Raman Microspectroscopic Analysis of Selenium Bioaccumulation by Green Alga Chlorella vulgaris

. 2021 Apr 10 ; 11 (4) : . [epub] 20210410

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33920129

Grantová podpora
LO1212 Ministerstvo Školství, Mládeže a Tělovýchovy
LO1416 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018121 Ministerstvo Školství, Mládeže a Tělovýchovy
RVO:68081731 Akademie Věd České Republiky
CZ.1.05/2.1.00/01.0017 European Commission
857560 H2020
02.1.01/0.0/0.0/18_046/0015975 Ministerstvo Školství, Mládeže a Tělovýchovy

Selenium (Se) is an element with many commercial applications as well as an essential micronutrient. Dietary Se has antioxidant properties and it is known to play a role in cancer prevention. However, the general population often suffers from Se deficiency. Green algae, such as Chlorella vulgaris, cultivated in Se-enriched environment may be used as a food supplement to provide adequate levels of Se. We used Raman microspectroscopy (RS) for fast, reliable, and non-destructive measurement of Se concentration in living algal cells. We employed inductively coupled plasma-mass spectrometry as a reference method to RS and we found a substantial correlation between the Raman signal intensity at 252 cm-1 and total Se concentration in the studied cells. We used RS to assess the uptake of Se by living and inactivated algae and demonstrated the necessity of active cellular transport for Se accumulation. Additionally, we observed the intracellular Se being transformed into an insoluble elemental form, which we further supported by the energy-dispersive X-ray spectroscopy imaging.

Zobrazit více v PubMed

Dobbs M.G., Cherry D.S., Cairns J. Toxicity and bioaccumulation of selenium to a three-trophic level food chain. Environ. Toxicol. Chem. 1996;15:340–347. doi: 10.1897/1551-5028(1996)0152.3.CO;2. DOI

Schiavon M., Ertani A., Parrasia S., Vecchia F.D. Selenium accumulation and metabolism in algae. Aquat. Toxicol. 2017;189:1–8. doi: 10.1016/j.aquatox.2017.05.011. PubMed DOI

Tinggi U. Selenium: Its role as antioxidant in human health. Environ. Health Prev. Med. 2008;13:102–108. doi: 10.1007/s12199-007-0019-4. PubMed DOI PMC

Gojkovic Ž., Garbayo I., Ariza J.L.G., Marova I., Vílchez C. Selenium bioaccumulation and toxicity in cultures of green microalgae. Algal Res. 2015;7:106–116. doi: 10.1016/j.algal.2014.12.008. DOI

Kretzschmar J., Jordan N., Brendler E., Tsushima S., Franzen C., Foerstendorf H., Stockmann M., Heim K. Spectroscopic evidence for selenium(iv) dimerization in aqueous solution. Dalton Trans. 2015;44:10508–10515. doi: 10.1039/C5DT00730E. PubMed DOI

Mylenko M., Vu D.L., Kuta J., Ranglová K., Kubáč D., Lakatos G., Grivalský T., Caporgno M.P., Manoel J.A.D.C., Kopecký J., et al. Selenium Incorporation to Amino Acids in Chlorella Cultures Grown in Phototrophic and Heterotrophic Regimes. J. Agric. Food Chem. 2020;68:1654–1665. doi: 10.1021/acs.jafc.9b06196. PubMed DOI

Schiavon M., Vecchia F.D. Selenium in Plants. Springer; Cham, Switzerland: 2017. Selenium and Algae: Accumulation, Tolerance Mechanisms and Dietary Perspectives. DOI

Chen T.-F., Zheng W.-J., Luo Y., Yang F., Bai Y., Tu F. Effects of selenium stress on photosynthetic pigment contents and growth of Chlorella vulgaris. J. Plant Physiol. Mol. Boil. 2005;31:369–373. PubMed

Vu D.L., Saurav K., Mylenko M., Ranglová K., Kuta J., Ewe D., Masojídek J., Hrouzek P. In vitro bioaccessibility of selenoamino acids from selenium (Se)-enriched Chlorella vulgaris biomass in comparison to selenized yeast; a Se-enriched food supplement; and Se-rich foods. Food Chem. 2019;279:12–19. doi: 10.1016/j.foodchem.2018.12.004. PubMed DOI

