dairy J. 2010;20:281–291. doi: 10.1016/j.idairyj.2009.11.010. DOI

Nagpal R., Mainali R., Ahmadi S., Wang S., Singh R., Kavanagh K., Kitzman D.W., Kushugulova A., Marotta F., Yadav H. Gut Microbiome and Aging: Physiological and Mechanistic Insights. Nutr. Healthy Aging. 2018;4:267–285. doi: 10.3233/NHA-170030. PubMed DOI PMC

Nurminen N., Lin J., Grönroos M., Puhakka R., Kramna L., Vari H.K., Viskari H., Oikarinen S., Roslund M., Parajuli A., et al. Nature-Derived Microbiota Exposure as a Novel Immunomodulatory Approach. Future Microbiol. 2018;13:737–744. doi: 10.2217/fmb-2017-0286. PubMed DOI

Grönroos M., Parajuli A., Laitinen O.H., Roslund M.I., Vari H.K., Hyöty H., Puhakka R., Sinkkonen A. Short-Term Direct Contact with Soil and Plant Materials Leads to an Immediate Increase in Diversity of Skin Microbiota. MicrobiologyOpen. 2019;8:e00645. doi: 10.1002/mbo3.645. PubMed DOI PMC

Hui N., Grönroos M., Roslund M., Parajuli A., Vari H.K., Soininen L., Laitinen O.H., Sinkkonen A. Diverse Environmental Microbiota as a Tool to Augment Biodiversity in Urban Landscaping Materials. Front. Microbiol. 2019;10:536. doi: 10.3389/fmicb.2019.00536. PubMed DOI PMC

Roslund M.I., Puhakka R., Grönroos M., Nurminen N., Oikarinen S., Gazali A.M., Cinek O., Kramná L., Siter N., Vari H.K., et al. Biodiversity Intervention Enhances Immune Regulation and Health-Associated Commensal Microbiota among Daycare Children. Sci. Adv. 2020;6:eaba2578. doi: 10.1126/sciadv.aba2578. PubMed DOI PMC

Lehtimäki J., Sinkko H., Hielm-Björkman A., Salmela E., Tiira K., Laatikainen T., Mäkeläinen S., Kaukonen M., Uusitalo L., Hanski I., et al. Skin Microbiota and Allergic Symptoms Associate with Exposure to Environmental Microbes. Proc. Natl. Acad. Sci. USA. 2018;115:4897–4902. doi: 10.1073/pnas.1719785115. PubMed DOI PMC

Sievänen T., Neuvonen M. Luonnon virkistyskäytön kysyntä 2010 ja kysynnän muutos. In: Sievänen T., Neuvonen M., editors. Luonnon Virkistyskäyttö 2010. Volume 212. Working Papers of the Finnish Forest Research Institute; Vantaa, Finland: 2011. pp. 37–79.

Pitkänen K., Lehtimäki J., Puhakka R. How Do Rural Second Homes Affect Human Health and Well-Being? Review of Potential Impacts. Int. J. Environ. Res. Public Health. 2020;17:6748. doi: 10.3390/ijerph17186748. PubMed DOI PMC

Adamiak C., Vepsäläinen M., Strandell A., Hiltunen M., Pitkänen K., Hall M., Rinne J., Hannonen O., Paloniemi R., Åkerlund U. Second Home Tourism in Finland—Perceptions of Citizens and Municipalities on the State and Development of Second Home Tourism. Suomen Ympäristökeskus; Helsinki, Finland: 2015.

Statistics Finland Free-Time Residences 2019. Helsinki. [(accessed on 2 December 2020)];2020 Available online: http://www.stat.fi/til/rakke/2019/rakke_2019_2020-05-27_kat_001_en.html.

