Raman Microspectroscopic Analysis of Selenium Bioaccumulation by Green Alga Chlorella vulgaris
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1212
Ministerstvo Školství, Mládeže a Tělovýchovy
LO1416
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018121
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO:68081731
Akademie Věd České Republiky
CZ.1.05/2.1.00/01.0017
European Commission
857560
H2020
02.1.01/0.0/0.0/18_046/0015975
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33920129
PubMed Central
PMC8069876
DOI
10.3390/bios11040115
PII: bios11040115
Knihovny.cz E-zdroje
- Klíčová slova
- Chlorella vulgaris, EDX, ICP-MS, Raman spectroscopy, algae, bioaccumulation, selenium,
- MeSH
- bioakumulace MeSH
- chemické látky znečišťující vodu analýza metabolismus MeSH
- Chlorella vulgaris chemie metabolismus MeSH
- Ramanova spektroskopie * MeSH
- selen analýza metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- selen MeSH
Selenium (Se) is an element with many commercial applications as well as an essential micronutrient. Dietary Se has antioxidant properties and it is known to play a role in cancer prevention. However, the general population often suffers from Se deficiency. Green algae, such as Chlorella vulgaris, cultivated in Se-enriched environment may be used as a food supplement to provide adequate levels of Se. We used Raman microspectroscopy (RS) for fast, reliable, and non-destructive measurement of Se concentration in living algal cells. We employed inductively coupled plasma-mass spectrometry as a reference method to RS and we found a substantial correlation between the Raman signal intensity at 252 cm-1 and total Se concentration in the studied cells. We used RS to assess the uptake of Se by living and inactivated algae and demonstrated the necessity of active cellular transport for Se accumulation. Additionally, we observed the intracellular Se being transformed into an insoluble elemental form, which we further supported by the energy-dispersive X-ray spectroscopy imaging.
Zobrazit více v PubMed
Dobbs M.G., Cherry D.S., Cairns J. Toxicity and bioaccumulation of selenium to a three-trophic level food chain. Environ. Toxicol. Chem. 1996;15:340–347. doi: 10.1897/1551-5028(1996)0152.3.CO;2. DOI
Schiavon M., Ertani A., Parrasia S., Vecchia F.D. Selenium accumulation and metabolism in algae. Aquat. Toxicol. 2017;189:1–8. doi: 10.1016/j.aquatox.2017.05.011. PubMed DOI
Tinggi U. Selenium: Its role as antioxidant in human health. Environ. Health Prev. Med. 2008;13:102–108. doi: 10.1007/s12199-007-0019-4. PubMed DOI PMC
Gojkovic Ž., Garbayo I., Ariza J.L.G., Marova I., Vílchez C. Selenium bioaccumulation and toxicity in cultures of green microalgae. Algal Res. 2015;7:106–116. doi: 10.1016/j.algal.2014.12.008. DOI
Kretzschmar J., Jordan N., Brendler E., Tsushima S., Franzen C., Foerstendorf H., Stockmann M., Heim K. Spectroscopic evidence for selenium(iv) dimerization in aqueous solution. Dalton Trans. 2015;44:10508–10515. doi: 10.1039/C5DT00730E. PubMed DOI
Mylenko M., Vu D.L., Kuta J., Ranglová K., Kubáč D., Lakatos G., Grivalský T., Caporgno M.P., Manoel J.A.D.C., Kopecký J., et al. Selenium Incorporation to Amino Acids in Chlorella Cultures Grown in Phototrophic and Heterotrophic Regimes. J. Agric. Food Chem. 2020;68:1654–1665. doi: 10.1021/acs.jafc.9b06196. PubMed DOI
Schiavon M., Vecchia F.D. Selenium in Plants. Springer; Cham, Switzerland: 2017. Selenium and Algae: Accumulation, Tolerance Mechanisms and Dietary Perspectives. DOI
Chen T.-F., Zheng W.-J., Luo Y., Yang F., Bai Y., Tu F. Effects of selenium stress on photosynthetic pigment contents and growth of Chlorella vulgaris. J. Plant Physiol. Mol. Boil. 2005;31:369–373. PubMed