Doucha J., Lívanský K., Kotrbáček V., Zachleder V. Production of Chlorella biomass enriched by selenium and its use in animal nutrition: A review. Appl. Microbiol. Biotechnol. 2009;83:1001–1008. doi: 10.1007/s00253-009-2058-9. PubMed DOI

Umysová D., Vítová M., Doušková I., Bišová K., Hlavová M., Čížková M., Machát J., Doucha J., Zachleder V. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol. 2009;9:58. doi: 10.1186/1471-2229-9-58. PubMed DOI PMC

Vriens B., Behra R., Voegelin A., Zupanic A., Winkel L.H.E. Selenium Uptake and Methylation by the Microalga Chlamydomonas reinhardtii. Environ. Sci. Technol. 2016;50:711–720. doi: 10.1021/acs.est.5b04169. PubMed DOI

Zhong Y., Cheng J.J. Effects of Selenite on Unicellular Green MicroalgaChlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production. J. Agric. Food Chem. 2017;65:10875–10883. doi: 10.1021/acs.jafc.7b04246. PubMed DOI

Simmons D.B.D., Emery R.J.N. Phytochelatin induction by selenate in Chlorella vulgaris, and regulation of effect by sulfate levels. Environ. Toxicol. Chem. 2011;30:469–476. doi: 10.1002/etc.392. PubMed DOI

Gupta M., Gupta S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017;7:2074. doi: 10.3389/fpls.2016.02074. PubMed DOI PMC

Neumann P.M., De Souza M.P., Pickering I.J., Terry N. Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant Cell Environ. 2003;26:897–905. doi: 10.1046/j.1365-3040.2003.01022.x. PubMed DOI

Oremland R.S., Herbel M.J., Blum J.S., Langley S., Beveridge T.J., Ajayan P.M., Sutto T., Ellis A.V., Curran S. Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria. Appl. Environ. Microbiol. 2004;70:52–60. doi: 10.1128/AEM.70.1.52-60.2004. PubMed DOI PMC

Bodnar M., Szczyglowska M., Konieczka P., Namiesnik J. Methods of Selenium Supplementation: Bioavailability and Determination of Selenium Compounds. Crit. Rev. Food Sci. Nutr. 2016;56:36–55. doi: 10.1080/10408398.2012.709550. PubMed DOI

Gerrard T.L., Telford J.N., Williams H.H. Detection of Selenium Deposits in Escherichia coli by Electron Microscopy. J. Bacteriol. 1974;119:1057–1060. doi: 10.1128/JB.119.3.1057-1060.1974. PubMed DOI PMC

Jiménez-Lamana J., Abad-Álvaro I., Bierla K., Laborda F., Szpunar J., Lobinski R. Detection and characterization of biogenic selenium nanoparticles in selenium-rich yeast by single particle ICPMS. J. Anal. At. Spectrom. 2018;33:452–460. doi: 10.1039/C7JA00378A. DOI

Montes-Bayón M., LeDuc D.L., Terry N., Caruso J.A. Selenium speciation in wild-type and genetically modified Se accumulating plants with HPLC separation and ICP-MS/ES-MS detection. J. Anal. At. Spectrom. 2002;17:872–879. doi: 10.1039/B202608M. DOI

McSheehy S., Yang W., Pannier F., Szpunar J., Łobiński R., Auger J., Potin-Gautier M. Speciation analysis of selenium in garlic by two-dimensional high-performance liquid chromatography with parallel inductively coupled plasma mass spectrometric and electrospray tandem mass spectrometric detection. Anal. Chim. Acta. 2000;421:147–153. doi: 10.1016/S0003-2670(00)01039-4. DOI

Sun X., Zhong Y., Huang Z., Yang Y. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments. PLoS ONE. 2014;9:e112270. doi: 10.1371/journal.pone.0112270. PubMed DOI PMC

Ponton D.E., Fortin C., Hare L. Organic selenium, selenate, and selenite accumulation by lake plankton and the algaChlamydomonas reinhardtiiat different pH and sulfate concentrations. Environ. Toxicol. Chem. 2018;37:2112–2122. doi: 10.1002/etc.4158. PubMed DOI

Vu D.L., Ranglová K., Hájek J., Hrouzek P. Quantification of methionine and selenomethionine in biological samples using multiple reaction monitoring high performance liquid chromatography tandem mass spectrometry (MRM-HPLC-MS/MS) J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018;1084:36–44. doi: 10.1016/j.jchromb.2018.03.012. PubMed DOI

