Biochar Mediated-Alleviation of Chromium Stress and Growth Improvement of Different Maize Cultivars in Tannery Polluted Soils

. 2021 Apr 22 ; 18 (9) : . [epub] 20210422

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33922303

Soil pollution with heavy metal is a serious problem across the globe and is on the rise due to the current intensification of chemical industry. The leather industry is one of them, discharging chromium (Cr) in huge quantities during the process of leather tanning and polluting the nearby land and water resources, resulting in deterioration of plant growth. In this study, the effects of biochar application at the rate of 3% were studied on four maize cultivars, namely NK-8441, P-1543, NK-8711, and FH-985, grown in two different tannery polluted Kasur (K) and Sialkot (S) soils. Maize plants were harvested at vegetative growth and results showed that Cr toxicity adversely not only affected their growth, physiology, and biochemistry, but also accumulated in their tissues. However, the level of Cr toxicity, accumulation, and its influence on maize cultivars varied greatly in both soils. In this pot experiment, biochar application played a crucial role in lessening the Cr toxicity level, resulting in significant increase in plant height, biomass (fresh and dry), leaf area, chlorophyll pigments, photosynthesis, and relative water content (RWC) over treatment set as a control. However, applied biochar significantly decreased the electrolyte leakage (EL), antioxidant enzymes, lipid peroxidation, proline content, soluble sugars, and available fraction of Cr in soil as well as Cr (VI and III) concentration in root and shoot tissues of maize plant. In addition to this, maize cultivar differences were also found in relation to their tolerance to Cr toxicity and cultivar P-1543 performed better over other cultivars in both soils. In conclusion, biochar application in tannery polluted soils could be an efficient ecofriendly approach to reduce the Cr toxicity and to promote plant health and growth.

Zobrazit více v PubMed

Athar R., Ahmad M. Heavy metal toxicity: Effect on plant growth and metal uptake by wheat, and on free living azotobacter. Water Air Soil Pollut. 2002;138:165–180. doi: 10.1023/A:1015594815016. DOI

Baran A., Wieczorek J. Application of geochemical and ecotoxicity indices for assessment of heavy metals content in soils. Arch. Environ. Protect. 2015;41:53–62. doi: 10.1515/aep-2015-0019. DOI

Turan V., Khan S.A., Mahmood-ur-Rahman, Iqbal M., Ramzani P.M.A., Fatima M. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol. Environ. Saf. 2018;161:409–419. doi: 10.1016/j.ecoenv.2018.05.082. PubMed DOI

Syed M., Saleem T., Shuja-ur-Rehman, Iqbal M.A., Javed F., Khan M.B., Sadiq K. Effects of leather industry on health and recommendations for improving the situation in Pakistan. Arch. Environ. Occup. Health. 2010;65:163–172. doi: 10.1080/19338241003730895. PubMed DOI

Ertani A., Mietto A., Borin M., Nardi S. Chromium in agricultural soils and crops: A review. Water Air Soil Pollut. 2017;228:190. doi: 10.1007/s11270-017-3356-y. DOI

Bashir M.A., Khalid M., Naveed M., Ahmad R., Gao B. Influence of feedstock and pyrolytic temperature of biochar on physico-chemical characteristics and sorption of chromium in tannery polluted soil. Int. J. Agric. Biol. 2018;20:2823–2834.

Azom M.R., Mahmud K., Yahya S.M., Sontu A., Himon S.B. Environmental impact assessment of tanneries: A case study of Hazaribag in Bangladesh. Int. J. Environ. Sci. Dev. 2012;3:152–156. doi: 10.7763/IJESD.2012.V3.206. DOI

Rashid H., Takemura J., Farooqi A.M. Investigation of subsurface contamination due to chromium from tannery effluent in Kasur District of Pakistan. J. Environ. Sci. Eng. 2012;1:1007–1024.

Yasin M., Faisal M. Assessing the phytotoxicity of tannery waste-contaminated soil on Zea mays (Lin) Growth. Pol. J. Environ. Stud. 2013;22:1871–1876.

Wionczyk B., Apostoluk W., Charewicz W.A. Solvent extraction of chromium (III) from spent tanning liquors with Aliquat 336. J. Hydrometall. 2006;82:83–92. doi: 10.1016/j.hydromet.2006.03.055. DOI

Ghani A. Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of Brassica juncea L. Egypt. Acad. J. Biol. Sci. H. Bot. 2011;2:9–15.