Vu D.L., Saurav K., Mylenko M., Ranglová K., Kuta J., Ewe D., Masojídek J., Hrouzek P. In vitro bioaccessibility of selenoamino acids from selenium (Se)-enriched Chlorella vulgaris biomass in comparison to selenized yeast; a Se-enriched food supplement; and Se-rich foods. Food Chem. 2019;279:12–19. doi: 10.1016/j.foodchem.2018.12.004. PubMed DOI
Doucha J., Lívanský K., Kotrbáček V., Zachleder V. Production of Chlorella biomass enriched by selenium and its use in animal nutrition: A review. Appl. Microbiol. Biotechnol. 2009;83:1001–1008. doi: 10.1007/s00253-009-2058-9. PubMed DOI
Umysová D., Vítová M., Doušková I., Bišová K., Hlavová M., Čížková M., Machát J., Doucha J., Zachleder V. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol. 2009;9:58. doi: 10.1186/1471-2229-9-58. PubMed DOI PMC
Vriens B., Behra R., Voegelin A., Zupanic A., Winkel L.H.E. Selenium Uptake and Methylation by the Microalga Chlamydomonas reinhardtii. Environ. Sci. Technol. 2016;50:711–720. doi: 10.1021/acs.est.5b04169. PubMed DOI
Zhong Y., Cheng J.J. Effects of Selenite on Unicellular Green MicroalgaChlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production. J. Agric. Food Chem. 2017;65:10875–10883. doi: 10.1021/acs.jafc.7b04246. PubMed DOI
Simmons D.B.D., Emery R.J.N. Phytochelatin induction by selenate in Chlorella vulgaris, and regulation of effect by sulfate levels. Environ. Toxicol. Chem. 2011;30:469–476. doi: 10.1002/etc.392. PubMed DOI
Gupta M., Gupta S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017;7:2074. doi: 10.3389/fpls.2016.02074. PubMed DOI PMC
Neumann P.M., De Souza M.P., Pickering I.J., Terry N. Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant Cell Environ. 2003;26:897–905. doi: 10.1046/j.1365-3040.2003.01022.x. PubMed DOI
Oremland R.S., Herbel M.J., Blum J.S., Langley S., Beveridge T.J., Ajayan P.M., Sutto T., Ellis A.V., Curran S. Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria. Appl. Environ. Microbiol. 2004;70:52–60. doi: 10.1128/AEM.70.1.52-60.2004. PubMed DOI PMC
Bodnar M., Szczyglowska M., Konieczka P., Namiesnik J. Methods of Selenium Supplementation: Bioavailability and Determination of Selenium Compounds. Crit. Rev. Food Sci. Nutr. 2016;56:36–55. doi: 10.1080/10408398.2012.709550. PubMed DOI
Gerrard T.L., Telford J.N., Williams H.H. Detection of Selenium Deposits in Escherichia coli by Electron Microscopy. J. Bacteriol. 1974;119:1057–1060. doi: 10.1128/JB.119.3.1057-1060.1974. PubMed DOI PMC
Jiménez-Lamana J., Abad-Álvaro I., Bierla K., Laborda F., Szpunar J., Lobinski R. Detection and characterization of biogenic selenium nanoparticles in selenium-rich yeast by single particle ICPMS. J. Anal. At. Spectrom. 2018;33:452–460. doi: 10.1039/C7JA00378A. DOI
Montes-Bayón M., LeDuc D.L., Terry N., Caruso J.A. Selenium speciation in wild-type and genetically modified Se accumulating plants with HPLC separation and ICP-MS/ES-MS detection. J. Anal. At. Spectrom. 2002;17:872–879. doi: 10.1039/B202608M. DOI
McSheehy S., Yang W., Pannier F., Szpunar J., Łobiński R., Auger J., Potin-Gautier M. Speciation analysis of selenium in garlic by two-dimensional high-performance liquid chromatography with parallel inductively coupled plasma mass spectrometric and electrospray tandem mass spectrometric detection. Anal. Chim. Acta. 2000;421:147–153. doi: 10.1016/S0003-2670(00)01039-4. DOI
Sun X., Zhong Y., Huang Z., Yang Y. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments. PLoS ONE. 2014;9:e112270. doi: 10.1371/journal.pone.0112270. PubMed DOI PMC
Ponton D.E., Fortin C., Hare L. Organic selenium, selenate, and selenite accumulation by lake plankton and the algaChlamydomonas reinhardtiiat different pH and sulfate concentrations. Environ. Toxicol. Chem. 2018;37:2112–2122. doi: 10.1002/etc.4158. PubMed DOI
