Simulations of the Behaviour of Steel Ferromagnetic Fibres Commonly Used in Concrete in a Magnetic Field
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA20-00624S
Czech Science Foundation
PubMed
35009279
PubMed Central
PMC8745836
DOI
10.3390/ma15010128
PII: ma15010128
Knihovny.cz E-zdroje
- Klíčová slova
- concrete, fibre, interaction, magnetic, orientation, simulation, steel,
- Publikační typ
- časopisecké články MeSH
The efficiency of fibre reinforcement in concrete can be drastically increased by orienting the fibres using a magnetic field. This orientation occurs immediately after pouring fresh concrete when the fibres can still move. The technique is most relevant for manufacturing prefabricated elements such as beams or columns. However, the parameters of such a field are not immediately apparent, as they depend on the specific fibre reaction to the magnetic field. In this study, a numerical model was created in ANSYS Maxwell to examine the mechanical torque acting on fibres placed in a magnetic field with varying parameters. The model consists of a single fibre placed between two Helmholtz coils. The simulations were verified with an experimental setup as well as theoretical relationships. Ten different fibre types, both straight and hook-ended, were examined. The developed model can be successfully used to study the behaviour of fibres in a magnetic field. The fibre size plays the most important role together with the magnetic saturation of the fibre material. Multiple fibres show significant interactions.
Zobrazit více v PubMed
Bentur A., Mindess S. Fibre Reinforced Cementitious Composites. CRC Press; Boca Raton, FL, USA: 2019. p. 624.
Serna P., Llano-Torre A., Martí-Vargas J.R., Navarro-Gregori J. Fibre Reinforced Concrete: Improvements and Innovations. 1st ed. Springer; Cham, Switzerland: 2021. p. 2021.
Yoo D.Y., Banthia N. Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Constr. Build. Mater. 2017;149:416–431. doi: 10.1016/j.conbuildmat.2017.05.136. DOI
Wei J., Li J., Wu C., Liu Z.-X., Li J. Hybrid fibre reinforced ultra-high performance concrete beams under static and impact loads. Eng. Struct. 2021;245:112921. doi: 10.1016/j.engstruct.2021.112921. DOI
Vivas J., Zerbino R., Torrijos M., Giaccio G. Effect of the fibre type on concrete impact resistance. Constr. Build. Mater. 2020;264:120200. doi: 10.1016/j.conbuildmat.2020.120200. DOI
Liu J., Li J., Fang J., Su Y., Wu C. Ultra-high performance concrete targets against high velocity projectile impact—A-state-of-the-art review. Int. J. Impact Eng. 2022;160:104080. doi: 10.1016/j.ijimpeng.2021.104080. DOI
Eik M., Puttonen J., Herrmann H. An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres. Compos. Struct. 2015;121:324–336. doi: 10.1016/j.compstruct.2014.11.018. DOI
Zhou B., Uchida Y. Relationship between fiber orientation/distribution and post-cracking behaviour in ultra-high-performance fiber-reinforced concrete (UHPFRC) Cem. Concr. Compos. 2017;83:66–75. doi: 10.1016/j.cemconcomp.2017.07.007. DOI
Švec O., Žirgulis G., Bolander J.E., Stang H. Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements. Cem. Concr. Compos. 2014;50:60–72. doi: 10.1016/j.cemconcomp.2013.12.002. DOI
Ďubek M., Makýš P., Petro M., Ellingerová H., Antošová N. The Development of Controlled Orientation of Fibres in SFRC. Materials. 2021;14:4432. doi: 10.3390/ma14164432. PubMed DOI PMC
Kobaka J. A Statistical Model of Fibre Distribution in a Steel Fibre Reinforced Concrete. Materials. 2021;14:7297. doi: 10.3390/ma14237297. PubMed DOI PMC
Ding T., Xiao J., Zou S., Zhou X. Anisotropic behavior in bending of 3D printed concrete reinforced with fibers. Compos. Struct. 2020;254:112808. doi: 10.1016/j.compstruct.2020.112808. DOI
Sun J., Aslani F., Lu J., Wang L., Huang Y., Ma G. Fibre-reinforced lightweight engineered cementitious composites for 3D concrete printing. Ceram. Int. 2021;47:27107–27121. doi: 10.1016/j.ceramint.2021.06.124. DOI