Pitkänen K., Hannonen O., Toso S., Gallent N., Hamiduddin I., Halseth G., Hall M.C., Müller D.K., Treivish A., Nefedova T. Second Homes during Corona—Safe or Unsafe Haven and for Whom? Reflections from Researchers around the World. Matkailututkimus. 2020;16:20–39. doi: 10.33351/mt.97559. DOI

Sievänen T., Pouta E., Neuvonen M. Recreational Home Users—Potential Clients for Countryside Tourism? Scand. J. Hosp. Tour. 2007;7:223–242. doi: 10.1080/15022250701300207. DOI

FCG Finnish Consulting Group Oy . Mökkibarometri 2016. Saaristoasiain Neuvottelukunta, Maa-ja Metsätalousministeriö; Helsinki, Finland: 2016. [(accessed on 22 December 2020)]. Available online: https://valtioneuvosto.fi/documents/1410837/1880296/Mokkibarometri+2016/7b69ab48-5859-4b55-8dc2-5514cdfa6000.

Hui N., Parajuli A., Puhakka R., Grönroos M., Roslund M.I., Vari H.K., Selonen V.A.O., Yan G., Siter N., Nurminen N., et al. Temporal Variation in Indoor Transfer of Dirt-Associated Environmental Bacteria in Agricultural and Urban Areas. Environ. Int. 2019;132:105069. doi: 10.1016/j.envint.2019.105069. PubMed DOI

Kondrashova A., Reunanen A., Romanov A., Karvonen A., Viskari H., Vesikari T., Ilonen J., Knip M., Hyöty H. A Six-fold Gradient in the Incidence of Type 1 Diabetes at the Eastern Border of Finland. Ann. Med. 2005;37:67–72. doi: 10.1080/07853890410018952. PubMed DOI

Fogelholm M., Valve R., Absetz P., Heinonen H., Uutela A., Patja K., Karisto A., Konttinen R., Mäkelä T., Nissinen A., et al. Rural—Urban Differences in Health and Health Behaviour: A Baseline Description of a Community Health-Promotion Programme for the Elderly. Scand. J. Public Health. 2006;34:632–640. doi: 10.1080/14034940600616039. PubMed DOI

Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J., et al. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC

Schloss P.D., Westcott S.L. Assessing and Improving Methods Used in Operational Taxonomic Unit-Based Approaches for 16S RRNA Gene Sequence Analysis. Appl. Environ. Microbiol. 2011;77:3219–3226. doi: 10.1128/AEM.02810-10. PubMed DOI PMC

Kozich J.J., Westcott S.L., Baxter N.T., Highlander S.K., Schloss P.D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl. Environ. Microbiol. 2013;79:5112–5120. doi: 10.1128/AEM.01043-13. PubMed DOI PMC

Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J., Glöckner F.O. SILVA: A Comprehensive Online Resource for Quality Checked and Aligned Ribosomal RNA Sequence Data Compatible with ARB. Nucleic Acids Res. 2007;35:7188–7196. doi: 10.1093/nar/gkm864. PubMed DOI PMC

Oliver A.K., Brown S.P., Callaham M.A., Jumpponen A. Polymerase Matters: Non-Proofreading Enzymes Inflate Fungal Community Richness Estimates by up to 15% Fungal Ecol. 2015;15:86–89. doi: 10.1016/j.funeco.2015.03.003. DOI

DeSantis T.Z., Hugenholtz P., Larsen N., Rojas M., Brodie E.L., Keller K., Huber T., Dalevi D., Hu P., Andersen G.L. Greengenes, a Chimera-Checked 16S RRNA Gene Database and Workbench Compatible with ARB. Appl. Environ. Microbiol. 2006;72:5069–5072. doi: 10.1128/AEM.03006-05. PubMed DOI PMC

Langille M.G.I., Zaneveld J., Caporaso J.G., McDonald D., Knights D., Reyes J.A., Clemente J.C., Burkepile D.E., Vega Thurber R.L., Knight R., et al. Predictive Functional Profiling of Microbial Communities Using 16S RRNA Marker Gene Sequences. Nat. Biotechnol. 2013;31:814–821. doi: 10.1038/nbt.2676. PubMed DOI PMC

Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Donaldson G.P., Lee S.M., Mazmanian S.K. Gut Biogeography of the Bacterial Microbiota. Nat. Rev. Microbiol. 2016;14:20–32. doi: 10.1038/nrmicro3552. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 22 December 2020)]. Available online: https://www.R-project.org/

McMurdie P.J., Holmes S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC

Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016.

Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. Vegan: Community Ecology Package. R Package Version 2.5-6. [(accessed on 22 December 2020)];2019 Available online: https://CRAN.R-project.org/package=vegan.

Bartosch S., Fite A., Macfarlane G.T., McMurdo M.E.T. Characterization of Bacterial Communities in Feces from Healthy Elderly Volunteers and Hospitalized Elderly Patients by Using Real-Time PCR and Effects of Antibiotic Treatment on the Fecal Microbiota. Appl. Environ. Microbiol. 2004;70:3575–3581. doi: 10.1128/AEM.70.6.3575-3581.2004. PubMed DOI PMC

Woodmansey E.J., McMurdo M.E.T., Macfarlane G.T., Macfarlane S. Comparison of Compositions and Metabolic Activities of Fecal Microbiotas in Young Adults and in Antibiotic-Treated and Non-Antibiotic-Treated Elderly Subjects. Appl. Environ. Microbiol. 2004;70:6113–6122. doi: 10.1128/AEM.70.10.6113-6122.2004. PubMed DOI PMC

Zwielehner J., Liszt K., Handschur M., Lassl C., Lapin A., Haslberger A.G. Combined PCR-DGGE Fingerprinting and Quantitative-PCR Indicates Shifts in Fecal Population Sizes and Diversity of Bacteroides, Bifidobacteria and Clostridium Cluster IV in Institutionalized Elderly. Exp. Gerontol. 2009;44:440–446. doi: 10.1016/j.exger.2009.04.002. PubMed DOI

Mäkivuokko H., Tiihonen K., Tynkkynen S., Paulin L., Rautonen N. The Effect of Age and Non-Steroidal Anti-Inflammatory Drugs on Human Intestinal Microbiota Composition. Br. J. Nutr. 2010;103:227–234. doi: 10.1017/S0007114509991553. PubMed DOI

Kostic A.D., Gevers D., Pedamallu C.S., Michaud M., Duke F., Earl A.M., Ojesina A.I., Jung J., Bass A.J., Tabernero J., et al. Genomic Analysis Identifies Association of Fusobacterium with Colorectal Carcinoma. Genome Res. 2012;22:292–298. doi: 10.1101/gr.126573.111. PubMed DOI PMC

Larsen N., Vogensen F.K., van den Berg F.W.J., Nielsen D.S., Andreasen A.S., Pedersen B.K., Al-Soud W.A., Sørensen S.J., Hansen L.H., Jakobsen M. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE. 2010;5:e9085. doi: 10.1371/journal.pone.0009085. PubMed DOI PMC

Krogius-Kurikka L., Lyra A., Malinen E., Aarnikunnas J., Tuimala J., Paulin L., Mäkivuokko H., Kajander K., Palva A. Microbial Community Analysis Reveals High Level Phylogenetic Alterations in the Overall Gastrointestinal Microbiota of Diarrhoea-Predominant Irritable Bowel Syndrome Sufferers. BMC Gastroenterol. 2009;9:95. doi: 10.1186/1471-230X-9-95. PubMed DOI PMC

Matsuoka K., Kanai T. The Gut Microbiota and Inflammatory Bowel Disease. Semin. Immunopathol. 2015;37:47–55. doi: 10.1007/s00281-014-0454-4. PubMed DOI PMC