Vu D.L., Ranglová K., Hájek J., Hrouzek P. Quantification of methionine and selenomethionine in biological samples using multiple reaction monitoring high performance liquid chromatography tandem mass spectrometry (MRM-HPLC-MS/MS) J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018;1084:36–44. doi: 10.1016/j.jchromb.2018.03.012. PubMed DOI
Constantinescu-Aruxandei D., Frîncu R.M., Capră L., Oancea F. Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. Nutrients. 2018;10:1466. doi: 10.3390/nu10101466. PubMed DOI PMC
Pilát Z., Bernatová S., Ježek J., Šery M., Samek O., Zemánek P., Nedbal L., Trtílek M. Raman microspectroscopy of algal lipid bodies: β-carotene as a volume sensor; Proceedings of the Photonics, Devices, and Systems V; Prague, Czech Republic. 24–26 August 2011; p. 83060L. DOI
Samek O., Jonáš A., Pilát Z., Zemánek P., Nedbal L., Tříska J., Kotas P., Trtílek M. Raman spectroscopy for the characterization of algal cells; Proceedings of the 17th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics; Liptovsky Jan, Slovakia. 6–10 September 2010; p. 77460X. DOI
Parab N.D.T., Tomar V. Raman spectroscopy of algae: A review. J. Nanomed. Nanotechnol. 2012;3 doi: 10.4172/2157-7439.1000131. DOI
Samek O., Obruča S., Šiler M., Sedláček P., Benešová P., Kučera D., Márova I., Ježek J., Bernatová S., Zemánek P. Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16. Sensors. 2016;16:1808. doi: 10.3390/s16111808. PubMed DOI PMC
Serra-Maia R., Bernard O., Gonçalves A., Bensalem S., Lopes F. Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Res. 2016;18:352–359. doi: 10.1016/j.algal.2016.06.016. DOI
Abràmoff M.D., Magalhães P.J., Ram S.J. Image processing with imageJ. Biophotonics Int. 2004;11:36–41. doi: 10.1201/9781420005615.ax4. DOI
Jadhav A.A., Khanna P.K. Impact of microwave irradiation on cyclo-octeno-1,2,3-selenadiazole: Formation of selenium nanoparticles and their polymorphs. RSC Adv. 2015;5:44756–44763. doi: 10.1039/C5RA05701A. DOI
Goldan A.H., Li C., Pennycook S.J., Schneider J., Blom A., Zhao W. Molecular structure of vapor-deposited amorphous selenium. J. Appl. Phys. 2016;120:14072–14081. doi: 10.1063/1.4962315. DOI
Takaichi S. Distributions, biosyntheses and functions of carotenoids in algae. Agro Food Ind. Hi Tech. 2013;24:55–58.
Jablonski P.P., Anderson J.W. Light-dependent reduction of selenite by sonicated pea chloroplasts. Phytochemistry. 1982;21:2179–2184. doi: 10.1016/0031-9422(82)85173-X. DOI
Casano L.M., Gómez L.D., Trippi V.S. Oxygen- and Light-Induced Proteolysis in Isolated Oat Chloroplasts. Plant Cell Physiol. 1990;31:377–382. doi: 10.1093/oxfordjournals.pcp.a077918. DOI
Savchenko D., Vorlíček V., Prokhorov A., Kalabukhova E., Lančok J., Jelínek M. Raman and EPR spectroscopic studies of chromium-doped diamond-like carbon films. Diam. Relat. Mater. 2018;83:30–37. doi: 10.1016/j.diamond.2018.01.021. DOI
Fereche E., Tombo I., Ntwampe SK O., Baptist J., Mudumbi N. Leaching of Cyanogens and Mycotoxins from Cultivated Cassava into Agricultural Soil: Effects on Groundwater Quality World’s Largest Science. Instrument Society of America; Albuquerque, NM, USA: 2017. DOI
Brazhe N.A., Erokhova L.A., Churin A.A., Maksimov G.V. The Relation of Different-Scale Membrane Processes Under Nitric Oxide Influence. J. Biol. Phys. 2005;31:533–546. doi: 10.1007/s10867-005-2043-1. PubMed DOI PMC
Zhang P., Li Z., Lu L., Xiao Y., Liu J., Guo J., Fang F. Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017;181:30–38. doi: 10.1016/j.saa.2017.03.022. PubMed DOI
Wenzl T., Haedrich J., Schaechtele A., Robouch P., Stroka J. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food. Volume EUR 28099. European Union Reference Laboratory, Publications Office of the European Union; Luxembourg: 2016. DOI
Shoeibi S., Mozdziak P., Golkar-Narenji A. Biogenesis of Selenium Nanoparticles Using Green Chemistry. Top. Curr. Chem. 2017;375:88. doi: 10.1007/s41061-017-0176-x. PubMed DOI