Nigussie A., Kissi E., Misganaw M., Ambaw G. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am.-Eurasian J. Agric. Environ. Sci. 2012;12:369–376.

Singh H.P., Mahajan P., Kaur S., Batish D.R., Kohli R.K. Chromium toxicity and tolerance in plants. Environ. Chem. Lett. 2013;11:229–254. doi: 10.1007/s10311-013-0407-5. DOI

Oancea S., Foca N., Airinel A. Effect of heavy metal on plant growth and photosynthetic activity. Analele Ştiintifice Ale Universitatii IAŞI. 2005;5:107–110.

Bashir M.A., Naveed M., Ahmad Z., Gao B., Mustafa A., Nú~nez-Delgado A. Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. J. Environ. Manag. 2020;259:110051. doi: 10.1016/j.jenvman.2019.110051. PubMed DOI

Pandey V., Dixit V., Shyam R. Chromium (VI) induced changes in growth and root plasma membrane redox activities in pea plants. Protoplasma. 2009;235:49–55. doi: 10.1007/s00709-008-0028-1. PubMed DOI

Shanker A.K., Cervantesb C., Loza-Taverac H., Avudainayagam S. Chromium toxicity in plants, Review Article. Environ. Int. 2005;31:739–753. doi: 10.1016/j.envint.2005.02.003. PubMed DOI

Ghani A. Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea mays L.) Iranian J. Toxicol. 2010;3:325–334.

Pan J., Jiang J., Xu R. Adsorption of Cr (III) from acidic solutions by crop straw derived biochars. J. Environ. Sci. 2013;25:1957–1965. doi: 10.1016/S1001-0742(12)60305-2. PubMed DOI

Mandal B.K., Suzuki K.T. Arsenic round the world: A review. Talanta. 2002;58:201–235. doi: 10.1016/S0039-9140(02)00268-0. PubMed DOI

Guo H., Stuben D., Berner Z. Arsenic removal from water using natural iron mineral-quartz sand columns. Sci Total Environ. 2007;377:142–151. doi: 10.1016/j.scitotenv.2007.02.001. PubMed DOI

Singh R., Gautam N., Mishra A., Gupta R. Heavy metals and living systems: An overview. Indian J. Pharmacol. 2011;43:246–253. doi: 10.4103/0253-7613.81505. PubMed DOI PMC

Kotaś J., Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000;107:263–283. doi: 10.1016/S0269-7491(99)00168-2. PubMed DOI

Mohan D., Rajput S., Singh V.K., Steele P.H., Pittman C.U. Modeling and evaluation of chromium remediation from water using low cost biochar, a green adsorbent. J. Hazard. Mater. 2011;188:319–333. doi: 10.1016/j.jhazmat.2011.01.127. PubMed DOI

Adriano D.C. Biogeochemistry, Bioavailability, and Risks of Metals. 2nd ed. Springer; New York, NY, USA: 2001. Trace elements in terrestrial environments.

Agrafioti E., Kalderis D., Diamadopoulos E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manag. 2014;133:309–314. doi: 10.1016/j.jenvman.2013.12.007. PubMed DOI

Cervantes C., Campos-Garcia J., Devars S., Gutierrez-Corona F., Loza-Tavera H., Torres-Guzman J.C., Moreno-Sanchez R. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 2001;25:335–347. doi: 10.1111/j.1574-6976.2001.tb00581.x. PubMed DOI

Das N., Mathew L. Chromium pollution and bioremediation: An Overview. Biomanag. Met.-Contam. Soils. 2011;20:297–321. doi: 10.1007/978-94-007-1914-9_13. DOI

Dong X., Ma L.Q., Li Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J. Hazard. Mater. 2011;190:909–915. doi: 10.1016/j.jhazmat.2011.04.008. PubMed DOI

Razic S., Dogo S. Determination of chromium in Mentha piperita L. and soil by graphite furnace atomic absorption spectrometry after sequential extraction and microwave-assisted acid digestion to assess potential bioavailability. Chemosphere. 2011;78:451–456. doi: 10.1016/j.chemosphere.2009.10.028. PubMed DOI

Costa M., Klein C.B. Toxicity and carcinogenicity of chromium compounds in humans. Crit. Rev. Toxicol. 2006;36:155–163. doi: 10.1080/10408440500534032. PubMed DOI

