Using patterns of shared taxa to infer bacterial dispersal in human living environment in urban and rural areas
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
40333/14,6766/31/2017
Business Finland
SKR | Päijät-Hämeen Rahasto (Päijät-Häme Regional Fund)
346136
AKA | Strategic Research Council (RSF)
346138
AKA | Strategic Research Council (RSF)
874864
EC | Horizon 2020 Framework Programme (H2020)
328852
Research Council of Finland (AKA)
LX22NPO5103
European Union - Next generation
PubMed
39230286
PubMed Central
PMC11498140
DOI
10.1128/aem.00903-24
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria, biodiversity hypothesis, dispersal, hygiene hypothesis, land cover,
- MeSH
- Bacteria * klasifikace genetika izolace a purifikace MeSH
- DNA bakterií genetika MeSH
- feces * mikrobiologie MeSH
- kůže mikrobiologie MeSH
- lidé MeSH
- městské obyvatelstvo MeSH
- mikrobiologie životního prostředí MeSH
- mikrobiota * MeSH
- prach analýza MeSH
- RNA ribozomální 16S * genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- sliny * mikrobiologie MeSH
- venkovské obyvatelstvo MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Finsko MeSH
- Názvy látek
- DNA bakterií MeSH
- prach MeSH
- RNA ribozomální 16S * MeSH
UNLABELLED: Contact with environmental microbial communities primes the human immune system. Factors determining the distribution of microorganisms, such as dispersal, are thus important for human health. Here, we used the relative number of bacteria shared between environmental and human samples as a measure of bacterial dispersal and studied these associations with living environment and lifestyles. We analyzed amplicon sequence variants (ASVs) of the V4 region of 16S rDNA gene from 347 samples of doormat dust as well as samples of saliva, skin swabs, and feces from 53 elderly people in urban and rural areas in Finland at three timepoints. We first enumerated the ASVs shared between doormat and one of the human sample types (i.e., saliva, skin swab, or feces) of each individual subject and calculated the shared ASVs as a proportion of all ASVs in the given sample type of that individual. We observed that the patterns for the proportions of shared ASVs differed among seasons and human sample type. In skin samples, there was a negative association between the proportion of shared ASVs and the coverage of built environment (a proxy for degree of urbanization), whereas in saliva data, this association was positive. We discuss these findings in the context of differing species pools in urban and rural environments. IMPORTANCE: Understanding how environmental microorganisms reach and interact with humans is a key question when aiming to increase human contacts with natural microbiota. Few methods are suitable for studying microbial dispersal at relatively large spatial scales. Thus, we tested an indirect method and studied patterns of bacterial taxa that are shared between humans and their living environment.
Department of Medical Microbiology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Medicine Karolinska Institutet Huddinge Sweden
Division of Biology and Ecological Genomics Institute Kansas State University Manhattan Kansas USA
Faculty of Biological and Environmental Sciences University of Helsinki Lahti Finland
Faculty of Built Environment Tampere University Tampere Finland
Faculty of Medicine and Health Technology Tampere University Tampere Finland
Fimlab Laboratories Pirkanmaa Hospital District Tampere Finland
Zobrazit více v PubMed
Stiemsma LT, Reynolds LA, Turvey SE, Finlay BB. 2015. The hygiene hypothesis: current perspectives and future therapies. Immunotargets Ther 4:143–157. doi:10.2147/ITT.S61528 PubMed DOI PMC
Zheng D, Liwinski T, Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell Res 30:492–506. doi:10.1038/s41422-020-0332-7 PubMed DOI PMC
Rook GA. 2013. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci U S A 110:18360–18367. doi:10.1073/pnas.1313731110 PubMed DOI PMC
Haahtela T. 2019. A biodiversity hypothesis. Allergy 74:1445–1456. doi:10.1111/all.13763 PubMed DOI
Sinkkonen A. 2022. Distortion of the microbiota of the natural environment by human activities, p 221–242. In Rook GAW, Lowry CA (ed), Evolution, biodiversity and a reassessment of the hygiene hypothesis. Springer International Publishing, Cham.