Constantinescu-Aruxandei D., Frîncu R.M., Capră L., Oancea F. Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. Nutrients. 2018;10:1466. doi: 10.3390/nu10101466. PubMed DOI PMC

Pilát Z., Bernatová S., Ježek J., Šery M., Samek O., Zemánek P., Nedbal L., Trtílek M. Raman microspectroscopy of algal lipid bodies: β-carotene as a volume sensor; Proceedings of the Photonics, Devices, and Systems V; Prague, Czech Republic. 24–26 August 2011; p. 83060L. DOI

Samek O., Jonáš A., Pilát Z., Zemánek P., Nedbal L., Tříska J., Kotas P., Trtílek M. Raman spectroscopy for the characterization of algal cells; Proceedings of the 17th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics; Liptovsky Jan, Slovakia. 6–10 September 2010; p. 77460X. DOI

Parab N.D.T., Tomar V. Raman spectroscopy of algae: A review. J. Nanomed. Nanotechnol. 2012;3 doi: 10.4172/2157-7439.1000131. DOI

Samek O., Obruča S., Šiler M., Sedláček P., Benešová P., Kučera D., Márova I., Ježek J., Bernatová S., Zemánek P. Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16. Sensors. 2016;16:1808. doi: 10.3390/s16111808. PubMed DOI PMC

Serra-Maia R., Bernard O., Gonçalves A., Bensalem S., Lopes F. Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Res. 2016;18:352–359. doi: 10.1016/j.algal.2016.06.016. DOI

Abràmoff M.D., Magalhães P.J., Ram S.J. Image processing with imageJ. Biophotonics Int. 2004;11:36–41. doi: 10.1201/9781420005615.ax4. DOI

Jadhav A.A., Khanna P.K. Impact of microwave irradiation on cyclo-octeno-1,2,3-selenadiazole: Formation of selenium nanoparticles and their polymorphs. RSC Adv. 2015;5:44756–44763. doi: 10.1039/C5RA05701A. DOI

Goldan A.H., Li C., Pennycook S.J., Schneider J., Blom A., Zhao W. Molecular structure of vapor-deposited amorphous selenium. J. Appl. Phys. 2016;120:14072–14081. doi: 10.1063/1.4962315. DOI

Takaichi S. Distributions, biosyntheses and functions of carotenoids in algae. Agro Food Ind. Hi Tech. 2013;24:55–58.

Jablonski P.P., Anderson J.W. Light-dependent reduction of selenite by sonicated pea chloroplasts. Phytochemistry. 1982;21:2179–2184. doi: 10.1016/0031-9422(82)85173-X. DOI

Casano L.M., Gómez L.D., Trippi V.S. Oxygen- and Light-Induced Proteolysis in Isolated Oat Chloroplasts. Plant Cell Physiol. 1990;31:377–382. doi: 10.1093/oxfordjournals.pcp.a077918. DOI

Savchenko D., Vorlíček V., Prokhorov A., Kalabukhova E., Lančok J., Jelínek M. Raman and EPR spectroscopic studies of chromium-doped diamond-like carbon films. Diam. Relat. Mater. 2018;83:30–37. doi: 10.1016/j.diamond.2018.01.021. DOI

Fereche E., Tombo I., Ntwampe SK O., Baptist J., Mudumbi N. Leaching of Cyanogens and Mycotoxins from Cultivated Cassava into Agricultural Soil: Effects on Groundwater Quality World’s Largest Science. Instrument Society of America; Albuquerque, NM, USA: 2017. DOI

Brazhe N.A., Erokhova L.A., Churin A.A., Maksimov G.V. The Relation of Different-Scale Membrane Processes Under Nitric Oxide Influence. J. Biol. Phys. 2005;31:533–546. doi: 10.1007/s10867-005-2043-1. PubMed DOI PMC

Zhang P., Li Z., Lu L., Xiao Y., Liu J., Guo J., Fang F. Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017;181:30–38. doi: 10.1016/j.saa.2017.03.022. PubMed DOI

Wenzl T., Haedrich J., Schaechtele A., Robouch P., Stroka J. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food. Volume EUR 28099. European Union Reference Laboratory, Publications Office of the European Union; Luxembourg: 2016. DOI

Shoeibi S., Mozdziak P., Golkar-Narenji A. Biogenesis of Selenium Nanoparticles Using Green Chemistry. Top. Curr. Chem. 2017;375:88. doi: 10.1007/s41061-017-0176-x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...