Arunothayan A.R., Nematollahi B., Ranade R., Bong S.H., Sanjayan J.G., Khayat K.H. Fiber orientation effects on ultra-high performance concrete formed by 3D printing. Cem. Concr. Res. 2021;143:106384. doi: 10.1016/j.cemconres.2021.106384. DOI
Yang Y., Wu C., Liu Z., Wang H., Ren Q. Mechanical anisotropy of ultra-high performance fibre-reinforced concrete for 3D printing. Cem. Concr. Compos. 2022;125:104310. doi: 10.1016/j.cemconcomp.2021.104310. DOI
Raju R.A., Lim S., Akiyama M., Kageyama T. Effects of concrete flow on the distribution and orientation of fibers and flexural behavior of steel fiber-reinforced self-compacting concrete beams. Constr. Build. Mater. 2020;262:119963. doi: 10.1016/j.conbuildmat.2020.119963. DOI
Alberti M., Enfedaque A., Gálvez J. A review on the assessment and prediction of the orientation and distribution of fibres for concrete. Compos. Part B Eng. 2018;151:274–290. doi: 10.1016/j.compositesb.2018.05.040. DOI
Zhao Y., Bi J., Wang Z., Huo L., Guan J., Zhao Y., Sun Y. Numerical simulation of the casting process of steel fiber reinforced self-compacting concrete: Influence of material and casting parameters on fiber orientation and distribution. Constr. Build. Mater. 2021;312:125337. doi: 10.1016/j.conbuildmat.2021.125337. DOI
Miller A.I., Björklund F.R. Method of Reinforcing Concrete with Fibres. US4062913A. U.S. Patent. 1977 December 13;
Wijffels M., Wolfs R., Suiker A., Salet T. Magnetic orientation of steel fibres in self-compacting concrete beams: Effect on failure behaviour. Cem. Concr. Compos. 2017;80:342–355. doi: 10.1016/j.cemconcomp.2017.04.005. DOI
Villar V.P., Medina N.F. Alignment of hooked-end fibres in matrices with similar rheological behaviour to cementitious composites through homogeneous magnetic fields. Constr. Build. Mater. 2018;163:256–266. doi: 10.1016/j.conbuildmat.2017.12.084. DOI
Hajforoush M., Kheyroddin A., Rezaifar O. Investigation of engineering properties of steel fiber reinforced concrete exposed to homogeneous magnetic field. Constr. Build. Mater. 2020;252:119064. doi: 10.1016/j.conbuildmat.2020.119064. DOI
Xue W., Chen J., Xie F., Feng B. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar. Materials. 2018;11:170. doi: 10.3390/ma11010170. PubMed DOI PMC
Künzel K., Papež V., Carrera K., Konrád P., Mára M., Kheml P., Sovják R. Electromagnetic Properties of Steel Fibres for Use in Cementitious Composites, Fibre Detection and Non-Destructive Testing. Materials. 2021;14:2131. doi: 10.3390/ma14092131. PubMed DOI PMC
ANSYS Inc. ANSYS 2021 R1. 2021. 275 Technology Drive, Canonsburg, PA 15317, USA. [(accessed on 23 February 2021)]. Available online: https://www.ansys.com/
Jin J.M. The Finite Element Method in Electromagnetics. 3rd ed. Wiley-IEEE Press; Piscataway, NJ, USA: 2014. p. 876.
Ghani S.A., Ahmad Khiar M.S., Chairul I.S., Lada M.Y., Rahim N.H. Study of magnetic fields produced by transmission line tower using finite element method (FEM); Proceedings of the 2014 2nd International Conference on Technology, Informatics, Management, Engineering Environment; Bandung, Indonesia. 19–21 August 2014; pp. 64–68. DOI
Giorla D., Roccella R., Lo Frano R., Sannazzaro G. EM zooming procedure in ANSYS Maxwell 3D. Fusion Eng. Des. 2018;132:67–72. doi: 10.1016/j.fusengdes.2018.04.096. DOI
Bronaugh E.L. Helmholtz coils for calibration of probes and sensors: Limits of magnetic field accuracy and uniformity; Proceedings of the International Symposium on Electromagnetic Compatibility; Atlanta, GA, USA. 14–18 August 1995; pp. 72–76.
Parry J. Helmholtz Coils and Coil Design. In: Collinson D., Creer K., Runcorn S., editors. Methods in Palaeomagnetism. Volume 3. Elsevier; Amsterdam, The Netherlands: 2013. pp. 551–567. Developments in Solid Earth Geophysics. DOI
Romana L., Jindřich F., Soukupová L., Valentin J. Experimental Stresss Analysis. Czech Society for Mechanics; Prague, Czech Republic: 2016. Ultrasound gel as suitable tool for simulation of the fibre orientation in the fibre reinforced concrete; pp. 1–4.
Ida N. Engineering Electromagnetics. 4th ed. Springer; Cham, Switzerland: 2021. p. 1028. DOI