NTRK Fusion Genes in Thyroid Carcinomas: Clinicopathological Characteristics and Their Impacts on Prognosis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NU21-01-00448
Ministerstvo Zdravotnictví Ceské Republiky
Institute of Endocrinology - EÚ, 00023761
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33923728
PubMed Central
PMC8073383
DOI
10.3390/cancers13081932
PII: cancers13081932
Knihovny.cz E-resources
- Keywords
- NTRK, clinicopathological feature, follow-up, fusion gene, outcome, papillary thyroid carcinoma, poorly differentiated thyroid carcinoma, prognosis,
- Publication type
- Journal Article MeSH
Chromosomal rearrangements of NTRK genes are oncogenic driver mutations in thyroid cancer (TC). This study aimed to identify NTRK fusion-positive thyroid tumors and to correlate them with clinical and pathological data and determine their prognostic significance. The cohort consisted of 989 different TC samples. Based on the detected mutation, samples were triaged, and those that were positive for a BRAF, HRAS, KRAS, NRAS, RET, RET/PTC or PAX8/PPARγ mutation were excluded from further analyses. NTRK fusion gene testing was performed in 259 cases, including 126 cases using next-generation sequencing. NTRK fusion genes were detected in 57 of 846 (6.7%) papillary thyroid carcinomas and in 2 of 10 (20.0%) poorly differentiated thyroid carcinomas. A total of eight types of NTRK fusions were found, including ETV6/NTRK3, EML4/NTRK3, RBPMS/NTRK3, SQSTM1/NTRK3, TPM3/NTRK1, IRF2BP2/NTRK1, SQSTM1/NTRK1 and TPR/NTRK1.NTRK fusion-positive carcinomas were associated with the follicular growth pattern, chronic lymphocytic thyroiditis and lymph node metastases. NTRK1-rearranged carcinomas showed a higher frequency of multifocality and aggressivity than NTRK3-rearranged carcinomas. Tumor size, presence of metastases, positivity for the NTRK3 or NTRK1 fusion gene and a late mutation event (TERT or TP53 mutation) were determined as factors affecting patient prognosis. NTRK fusion genes are valuable diagnostic and prognostic markers.
Department of Molecular Endocrinology Institute of Endocrinology 11694 Prague Czech Republic
Department of Pathology Military University Hospital 16902 Prague Czech Republic
See more in PubMed
Ito Y., Miyauchi A., Kihara M., Fukushima M., Higashiyama T., Miya A. Overall Survival of Papillary Thyroid Carcinoma Patients: A Single-Institution Long-Term Follow-Up of 5897 Patients. World J. Surg. 2018;42:615–622. doi: 10.1007/s00268-018-4479-z. PubMed DOI PMC
Nachalon Y., Stern-Shavit S., Bachar G., Shvero J., Limon D., Popovtzer A. Aggressive Palliation and Survival in Anaplastic Thyroid Carcinoma. JAMA Otolaryngol. Neck Surg. 2015;141:1128–1132. doi: 10.1001/jamaoto.2015.2332. PubMed DOI
Enumah S., Fingeret A., Parangi S., Dias-Santagata D., Sadow P.M., Lubitz C.C. BRAFV600E Mutation is Associated with an Increased Risk of Papillary Thyroid Cancer Recurrence. World J. Surg. 2020;44:2685–2691. doi: 10.1007/s00268-020-05521-2. PubMed DOI PMC
Li X., Kwon H. The Impact of BRAF Mutation on the Recurrence of Papillary Thyroid Carcinoma: A Meta-Analysis. Cancers. 2020;12:2056. doi: 10.3390/cancers12082056. PubMed DOI PMC
Yang J., Gong Y., Yan S., Chen H., Qin S., Gong R. Association between TERT promoter mutations and clinical behaviors in differentiated thyroid carcinoma: A systematic review and meta-analysis. Endocrine. 2019;67:44–57. doi: 10.1007/s12020-019-02117-2. PubMed DOI PMC
Xing M. Clinical utility of RAS mutations in thyroid cancer: A blurred picture now emerging clearer. BMC Med. 2016;14:1–4. doi: 10.1186/s12916-016-0559-9. PubMed DOI PMC
Vaishnavi A., Le A.T., Doebele R.C. TRKing Down an Old Oncogene in a New Era of Targeted Therapy. Cancer Discov. 2014;5:25–34. doi: 10.1158/2159-8290.CD-14-0765. PubMed DOI PMC
Solomon J.P., Linkov I., Rosado A., Mullaney K., Rosen E.Y., Frosina D., Jungbluth A.A., Zehir A., Benayed R., Drilon A., et al. NTRK fusion detection across multiple assays and 33,997 cases: Diagnostic implications and pitfalls. Mod. Pathol. 2020;33:38–46. doi: 10.1038/s41379-019-0324-7. PubMed DOI PMC
Van Der Tuin K., Garcia M.V., Corver W.E., Khalifa M.N., Neto D.R., Corssmit E.P.M., Hes F.J., Links T.P., Smit J.W.A., Plantinga T.S., et al. Targetable gene fusions identified in radioactive iodine refractory advanced thyroid carcinoma. Eur. J. Endocrinol. 2019;180:235–241. doi: 10.1530/EJE-18-0653. PubMed DOI