Beesley L., Inneh O.S., Norton G.J., Moreno-Jimenez E., Pardo T., Clemente R., Dawson J.J.C. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut. 2014;186:195–202. doi: 10.1016/j.envpol.2013.11.026. PubMed DOI

Hartley W., Dickinson N.M., Riby P., Lepp N.W. Arsenic mobility in brownfield soils amended with greenwaste compost or biochar and planted with Miscanthus. Environ. Pollut. 2009;157:2654–2662. doi: 10.1016/j.envpol.2009.05.011. PubMed DOI

Clemente R., Walker D.J., Pardo T., Martínez-Fernández, Bernal M.P. The use of halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions. J. Hazard. Mater. 2012;223–224:63–71. doi: 10.1016/j.jhazmat.2012.04.048. PubMed DOI

Mustafa A., Minggang X., Shah S.A.A., Abrar M.M., Nan S., Baoren W., Zejiang C., Saeed Q., Naveed M., Mehmood K., et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 2020;270:110894. doi: 10.1016/j.jenvman.2020.110894. PubMed DOI

Houben D., Evrard L., Sonnet P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere. 2013;92:1450–1457. doi: 10.1016/j.chemosphere.2013.03.055. PubMed DOI

Karami N., Clemente R., Jimenez E.M., Lepp N.W., Beesley L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011;191:41–48. doi: 10.1016/j.jhazmat.2011.04.025. PubMed DOI

Karer J.A., Wawra F., Zehetner G., Dunst M., Wagner P., Pavel M., Puschenreiter W., Friesl-Hanl, Soja G. Effects of biochars and compost mixtures and inorganic additives on immobilisation of heavymetals in contaminated soils. Water Air Soil Pollut. 2015;226:3–12. doi: 10.1007/s11270-015-2584-2. DOI

Kamran M., Malik Z., Parveen A., Zong Y., Abbasi G.H., Rafiq M.T., Shaaban M., Mustafa A., Bashir S., Rafay M., et al. Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi (Brassica chinensis L.) cul-tivated in Cd-polluted soil. J. Environ. Manag. 2019;250:109500. doi: 10.1016/j.jenvman.2019.109500. PubMed DOI

Baigorri R., San Francisco S., Urrutia Ó., García-Mina J.M. Biochar-Ca and Biochar-Al/-Fe-Mediated Phosphate Exchange Capacity are Main Drivers of the Different Biochar Effects on Plants in Acidic and Alkaline Soils. Agronomy. 2020;10:968. doi: 10.3390/agronomy10070968. DOI

Ahmad M., Wang X., Hilger T.H., Luqman M., Nazli F., Hussain A., Zahir Z.A., Latif M., Saeed Q., Malik H.A., et al. Evaluating Biochar-Microbe Synergies for Improved Growth, Yield of Maize, and Post-Harvest Soil Characteristics in a Semi-Arid Climate. Agronomy. 2020;10:1055. doi: 10.3390/agronomy10071055. DOI

Sohi S.P., Krull E., Lopez-Capel E., Bol R. A review of biochar and its use and function in soil. In: Sparks D.L., editor. Advances in Agronomy. Volume 105. Academic Press; Burlington, MA, USA: 2010. pp. 47–82.

Chen B.L., Yuan M.X. Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J. Soils Sediments. 2011;11:62–71. doi: 10.1007/s11368-010-0266-7. DOI

Lu H., Zhang W., Yang Y., Huang X., Wang S., Qiu R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012;46:854–862. doi: 10.1016/j.watres.2011.11.058. PubMed DOI

Al-Wabel M.I., Usman A.R., El-Naggar A.H., Aly A.A., Ibrahim H.M., Elmaghraby S., Al-Omran A. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J. Biol. Sci. 2015;22:503–511. doi: 10.1016/j.sjbs.2014.12.003. PubMed DOI PMC

Uchimiya M., Chang S.C., Klasson K.T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater. 2011;190:432–444. doi: 10.1016/j.jhazmat.2011.03.063. PubMed DOI

Choppala G., Bolan N., Kunhikrishnan A., Bush R. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere. 2016;144:374–381. doi: 10.1016/j.chemosphere.2015.08.043. PubMed DOI

Liu H., Liang S., Gao J., Ngo H.H., Guo W., Guo Z., Wang J., Li Y. Enhancement of Cr (VI) removal by modifying activated carbon developed from Zizania caduciflora with tartaric acid during phosphoric acid activation. Chem. Eng. J. 2014;246:168–174. doi: 10.1016/j.cej.2014.02.046. DOI