Strachan DP. 1989. Hay fever, hygiene, and household size. BMJ 299:1259–1260. doi:10.1136/bmj.299.6710.1259 PubMed DOI PMC
von Hertzen L, Hanski I, Haahtela T. 2011. Natural immunity: biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep 12:1089–1093. doi:10.1038/embor.2011.195 PubMed DOI PMC
Vellend M. 2010. Conceptual synthesis in community ecology. Q Rev Biol 85:183–206. doi:10.1086/652373 PubMed DOI
Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S. 2013. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356. doi:10.1128/MMBR.00051-12 PubMed DOI PMC
Fodelianakis S, Valenzuela-Cuevas A, Barozzi A, Daffonchio D. 2021. Direct quantification of ecological drift at the population level in synthetic bacterial communities. ISME J 15:55–66. doi:10.1038/s41396-020-00754-4 PubMed DOI PMC
Ruuskanen MO, Vats D, Potbhare R, RaviKumar A, Munukka E, Ashma R, Lahti L. 2022. Towards standardized and reproducible research in skin microbiomes. Environ Microbiol 24:3840–3860. doi:10.1111/1462-2920.15945 PubMed DOI PMC
Karkman A, Lehtimäki J, Ruokolainen L. 2017. The ecology of human microbiota: dynamics and diversity in health and disease: ecology of human microbiota in health and disease. Ann N Y Acad Sci 1399:78–92. doi:10.1111/nyas.13326 PubMed DOI
Srivastava DS. 1999. Using local–regional richness plots to test for species saturation: pitfalls and potentials. J Anim Ecol 68:1–16. doi:10.1046/j.1365-2656.1999.00266.x DOI
Flies EJ, Clarke LJ, Brook BW, Jones P. 2020. Urbanisation reduces the abundance and diversity of airborne microbes - but what does that mean for our health? A systematic review. Sci Total Environ 738:140337. doi:10.1016/j.scitotenv.2020.140337 PubMed DOI
Mhuireach G, Johnson BR, Altrichter AE, Ladau J, Meadow JF, Pollard KS, Green JL. 2016. Urban greenness influences airborne bacterial community composition. Sci Total Environ 571:680–687. doi:10.1016/j.scitotenv.2016.07.037 PubMed DOI
Alenius H, Pakarinen J, Saris O, Andersson MA, Leino M, Sirola K, Majuri M-L, Niemela J, Matikainen S, Wolff H, von Hertzen L, Makela M, Haahtela T, Salkinoja-Salonen M. 2009. Contrasting immunological effects of two disparate dusts - preliminary observations. Int Arch Allergy Immunol 149:81–90. doi:10.1159/000176310 PubMed DOI
Dockx Y, Täubel M, Bijnens EM, Witters K, Valkonen M, Jayaprakash B, Hogervorst J, Nawrot TS, Casas L. 2022. Indoor green can modify the indoor dust microbial communities. Indoor Air 32:e13011. doi:10.1111/ina.13011 PubMed DOI
Soininen L, Roslund MI, Nurminen N, Puhakka R, Laitinen OH, Hyöty H, Sinkkonen AADELE research group. 2022. Indoor green wall affects health-associated commensal skin microbiota and enhances immune regulation: a randomized trial among urban office workers. Sci Rep 12:6518. doi:10.1038/s41598-022-10432-4 PubMed DOI PMC
Custer GF, Bresciani L, Dini-Andreote F. 2022. Ecological and evolutionary implications of microbial dispersal. Front Microbiol 13:855859. doi:10.3389/fmicb.2022.855859 PubMed DOI PMC
Schiro G, Chen Y, Blankinship JC, Barberán A. 2022. Ride the dust: linking dust dispersal and spatial distribution of microorganisms across an arid landscape. Environ Microbiol 24:4094–4107. doi:10.1111/1462-2920.15998 PubMed DOI
Grossart H-P, Dziallas C, Leunert F, Tang KW. 2010. Bacteria dispersal by hitchhiking on zooplankton. Proc Natl Acad Sci U S A 107:11959–11964. doi:10.1073/pnas.1000668107 PubMed DOI PMC
Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knight R. 2013. Cohabiting family members share microbiota with one another and with their dogs. Elife 2:e00458. doi:10.7554/eLife.00458 PubMed DOI PMC