Zeng X., Gao X., Peng Y., Wu Q., Zhu J., Tan C., Xia G., You C., Xu R., Pan S., et al. Higher Risk of Stroke Is Correlated With Increased Opportunistic Pathogen Load and Reduced Levels of Butyrate-Producing Bacteria in the Gut. Front. Cell. Infect. Microbiol. 2019;9 doi: 10.3389/fcimb.2019.00004. PubMed DOI PMC

Chiu Y.-H., Macmillan J.B., Chen Z.J. RNA Polymerase III Detects Cytosolic DNA and Induces Type I Interferons through the RIG-I Pathway. Cell. 2009;138:576–591. doi: 10.1016/j.cell.2009.06.015. PubMed DOI PMC

Martínez I., Oliveros J.C., Cuesta I., de la Barrera J., Ausina V., Casals C., de Lorenzo A., García E., García-Fojeda B., Garmendia J., et al. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.00276. PubMed DOI PMC

Laitinen O.H., Svedin E., Kapell S., Nurminen A., Hytönen V.P., Flodström-Tullberg M. Enteroviral Proteases: Structure, Host Interactions and Pathogenicity. Rev. Med. Virol. 2016;26:251–267. doi: 10.1002/rmv.1883. PubMed DOI PMC

Oshiumi H. Recent Advances and Contradictions in the Study of the Individual Roles of Ubiquitin Ligases That Regulate RIG-I-Like Receptor-Mediated Antiviral Innate Immune Responses. Front. Immunol. 2020;11:1296. doi: 10.3389/fimmu.2020.01296. PubMed DOI PMC

Ren Z., Ding T., Zuo Z., Xu Z., Deng J., Wei Z. Regulation of MAVS Expression and Signaling Function in the Antiviral Innate Immune Response. Front. Immunol. 2020;11:1030. doi: 10.3389/fimmu.2020.01030. PubMed DOI PMC

Sharma S., Fitzgerald K.A., Cancro M.P., Marshak-Rothstein A. Nucleic Acid-Sensing Receptors: Rheostats of Autoimmunity and Autoinflammation. J. Immunol. 2015;195:3507–3512. doi: 10.4049/jimmunol.1500964. PubMed DOI PMC

Baechler E.C., Batliwalla F.M., Karypis G., Gaffney P.M., Ortmann W.A., Espe K.J., Shark K.B., Grande W.J., Hughes K.M., Kapur V., et al. Interferon-Inducible Gene Expression Signature in Peripheral Blood Cells of Patients with Severe Lupus. Proc. Natl. Acad. Sci. USA. 2003;100:2610–2615. doi: 10.1073/pnas.0337679100. PubMed DOI PMC

Bennett L., Palucka A.K., Arce E., Cantrell V., Borvak J., Banchereau J., Pascual V. Interferon and Granulopoiesis Signatures in Systemic Lupus Erythematosus Blood. J. Exp. Med. 2003;197:711–723. doi: 10.1084/jem.20021553. PubMed DOI PMC

Lübbers J., Brink M., van de Stadt L.A., Vosslamber S., Wesseling J.G., van Schaardenburg D., Rantapää-Dahlqvist S., Verweij C.L. The Type I IFN Signature as a Biomarker of Preclinical Rheumatoid Arthritis. Ann. Rheum. Dis. 2013;72:776–780. doi: 10.1136/annrheumdis-2012-202753. PubMed DOI

Postal M., Vivaldo J.F., Fernandez-Ruiz R., Paredes J.L., Appenzeller S., Niewold T.B. Type I Interferon in the Pathogenesis of Systemic Lupus Erythematosus. Curr. Opin. Immunol. 2020;67:87–94. doi: 10.1016/j.coi.2020.10.014. PubMed DOI PMC

Tossberg J.T., Heinrich R.M., Farley V.M., Crooke P.S., Aune T.M. Adenosine-to-Inosine RNA Editing of Alu Double-Stranded (Ds)RNAs Is Markedly Decreased in Multiple Sclerosis and Unedited Alu DsRNAs Are Potent Activators of Proinflammatory Transcriptional Responses. J. Immunol. 2020;205:2606–2617. doi: 10.4049/jimmunol.2000384. PubMed DOI PMC

Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S., Harris H.M.B., Coakley M., Lakshminarayanan B., O’Sullivan O., et al. Gut Microbiota Composition Correlates with Diet and Health in the Elderly. Nature. 2012;488:178–184. doi: 10.1038/nature11319. PubMed DOI

Mueller S., Saunier K., Hanisch C., Norin E., Alm L., Midtvedt T., Cresci A., Silvi S., Orpianesi C., Verdenelli M.C., et al. Differences in Fecal Microbiota in Different European Study Populations in Relation to Age, Gender, and Country: A Cross-Sectional Study. Appl. Environ. Microbiol. 2006;72:1027–1033. doi: 10.1128/AEM.72.2.1027-1033.2006. PubMed DOI PMC

Hertzen L.V., Laatikainen T., Pitkänen T., Vlasoff T., Mäkelä M.J., Vartiainen E., Haahtela T. Microbial Content of Drinking Water in Finnish and Russian Karelia—Implications for Atopy Prevalence. Allergy. 2007;62:288–292. doi: 10.1111/j.1398-9995.2006.01281.x. PubMed DOI

Hesselmar B., Hicke-Roberts A., Wennergren G. Allergy in Children in Hand Versus Machine Dishwashing. Pediatrics. 2015;135:e590–e597. doi: 10.1542/peds.2014-2968. PubMed DOI

Turkki P. Lähiruokaa Mökille: Etelä-Savon Vapaa-Ajan Asukkaiden Ruokaostoskäyttäytyminen ja Lähiruoan Saatavuus. Mikkelin Ammattikorkeakoulu; Mikkeli, Finland: 2016. Tutkimuksia ja Raportteja—Research Reports 106.

Martínez I., Kim J., Duffy P.R., Schlegel V.L., Walter J. Resistant Starches Types 2 and 4 Have Differential Effects on the Composition of the Fecal Microbiota in Human Subjects. PLoS ONE. 2010;5:e15046. doi: 10.1371/journal.pone.0015046. PubMed DOI PMC

David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820. PubMed DOI PMC

Venkataraman A., Sieber J.R., Schmidt A.W., Waldron C., Theis K.R., Schmidt T.M. Variable Responses of Human Microbiomes to Dietary Supplementation with Resistant Starch. Microbiome. 2016;4:33. doi: 10.1186/s40168-016-0178-x. PubMed DOI PMC

Lin D., Peters B.A., Friedlander C., Freiman H.J., Goedert J.J., Sinha R., Miller G., Bernstein M.A., Hayes R.B., Ahn J. Association of Dietary Fibre Intake and Gut Microbiota in Adults. Br. J. Nutr. 2018;120:1014–1022. doi: 10.1017/S0007114518002465. PubMed DOI PMC

Bjørkhaug S.T., Aanes H., Neupane S.P., Bramness J.G., Malvik S., Henriksen C., Skar V., Medhus A.W., Valeur J. Characterization of Gut Microbiota Composition and Functions in Patients with Chronic Alcohol Overconsumption. Gut Microbes. 2019;10:663–675. doi: 10.1080/19490976.2019.1580097. PubMed DOI PMC

Wan Y., Wang F., Yuan J., Li J., Jiang D., Zhang J., Li H., Wang R., Tang J., Huang T., et al. Effects of Dietary Fat on Gut Microbiota and Faecal Metabolites, and Their Relationship with Cardiometabolic Risk Factors: A 6-Month Randomised Controlled-Feeding Trial. Gut. 2019;68:1417–1429. doi: 10.1136/gutjnl-2018-317609. PubMed DOI

Flint H.J., Duncan S.H., Scott K.P., Louis P. Links between Diet, Gut Microbiota Composition and Gut Metabolism. Proc. Nutr. Soc. 2015;74:13–22. doi: 10.1017/S0029665114001463. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...