Mandal S., Sarkar B., Bolan N., Ok Y.S., Naidu R. Enhancement of chromate reduction in soils by surface modified biochar. J. Environ. Manag. 2017;186:277–284. doi: 10.1016/j.jenvman.2016.05.034. PubMed DOI

Schulz H., Dunst G., Glaser B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013;33:817–827. doi: 10.1007/s13593-013-0150-0. DOI

Naveed M., Mustafa A., Azhar S.Q.T.A., Kamran M., Zahir Z.A., Núñez-Delgado A. Burkholderia phytofirmans PsJN and tree twigs derived biochar together retrieved Pb-induced growth, physiological and biochemical disturbances by minimizing its uptake and translocation in mung bean (Vigna radiata L.) J. Environ. Manag. 2020;257:109974. doi: 10.1016/j.jenvman.2019.109974. PubMed DOI

Naveed M., Mustafa A., Majeed S., Naseem Z., Saeed Q., Khan A., Nawaz A., Baig K.S., Chen J.T. Enhancing cadmium tolerance and pea plant health through Enterobacter sp. MN17 inoculation together with biochar and gravel sand. Plants. 2020;9:530. doi: 10.3390/plants9040530. PubMed DOI PMC

Wang H., Zhang M., Li H. Synthesis of nanoscale zerovalent iron (nZVI) supported on biochar for chromium remediation from aqueous solution and soil. Int. J. Environ. Res. Public Health. 2019;16:4430. doi: 10.3390/ijerph16224430. PubMed DOI PMC

Sanchez M.E., Lindao E., Margaleff D., Martınez O., Moran A. Pyrolysis of agricultural residues from rape and sunflowers: Production and characterization of bio-fuels and biochar soil management. J. Anal. Appl. Pyrol. 2009;85:142–144. doi: 10.1016/j.jaap.2008.11.001. DOI

Rajkovich S., Enders A., Hanley K., Hyland C., Zimmerman A.R., Lehmann J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fert. Soils. 2012;48:271–284. doi: 10.1007/s00374-011-0624-7. DOI

Gaskin J.W., Steiner C., Harris K., Das K.C., Bibens B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE. 2008;51:2061–2069. doi: 10.13031/2013.25409. DOI

Slattery W.J., Ridely A.M., Windsor S.M. Ash alkalinity of animal and plant products. Aust. J. Exp. Agric. 1991;31:321–324. doi: 10.1071/EA9910321. DOI

Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multi molecular layers. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI

Enders A., Lehmann J. Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun. Soil Sci. Plant Anal. 2012;43:1042–1052. doi: 10.1080/00103624.2012.656167. DOI

Gee G.W., Bauder J.W. Particle-size analysis. In: Klute A., editor. Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. 2nd ed. American Society of Agronomy; Madison, WI, USA: 1986. pp. 383–411. Agronomy Monographs 9.

Sumner M.E., Miller W.P. Cation exchange capacity and exchange coefficients. In: Sparks D.L., editor. Methods of Soil Analysis, Part 3. Chemical Methods. American Society of Agronomy; Madison, WI, USA: 1996. pp. 1201–1230.

Leoppert R.H., Hallmark C.T., Koshy M.M. Routine procedure for rapid determination of soil carbonates. J. Soil Sci. Soc. Am. 1984;48:1030–1033. doi: 10.2136/sssaj1984.03615995004800050016x. DOI

Jackson M.L. Soil Chemical Analysis. Printee Hall Inc.; Englewood Cliffs, NJ, USA: 1962.

Olsen S.R., Sommers L.E. Phosphours. In: Page A.L., editor. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties. 2nd ed. American Society of Agronomy; Madison, WI, USA: 1982. pp. 403–430. Agronomy Monographs 9.

Richards L.A. Diagnosis and Impovement of Saline and Alkali Soil. USDA; Washington, DC, USA: 1954. USDA Agric. Handbook 60.

Soon Y.K., Abboud S. Cadmium, chromium, lead and nickel. In: Carter M.R., editor. Soil Sampling and Methods of Analysis. Lewis; Boca Raton, FL, USA: 2007. pp. 101–108.

Bartlett R., James B. Behaviour of chromium in soils: III. Oxidation. J. Environ. Qual. 1993;8:31–35. doi: 10.2134/jeq1979.00472425000800010008x. DOI

Menden E.E., Rutland F.H., Kallenberger W.E. Determination of Cr (VI) in tannery waste by the chelation-extraction method. J. Am. Leather Chem. Assoc. 1990;85:363–375.