Roslund MI, Parajuli A, Hui N, Puhakka R, Grönroos M, Soininen L, Nurminen N, Oikarinen S, Cinek O, Kramná L, Schroderus A-M, Laitinen OH, Kinnunen T, Hyöty H, Sinkkonen A, ADELE research group . 2022. A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children. Ecotoxicol Environ Saf 242:113900. doi:10.1016/j.ecoenv.2022.113900 PubMed DOI
Roslund MI, Puhakka R, Nurminen N, Oikarinen S, Siter N, Grönroos M, Cinek O, Kramná L, Jumpponen A, Laitinen OH, et al. . 2021. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environ Int 157:106811. doi:10.1016/j.envint.2021.106811 PubMed DOI
Roslund MI, Puhakka R, Grönroos M, Nurminen N, Oikarinen S, Gazali AM, Cinek O, Kramná L, Siter N, Vari HK, Soininen L, Parajuli A, Rajaniemi J, Kinnunen T, Laitinen OH, Hyöty H, Sinkkonen A, ADELE research group . 2020. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci Adv 6:eaba2578. doi:10.1126/sciadv.aba2578 PubMed DOI PMC
Heino J, Grönroos M, Soininen J, Virtanen R, Muotka T. 2012. Context dependency and metacommunity structuring in boreal headwater streams. Oikos 121:537–544. doi:10.1111/j.1600-0706.2011.19715.x DOI
Perez Rocha M, Bini LM, Grönroos M, Hjort J, Lindholm M, Karjalainen S-M, Tolonen KE, Heino J. 2019. Correlates of different facets and components of beta diversity in stream organisms. Oecologia 191:919–929. doi:10.1007/s00442-019-04535-5 PubMed DOI PMC
Stothart MR, Greuel RJ, Gavriliuc S, Henry A, Wilson AJ, McLoughlin PD, Poissant J. 2021. Bacterial dispersal and drift drive microbiome diversity patterns within a population of feral hindgut fermenters. Mol Ecol 30:555–571. doi:10.1111/mec.15747 PubMed DOI
Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, Gibbons SM, Larsen P, Shogan BD, Weiss S, Metcalf JL, Ursell LK, Vázquez-Baeza Y, Van Treuren W, Hasan NA, Gibson MK, Colwell R, Dantas G, Knight R, Gilbert JA. 2014. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345:1048–1052. doi:10.1126/science.1254529 PubMed DOI PMC
Meadow JF, Altrichter AE, Kembel SW, Moriyama M, O’Connor TK, Womack AM, Brown GZ, Green JL, Bohannan BJM. 2014. Bacterial communities on classroom surfaces vary with human contact. Microbiome 2:7. doi:10.1186/2049-2618-2-7 PubMed DOI PMC
Hui N, Parajuli A, Puhakka R, Grönroos M, Roslund MI, Vari HK, Selonen VAO, Yan G, Siter N, Nurminen N, Oikarinen S, Laitinen OH, Rajaniemi J, Hyöty H, Sinkkonen A. 2019. Temporal variation in indoor transfer of dirt-associated environmental bacteria in agricultural and urban areas. Environ Int 132:105069. doi:10.1016/j.envint.2019.105069 PubMed DOI
Nurminen N, Cerrone D, Lehtonen J, Parajuli A, Roslund M, Lönnrot M, Ilonen J, Toppari J, Veijola R, Knip M, Rajaniemi J, Laitinen OH, Sinkkonen A, Hyöty H. 2021. Land cover of early-life environment modulates the risk of type 1 diabetes. Diabetes Care 44:1506–1514. doi:10.2337/dc20-1719 PubMed DOI PMC
Parajuli A, Grönroos M, Siter N, Puhakka R, Vari HK, Roslund MI, Jumpponen A, Nurminen N, Laitinen OH, Hyöty H, Rajaniemi J, Sinkkonen A. 2018. Urbanization reduces transfer of diverse environmental microbiota indoors. Front Microbiol 9:84. doi:10.3389/fmicb.2018.00084 PubMed DOI PMC
Mouquet N, Loreau M. 2003. Community patterns in source-sink metacommunities. Am Nat 162:544–557. doi:10.1086/378857 PubMed DOI
Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Mäkelä MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T. 2012. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A 109:8334–8339. doi:10.1073/pnas.1205624109 PubMed DOI PMC
