Electromagnetic Properties of Steel Fibres for Use in Cementitious Composites, Fibre Detection and Non-Destructive Testing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA20-00624S
Czech Science Foundation
SGS20/054/OHK1/1T/11 and SGS21/055/OHK1/1T/11
Czech Technical University in Prague
PubMed
33922255
PubMed Central
PMC8122764
DOI
10.3390/ma14092131
PII: ma14092131
Knihovny.cz E-zdroje
- Klíčová slova
- UHPFRC, cementitious composite, concrete, fibre, magnetic field, orientation, quality factor,
- Publikační typ
- časopisecké články MeSH
This paper deals with the description, measurement, and use of electromagnetic properties of ferromagnetic fibres used as dispersed fibre reinforcement in composite mixtures. Firstly, the fibres' magnetic properties are shown, and a method of measuring the hysteresis loop of fibres is proposed. The results from the measurements are presented and a discussion of the influence of measured parameters on the fibres' orientation in a magnetic field is performed. Furthermore, methods of non-destructive estimation, of their amount and orientation in the composite specimens, are discussed. The main experimental goal of this paper is to show the relationship between this non-destructive method's results and the destructive flexural strength measurements. The method is sensitive enough to provide information related to fibre reinforcement.
Zobrazit více v PubMed
Ramkumar K.B., Rajkumar P.K., Ahmmad S.N., Jegan M. A Review on Performance of Self-Compacting Concrete—Use of Mineral Admixtures and Steel Fibres with Artificial Neural Network Application. Constr. Build. Mater. 2020;261:120215. doi: 10.1016/j.conbuildmat.2020.120215. DOI
Liew K.M., Akbar A. The recent progress of recycled steel fiber reinforced concrete. Constr. Build. Mater. 2020;232:117232. doi: 10.1016/j.conbuildmat.2019.117232. DOI
Larsen I.L., Thorstensen R.T. The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review. Constr. Build. Mater. 2020;256:119459. doi: 10.1016/j.conbuildmat.2020.119459. DOI
Lantsoght E.O.L. How do steel fibers improve the shear capacity of reinforced concrete beams without stirrups? Compos. Part B Eng. 2019;175:107079. doi: 10.1016/j.compositesb.2019.107079. DOI
Soufeiani L., Raman S.N., Jumaat M.Z.B., Alengaram U.J., Ghadyani G., Mendis P. Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading—A review. Eng. Struct. 2016;124:405–417. doi: 10.1016/j.engstruct.2016.06.029. DOI
Yoo D.Y., Banthia N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cem. Concr. Compos. 2016;73:267–280. doi: 10.1016/j.cemconcomp.2016.08.001. DOI
Abdallah S., Fan M., Rees D.W.A. Bonding Mechanisms and Strength of Steel Fiber–Reinforced Cementitious Composites: Overview. J. Mater. Civ. Eng. 2018;30:04018001. doi: 10.1061/(ASCE)MT.1943-5533.0002154. DOI
Chalioris C.E., Kosmidou P.M.K., Karayannis C.G. Cyclic Response of Steel Fiber Reinforced Concrete Slender Beams; an Experimental Study. Materials. 2019;12:1398. doi: 10.3390/ma12091398. PubMed DOI PMC
Chalioris C.E., Karayannis C.G. Effectiveness of the use of steel fibres on the torsional behaviour of flanged concrete beams. Cem. Concr. Compos. 2009;31:331–341. doi: 10.1016/j.cemconcomp.2009.02.007. DOI
Kang S.-T., Kim J.-K. The relation between fiber orientation and tensile behavior in an Ultra High Performance Fiber Reinforced Cementitious Composites (UHPFRCC) Cem. Concr. Res. 2011;41:1001–1014. doi: 10.1016/j.cemconres.2011.05.009. DOI
Sepehr M., Ausias G., Carreau P.J. Rheological properties of short fiber filled polypropylene in transient shear flow. J. Nonnewton. Fluid Mech. 2004;123:19–32. doi: 10.1016/j.jnnfm.2004.06.005. DOI
Martinie L., Roussel N. Simple tools for fiber orientation prediction in industrial practice. Cem. Concr. Res. 2011;41:993–1000. doi: 10.1016/j.cemconres.2011.05.008. DOI
Švec O., Žirgulis G., Bolander J.E., Stang H. Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements. Cem. Concr. Compos. 2014;50:60–72. doi: 10.1016/j.cemconcomp.2013.12.002. DOI
Boulekbache B., Hamrat M., Chemrouk M., Amziane S. Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Constr. Build. Mater. 2010;24:1664–1671. doi: 10.1016/j.conbuildmat.2010.02.025. DOI
Lovichová R., Takáčová K., Künzel K., Papež V., Mára M., Fornůsek J., Konrád P., Sovják R. Directed orientation of steel fibres in ultra-high-performance cementitious composite using the magnetic field. High Perform. Optim. Des. Struct. Mater. IV. 2020;196:39. doi: 10.2495/HPSM200051. DOI
Ferrara L., Faifer M., Toscani S. A magnetic method for non destructive monitoring of fiber dispersion and orientation in steel fiber reinforced cementitious composites—Part 1: Method calibration. Mater. Struct. 2012;45:575–589. doi: 10.1617/s11527-011-9793-y. DOI
Ferrara L., Faifer M., Muhaxheri M., Toscani S. A magnetic method for non destructive monitoring of fiber dispersion and orientation in steel fiber reinforced cementitious composites. Part 2: Correlation to tensile fracture toughness. Mater. Struct. 2012;45:591–598. doi: 10.1617/s11527-011-9794-x. DOI
Torrents J.M., Blanco A., Pujadas P., Aguado A., Juan-García P., Sánchez-Moragues M.Á. Inductive method for assessing the amount and orientation of steel fibers in concrete. Mater. Struct. 2012;45:1577–1592. doi: 10.1617/s11527-012-9858-6. DOI
López R.-D., Cavalaro S., Pujadas P., Galobardes I., Torrents J.M., Aguado A., Figueiredo A. Assessment of fibre content and orientation in SFRC with the inductive method. Part 1: Theoretical basis of the method and study of the influence of the type of coil and temperature on its accuracy. Int. Symp. Non-Destruct. Test. Civ. Eng. 2015;20:1–10.
Zhang S., Zhang C., Liao L. Investigation on the relationship between the steel fibre distribution and the post-cracking behaviour of SFRC. Constr. Build. Mater. 2019;200:539–550. doi: 10.1016/j.conbuildmat.2018.12.081. DOI
Galobardes I., Silva C.L., Figueiredo A., Cavalaro S.H.P., Goodier C.I. Alternative quality control of steel fibre reinforced sprayed concrete (SFRSC) Constr. Build. Mater. 2019;223:1008–1015. doi: 10.1016/j.conbuildmat.2019.08.003. DOI