Chanda S.V., Singh Y.D. Estimation of leaf area in wheat using linear measurements. Plant Breed. Seed Sci. 2002;46:75–79.

Sumanta N., Haque C.I., Nishika J., Suprakash R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014;4:63–69.

Mayak S., Tirosh T., Glick B.R. Plant growth-promoting bacteria that con-fer resistance in tomato to salt stress. Plant Physiol. Biochem. 2004;42:565–572. doi: 10.1016/j.plaphy.2004.05.009. PubMed DOI

Lutts S., Kinet J.M., Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 1996;78:389–398. doi: 10.1006/anbo.1996.0134. DOI

Sadasivam S., Manickam A. Biochemical Methods for Agricultural Sciences. Willey Eastern Limited; New Delhi, India: 1992.

Bates L.S., Waldren R.P., Teare I.D. Rapid determination of free proline in water-stress studies. Plant Soil. 1973;39:205–207. doi: 10.1007/BF00018060. DOI

Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880.

Cakmak I., Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992;98:1222–1227. doi: 10.1104/pp.98.4.1222. PubMed DOI PMC

Aebi H.E. Catalase. In: Bergmeyer H.U., editor. Methods of Enzymatic Analysis. Verlag Chemie; Weinheim, Germany: 1983. pp. 273–286.

Roth E.F., Gilbert H.S. The pyrogallol assay for superoxide dismutase: Absence of a glutathione artifact. Anal. Biochem. 1984;137:50–53. doi: 10.1016/0003-2697(84)90344-0. PubMed DOI

Blincoe C., Thiesen M.O., Stoddard-Gilbert K. Sample oxidation procedures for the determination of chromium and nickel in biological material. Commun. Soil Sci. Plant Anal. 1987;18:687–697. doi: 10.1080/00103628709367851. DOI

Little T.M., Hills F.J. Agricultural Experimentation: Design and Analysis. John Wiley and Sons, Ins.; New York, NY, USA: 1978.

Junaid M., Hashmi M.Z., Malik R.N., Pei D. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review. Environ. Sci. Pollut. Res. 2016;23:20151–20167. doi: 10.1007/s11356-016-7463-x. PubMed DOI

Ruttens A., Mench M., Colpaert J.V., Boisson J., Carleer R., Vangronsveld J. Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ. Pollut. 2006;144:524–532. doi: 10.1016/j.envpol.2006.01.038. PubMed DOI

Ahmad M., Rajapaksha A.U., Lim J.E., Zhang M., Bolan N., Mohan D., Vithanage M., Lee S.S., Ok Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere. 2013;99:19–33. doi: 10.1016/j.chemosphere.2013.10.071. PubMed DOI

Patra J.M., Panda S.S., Dhal N.K. Biochar as a low-cost adsorbent for heavy metal removal: A review. Int. J. Res. Biosci. 2017;6:1–7.

Cao X., Ma L., Gao B., Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009;43:3285–3291. doi: 10.1021/es803092k. PubMed DOI

Rees F., Simonnot M.O., Morel J.L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur. J. Soil Sci. 2013;65:149–161. doi: 10.1111/ejss.12107. DOI

Lucchinia P., Quilliamc R.S., DeLucad T.H., Vameralia T., Jones D.L. Does biochar application alter heavy metal dynamics in agricultural soil? Agric. Ecosyst. Environ. 2014;184:149–157. doi: 10.1016/j.agee.2013.11.018. DOI

Nagarajan M., Ganesh K.S. Effect of chromium on growth, biochemicals and nutrient accumulation of paddy (Oryza sativa L.) Int. Lett. Nat. Sci. 2014;23:63–71. doi: 10.18052/www.scipress.com/ILNS.23.63. DOI

Choudhury S., Panda S.K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut. 2005;167:73–90. doi: 10.1007/s11270-005-8682-9. DOI

Medda S., Mondal N.K. Chromium toxicity and ultrastructural deformation of Cicer arietinum with special reference of root elongation and coleoptile growth. Ann. Agrar. Sci. 2017;15:396–401. doi: 10.1016/j.aasci.2017.05.022. DOI

Danish S., Kiran S., Fahad S., Ahmad N., Ali M.A., Tahir F.A., Rasheed M.K., Shahzad K., Li X., Wang D., et al. Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol. Environ. Saf. 2019;185:109706. doi: 10.1016/j.ecoenv.2019.109706. PubMed DOI