Parajuli A, Hui N, Puhakka R, Oikarinen S, Grönroos M, Selonen VAO, Siter N, Kramna L, Roslund MI, Vari HK, Nurminen N, Honkanen H, Hintikka J, Sarkkinen H, Romantschuk M, Kauppi M, Valve R, Cinek O, Laitinen OH, Rajaniemi J, Hyöty H, Sinkkonen A, ADELE study group . 2020. Yard vegetation is associated with gut microbiota composition. Sci Total Environ 713:136707. doi:10.1016/j.scitotenv.2020.136707 PubMed DOI
Ege MJ, Mayer M, Schwaiger K, Mattes J, Pershagen G, van Hage M, Scheynius A, Bauer J, von Mutius E. 2012. Environmental bacteria and childhood asthma. Allergy 67:1565–1571. doi:10.1111/all.12028 PubMed DOI
Lehtimäki J, Karkman A, Laatikainen T, Paalanen L, von Hertzen L, Haahtela T, Hanski I, Ruokolainen L. 2017. Patterns in the skin microbiota differ in children and teenagers between rural and urban environments. Sci Rep 7:45651. doi:10.1038/srep45651 PubMed DOI PMC
Edmonds-Wilson SL, Nurinova NI, Zapka CA, Fierer N, Wilson M. 2015. Review of human hand microbiome research. J Dermatol Sci 80:3–12. doi:10.1016/j.jdermsci.2015.07.006 PubMed DOI
Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12:385. doi:10.1186/1471-2105-12-385 PubMed DOI PMC
Sessitsch A, Wakelin S, Schloter M, Maguin E, Cernava T, Champomier-Verges M-C, Charles TC, Cotter PD, Ferrocino I, Kriaa A, et al. . 2023. Microbiome interconnectedness throughout environments with major consequences for healthy people and a healthy planet. Microbiol Mol Biol Rev 87:e0021222. doi:10.1128/mmbr.00212-22 PubMed DOI PMC
Chen B-Y, Lin W-Z, Li Y-L, Bi C, Du L-J, Liu Y, Zhou L-J, Liu T, Xu S, Shi C-J, Zhu H, Wang Y-L, Sun J-Y, Liu Y, Zhang W-C, Lu H-X, Wang Y-H, Feng Q, Chen F-X, Wang C-Q, Tonetti MS, Zhu Y-Q, Zhang H, Duan S-Z. 2023. Roles of oral microbiota and oral-gut microbial transmission in hypertension. J Adv Res 43:147–161. doi:10.1016/j.jare.2022.03.007 PubMed DOI PMC
Schmidt TS, Hayward MR, Coelho LP, Li SS, Costea PI, Voigt AY, Wirbel J, Maistrenko OM, Alves RJ, Bergsten E, de Beaufort C, Sobhani I, Heintz-Buschart A, Sunagawa S, Zeller G, Wilmes P, Bork P. 2019. Extensive transmission of microbes along the gastrointestinal tract. Elife 8:e42693. doi:10.7554/eLife.42693 PubMed DOI PMC
Eren AM, Borisy GG, Huse SM, Mark Welch JL. 2014. Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci U S A 111:E2875–84. doi:10.1073/pnas.1409644111 PubMed DOI PMC
Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. 2019. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 4:e00186-19. doi:10.1128/mSystems.00186-19 PubMed DOI PMC
Lajqi T, Köstlin-Gille N, Bauer R, Zarogiannis SG, Lajqi E, Ajeti V, Dietz S, Kranig SA, Rühle J, Demaj A, Hebel J, Bartosova M, Frommhold D, Hudalla H, Gille C. 2023. Training vs. tolerance: the Yin/Yang of the innate immune system. Biomedicines 11:766. doi:10.3390/biomedicines11030766 PubMed DOI PMC
Grönroos M, Heino J, Siqueira T, Landeiro VL, Kotanen J, Bini LM. 2013. Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecol Evol 3:4473–4487. doi:10.1002/ece3.834 PubMed DOI PMC
Lindholm M, Grönroos M, Hjort J, Karjalainen SM, Tokola L, Heino J. 2018. Different species trait groups of stream diatoms show divergent responses to spatial and environmental factors in a subarctic drainage basin. Hydrobiologia 816:213–230. doi:10.1007/s10750-018-3585-0 DOI
Fogelholm M, Valve R, Absetz P, Heinonen H, Uutela A, Patja K, Karisto A, Konttinen R, Mäkelä T, Nissinen A, Jallinoja P, Nummela O, Talja M. 2006. Rural—urban differences in health and health behaviour: a baseline description of a community health-promotion programme for the elderly. Scand J Public Health 34:632–640. doi:10.1080/14034940600616039 PubMed DOI