Shahandeh H., Hossner L. Plant screening for chromium phytoremediation. Int. J. Phytoremediation. 2000;2:31–51. doi: 10.1080/15226510008500029. DOI

Mangabeira P.A., Ferreira A.S., de Almeida A.A., Fernandes V.F., Lucena E., Souza V.L., dos Santos A.J., Jr., Oliveira A.H., Grenier-Loustalot M.F., Barbier F., et al. Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes. Biometals. 2011;24:1017–1026. doi: 10.1007/s10534-011-9459-9. PubMed DOI

Mei B., Puryear. J.D., Newton R.J. Assessment of Cr tolerance and accumulation in selected plant species. Plant Soil. 2002;247:223–231. doi: 10.1023/A:1021509115343. DOI

Pulford I., Watson C., McGregor S. Uptake of chromium by trees: Prospects for phytoremediation. Environ. Geochem. Health. 2001;23:307–311. doi: 10.1023/A:1012243129773. DOI

Stanton K.M., Mickelbart M.V. Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L. Hortic. Res. 2014;33:1–7. doi: 10.1038/hortres.2014.33. PubMed DOI PMC

Wang S., Gao B., Li Y., Mosa A., Zimmerman A.R., Ma L.Q., Harris W.G., Migliaccio K.W. Manganese oxide-modified biochars: Preparation, characterization and sorption of arsenate and lead. Bioresour. Technol. 2015;181:13–17. doi: 10.1016/j.biortech.2015.01.044. PubMed DOI

Jiang J., Xu R.K., Jiang T.Y., Li Z. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard. Mater. 2012;229–230:145–150. doi: 10.1016/j.jhazmat.2012.05.086. PubMed DOI

Mehmood S., Rizwan M., Bashir S., Ditta A., Aziz O., Yong L.Z., Dai Z., Akmal M., Ahmed W., Adeel M., et al. Comparative effects of biochar, slag and ferrous–Mn ore on lead and cadmium immobilization in soil. Bull. Environ. Contam. Toxicol. 2018;100:286–292. doi: 10.1007/s00128-017-2222-3. PubMed DOI

Sabir A., Naveed M., Bashir M.A., Hussain A., Mustafa A., Zahir Z.A., Kamran M., Ditta A., Núñez-Delgado A., Saeed Q., et al. Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. J. Environ. Manag. 2020;265:110522. doi: 10.1016/j.jenvman.2020.110522. PubMed DOI

Nelson D.L., Cox M.M. Lehninger Principles of Biochemistry. 4th ed. Freeman; New York, NY, USA: 2004.

Adejumo S.A., Owolabi M.O., Owolabi M.O. Agro-physiologic effects of compost and biochar produced at different temperatures on growth, photosynthetic pigment and micronutrients uptake of maize crop. Afric. J. Agric. Res. 2016;11:661–673. doi: 10.5897/AJAR2015.9895. DOI

Asgher M., Per T.S., Verma S., Pandith A., Masood A., Khan N.A. Ethylene supplementation increases PSII efficiency and alleviates chromium-inhibited photosynthesis through increased nitrogen and sulfur assimilation in mustard. J. Plant Growth Regul. 2018;37:1300–1317. doi: 10.1007/s00344-018-9858-z. DOI

Yruela I. Copper in plants. Braz. J. Plant Physiol. 2005;17:145–156. doi: 10.1590/S1677-04202005000100012. DOI

Petrovi J., Nikoli G., Markov D. In vitro complexes of copper and zinc with chlorophyll. J. Serb. Chem. Soc. 2006;71:501–512. doi: 10.2298/JSC0605501P. DOI

Liu D., Zou J., Wang M., Jiang W. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defense system and photosynthesis in Amaranthus viridis L. Bioresour. Technol. 2008;99:2628–2636. doi: 10.1016/j.biortech.2007.04.045. PubMed DOI

Mathur S., Kalaji H.M., Jajoo A. Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica. 2016;54:185–192. doi: 10.1007/s11099-016-0198-6. DOI

Singh S.K., Reddy V.R., Fleisher D.H., Timlin D.J. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2. Photosynthetica. 2017;55:421–433. doi: 10.1007/s11099-016-0657-0. DOI

Gopal R., Rizvi A.H., Nautiyal N. Chromium alters iron nutrition and water relations of spinach. J. Plant Nutr. 2009;32:1551–1559. doi: 10.1080/01904160903094313. DOI

Wang Y., Blatt M.R. Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells. Biochem. J. 2011;439:161–170. doi: 10.1042/BJ20110845. PubMed DOI PMC

Chanda S.V., Parmar N.G. Effects of chromium on hypocotyl elongation, wall components, and peroxidase activity of Phaseolus vulgaris seedlings. N. Z. J. Crop Hortic. Sci. 2003;31:115–124. doi: 10.1080/01140671.2003.9514244. DOI

Panda S.K., Choudhury S. Chromium stress in plants. Braz. J. Plant Physiol. 2005;17:95–102. doi: 10.1590/S1677-04202005000100008. DOI

Rai V., Tandon P.K., Khatoon S. Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: Vincristine and vinblastine. BioMed Res. Int. 2014;2014:1–10. doi: 10.1155/2014/934182. PubMed DOI PMC

Paiva L.B., de Oliveira J.G., Azevedo R.A., Ribeiro D.R., da Silva M.G., Vitỏria A.P. Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+ Environ. Exp. Bot. 2009;65:403–409. doi: 10.1016/j.envexpbot.2008.11.012. DOI

Su Y., Han F.X., Sridhar B.M., Monts D.L. Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Environ. Toxicol. Chem. 2005;24:2019–2026. doi: 10.1897/04-329R.1. PubMed DOI

Shahid M., Pourrut B., Dumat C., Nadeem M., Aslam M., Pinelli E. Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 2014;232:1–44. PubMed

Shi Y., Huang Z., Liu X., Imran S., Peng L., Dai R., Deng Y. Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator. Environ. Sci. Pollut. Res. 2016;23:6168–6178. doi: 10.1007/s11356-015-5778-7. PubMed DOI

Zengin F.K., Munzuroglu O. Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol. Crac. Ser. Bot. 2005;47:157–164.

Cui L., Li L., Zhang A., Pan G., Bao D., Chang A. Biochar amendment greatly reduces Cd uptake in a contaminated paddy soil: A two-year field experiment. Bioresources. 2011;6:2605–2618.

Abbas T., Rizwan M., Ali S., Adrees M., Zia-ur-Rehman M., Qayyum M.F., Ok Y.S., Murtaza G. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environ. Sci. Pollut. Res. 2017;26:25668–25680. doi: 10.1007/s11356-017-8987-4. PubMed DOI

Rosa M., Prado C., Podazza G., Interdonato R., González J.A., Hilal M., Pradol F.E. Soluble sugars—Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signal. Behav. 2009;4:388–393. doi: 10.4161/psb.4.5.8294. PubMed DOI PMC

Sinay H., Karuwal R.L. Proline and total soluble sugar content at the vegetative phase of six corn cultivars from Kisar Island Maluku, grown under drought stress conditions. Int. J. Adv. Agric. Res. 2014;2:77–82.

Szabados L., Savoure A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010;15:89–97. doi: 10.1016/j.tplants.2009.11.009. PubMed DOI

Aly A.A., Mohamed A.A. The impact of copper ion on growth, thiol compounds and lipid peroxidation in two maize cultivars (Zea mays L.) grown in vitro. Aust. J. Crop Sci. 2012;6:541–549.

Najafian M., Kafilzadeh F., Azad H.N., Tahery Y. Toxicity of chromium (Cr6+) on growth, ions and some biochemical parameters of Brassica napus L. World Appl. Sci. J. 2012;16:1104–1109.

Younis U., Malik S.A., Qayyum M.F., Shah M.H.R., Shahzad A.N., Mahmood S. Biochar affects growth and biochemical activities of fenugreek (Trigonella corniculata) in cadmium polluted soil. J. Appl. Bot. Food Qual. 2015;88:29–33.

Malook I., Rehman S.U., Khan M.D., El-Hendawy S.E., Al-Suhaibani N.A., Aslam M.M., Jamil M. Heavy metals induced lipid peroxidation in spinach mediated with microbes. Pak. J. Bot. 2017;49:2301–2308.