Vari HK, Roslund MI, Oikarinen S, Nurminen N, Puhakka R, Parajuli A, Grönroos M, Siter N, Laitinen OH, Hyöty H, Rajaniemi J, Rantalainen A-L, Sinkkonen A, ADELE research group . 2021. Associations between land cover categories, gaseous PAH levels in ambient air and endocrine signaling predicted from gut bacterial metagenome of the elderly. Chemosphere 265:128965. doi:10.1016/j.chemosphere.2020.128965 PubMed DOI
Saarenpää M, Roslund MI, Puhakka R, Grönroos M, Parajuli A, Hui N, Nurminen N, Laitinen OH, Hyöty H, Cinek O, Sinkkonen A, The Adele Research Group . 2021. Do rural second homes shape commensal microbiota of urban dwellers? A pilot study among urban elderly in Finland. Int J Environ Res Public Health 18:3742. doi:10.3390/ijerph18073742 PubMed DOI PMC
Hui N, Grönroos M, Roslund MI, Parajuli A, Vari HK, Soininen L, Laitinen OH, Sinkkonen A, Adele Research Group. 2019. Diverse environmental microbiota as a tool to augment biodiversity in urban landscaping materials. Front Microbiol 10:536. doi:10.3389/fmicb.2019.00536 PubMed DOI PMC
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/AEM.01043-13 PubMed DOI PMC
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09 PubMed DOI PMC
Schloss PD, Gevers D, Westcott SL. 2011. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310. doi:10.1371/journal.pone.0027310 PubMed DOI PMC
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. doi:10.1093/nar/gkm864 PubMed DOI PMC
Huse SM, Welch DM, Morrison HG, Sogin ML. 2010. Ironing out the wrinkles in the rare biosphere through improved OTU clustering: ironing out the wrinkles in the rare biosphere. Environ Microbiol 12:1889–1898. doi:10.1111/j.1462-2920.2010.02193.x PubMed DOI PMC
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381 PubMed DOI PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07 PubMed DOI PMC
Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM. 2009. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145. doi:10.1093/nar/gkn879 PubMed DOI PMC
Oliver AK, Brown SP, Callaham MA, Jumpponen A. 2015. Polymerase matters: non-proofreading enzymes inflate fungal community richness estimates by up to 15%. Fungal Ecol 15:86–89. doi:10.1016/j.funeco.2015.03.003 DOI
RStudio Team . 2019. RStudio: integrated development for R. RStudio, Inc., Boston, MA.
R Core Team . 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Chen H. 2018. VennDiagram: generate high-resolution venn and euler plots. R package version 1.6.20.
Anderson MJ. 2001. A new method for non‐parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x DOI
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson G, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2019. Vegan: community ecology package. R package version 2.5-6.
Hervé M. 2020. RVAideMemoire: testing and plotting procedures for biostatistics. R package version 0.9-77.
Anderson MJ. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. doi:10.1111/j.1541-0420.2005.00440.x PubMed DOI
Legendre P, Gallagher ED. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716 PubMed DOI
Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Soft 67. doi:10.18637/jss.v067.i01 DOI
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. GLM and GAM for absence–presence and proportional data, p 245–259. In Mixed effects models and extensions in ecology with R. Springer, New York, NY.
Hartig F. 2022. DHARMa: residual diagnostics for hierarchical (multi-level / mixed) regression models. R package version 0.4.6.