Saeed Z., Naveed M., Imran M., Bashir M.A., Sattar A., Mustafa A., Xu M. Combined use of Enterobacter sp. MN17 and zeolite reverts the adverse effects of cadmium on growth, physiology and antioxidant activity of Brassica napus. PLoS ONE. 2019;14:e0213016. doi: 10.1371/journal.pone.0213016. PubMed DOI PMC

Foroozesh P., Bahmani R., Pazouki A., asgharzadeh A., rahimdabbagh S., Ahmadvand S. Effect of cadmium stress on antioxidant enzymes activity in different bean genotypes. ARPN J. Agric. Biol. Sci. 2012;7:351–356.

Labudda M., Różańska E., Czarnocka W., Sobczak M., Dzik J.M. Systemic changes in photosynthesis and reactive oxygen species homeostasis in shoots of Arabidopsis thaliana infected with the beet cyst nematode Heterodera schachtii. Mol. Plant Pathol. 2018;19:1690–1704. doi: 10.1111/mpp.12652. PubMed DOI PMC

Hossain M.A., Piyatida P., da Silva J.A.T., Fujita M. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J. Bot. 2012;2012:1–37. doi: 10.1155/2012/872875. DOI

Mourato M.P., Moreira I.N., Leitão I., Pinto F.R., Sales J.R., Martins L.L. Effect of heavy metals in plants of the genus Brassica. Int. J. Mol. Sci. 2015;16:17975–17998. doi: 10.3390/ijms160817975. PubMed DOI PMC

Chibuike G.U., Obiora S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014;2014:1–12. doi: 10.1155/2014/752708. DOI

Sharma S.S., Dietz K.J., Mimura T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ. 2016;39:1112–1126. doi: 10.1111/pce.12706. PubMed DOI

Shahid M., Shamshad S., Rafiq M., Khalid S., Bibi I., Niazi N.K., Dumat C., Rashid M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere. 2017;178:513–533. doi: 10.1016/j.chemosphere.2017.03.074. PubMed DOI

Zayed A.M., Terry N. Chromium in the environment: Factors affecting biological remediation. Plant Soil. 2003;249:139–156. doi: 10.1023/A:1022504826342. DOI

Oliveira H. Chromium as an environmental pollutant: Insights on induced plant toxicity. J. Bot. 2012;2012:375843. doi: 10.1155/2012/375843. DOI

Aldrich M.V., Gardea-Torresdey J.L., Peralta-Videa J.R., Parsons J.G. Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.):  Chromate-plant interaction in hydroponics and solid media studied using XAS. Environ. Sci. Technol. 2003;37:1859–1864. doi: 10.1021/es0208916. PubMed DOI

Das A.P., Mishra S. Hexavalent chromium (VI): Environment pollutant and health hazard. J. Environ. Res. Dev. 2008;2:386–392.

Howe J.A., Loeppert R.H., Derose V.J., Hunter D.B., Bertsch P.M. Localization and speciation of chromium in subterranean clover using XRF, XANES, and EPR spectroscopy. Environ. Sci. Technol. 2003;37:4091–4097. doi: 10.1021/es034156l. PubMed DOI

Tang J., Zhu W., Kookana R., Katayama A. Characteristics of biochar and its application in remediation of contaminated soil: A review. J. Biosci. Bioeng. 2013;116:653–659. doi: 10.1016/j.jbiosc.2013.05.035. PubMed DOI

Park J.H., Choppala G.K., Bolan N.S., Chung J.W., Chuasavathi T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 2011;348:439–451. doi: 10.1007/s11104-011-0948-y. DOI

Xu R.K., Xiao S.C., Yuan J.H., Zhao A.Z. Adsorption of methyl violet from aqueous solutions by the biochar derived from crop residues. Bioresour. Technol. 2011;102:10293–10298. doi: 10.1016/j.biortech.2011.08.089. PubMed DOI

Inyang M., Gao B., Pullammanappallil P., Ding W., Zimmerman A.R. Biochar from anaerobically digested sugarcane bagasse. Bioresour. Technol. 2010;101:8868–8872. doi: 10.1016/j.biortech.2010.06.088. PubMed DOI

Choppala G.K., Bolan N.S., Megharaj M., Chen Z., Naidu R. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J. Environ. Qual. 2012;41:1175–1184. doi: 10.2134/jeq2011.0145. PubMed DOI

Wang X., Wang G., Guo T., Xing Y., Mo F., Wang H., Fan J., Zhang F. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system. Eur. J. Soil Sci. 2021;72:400–412. doi: 10.1111/ejss.12954. DOI

Wang X., Fan J., Xing Y., Xu G., Wang H., Deng J., Wang Y., Zhang F., Li P., Li Z. The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 2019;153:121–173.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...