Agrawal N., Akbani R., Aksoy B.A., Ally A., Arachchi H., Asa S.L., Auman J.T., Balasundaram M., Balu S., Baylin S.B., et al. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell. 2014;159:676–690. doi: 10.1016/j.cell.2014.09.050. PubMed DOI PMC
Lee Y.-C., Chen J.-Y., Huang C.-J., Chen H.-S., Yang A.-H., Hang J.-F. Detection of NTRK1/3 Rearrangements in Papillary Thyroid Carcinoma Using Immunohistochemistry, Fluorescent In Situ Hybridization, and Next-Generation Sequencing. Endocr. Pathol. 2020;31:348–358. doi: 10.1007/s12022-020-09648-9. PubMed DOI
Liang J., Cai W., Feng D., Teng H., Mao F., Jiang Y., Huajing T., Li X., Zhang Y., Liu B., et al. Genetic landscape of papillary thyroid carcinoma in the Chinese population. J. Pathol. 2018;244:215–226. doi: 10.1002/path.5005. PubMed DOI
Pekova B., Sykorova V., Dvorakova S., Vaclavikova E., Moravcova J., Katra R., Astl J., Vlcek P., Kodetova D., Vcelak J., et al. RET, NTRK, ALK, BRAF, and MET Fusions in a Large Cohort of Pediatric Papillary Thyroid Carcinomas. Thyroid. 2020;30:1771–1780. doi: 10.1089/thy.2019.0802. PubMed DOI
Picarsic J.L., Buryk M.A., Ozolek J.A., Ranganathan S., Monaco S.E., Simons J.P., Witchel S.F., Gurtunca N., Joyce J., Zhong S., et al. Molecular Characterization of Sporadic Pediatric Thyroid Carcinoma with the DNA/RNA ThyroSeq v2 Next-Generation Sequencing Assay. Pediatr. Dev. Pathol. 2016;19:115–122. doi: 10.2350/15-07-1667-OA.1. PubMed DOI PMC
Prasad M.L., Vyas M., Horne M.J., Virk R.K., Morotti R., Liu Z., Tallini G., Nikiforova M.N., Christison-Lagay E.R., Udelsman R., et al. NTRKfusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer. 2016;122:1097–1107. doi: 10.1002/cncr.29887. PubMed DOI
Hong D.S., DuBois S.G., Kummar S., Farago A.F., Albert C.M., Rohrberg K.S., van Tilburg C.M., Nagasubramanian R., Berlin J.D., Federman N., et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020;21:531–540. doi: 10.1016/S1470-2045(19)30856-3. PubMed DOI PMC
Pekova B., Dvorakova S., Sykorova V., Vacinova G., Vaclavikova E., Moravcova J., Katra R., Vlcek P., Sykorova P., Kodetova D., et al. Somatic genetic alterations in a large cohort of pediatric thyroid nodules. Endocr. Connect. 2019;8:796–805. doi: 10.1530/EC-19-0069. PubMed DOI PMC
Haugen B.R., Alexander E.K., Bible K.C., Doherty G.M., Mandel S.J., Nikiforov Y.E., Pacini F., Randolph G.W., Sawka A.M., Schlumberger M., et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133. doi: 10.1089/thy.2015.0020. PubMed DOI PMC
Paschke R., Cantara S., Crescenzi A., Jarzab B., Musholt T.J., Simoes M.S. European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. Eur. Thyroid J. 2017;6:115–129. doi: 10.1159/000468519. PubMed DOI PMC
Seethala R.R., Chiosea S.I., Liu C.Z., Nikiforova M., Nikiforov Y.E. Clinical and Morphologic Features of ETV6-NTRK3 Translocated Papillary Thyroid Carcinoma in an Adult Population Without Radiation Exposure. Am. J. Surg. Pathol. 2017;41:446–457. doi: 10.1097/PAS.0000000000000814. PubMed DOI PMC
Leeman-Neill R.J., Bs L.M.K., Liu P., Brenner A.V., Leeman-Neill R.J., Bogdanova T.I., Evdokimova V.N., Hatch M., Zurnadzy L.Y., Nikiforova M.N., et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer. 2014;120:799–807. doi: 10.1002/cncr.28484. PubMed DOI PMC
Abi-Raad R., Prasad M.L., Adeniran A.J., Cai G. Fine-needle aspiration cytomorphology of papillary thyroid carcinoma withNTRKgene rearrangement from a case series with predominantly indeterminate cytology. Cancer Cytopathol. 2020;128:803–811. doi: 10.1002/cncy.22353. PubMed DOI
Fazeli S., Dadu R., Waguespack S.G., Sherman S.I., Busaidy N.L., Hu M.I., Jimenez C., Habra M.A., Williams M., Altameemi L., et al. MON-491 TRK-Fusion Thyroid Cancer: A Clinical Overview in a Large Population at a Single Cancer Center. J. Endocr. Soc. 2020;4 doi: 10.1210/jendso/bvaa046.328. DOI
Pfeifer A., Rusinek D., Żebracka-Gala J., Czarniecka A., Chmielik E., Zembala-Nożyńska E., Wojtaś B., Gielniewski B., Szpak-Ulczok S., Oczko-Wojciechowska M., et al. NovelTG-FGFR1andTRIM33-NTRK1transcript fusions in papillary thyroid carcinoma. Genes Chromosom. Cancer. 2019;58:558–566. doi: 10.1002/gcc.22737. PubMed DOI PMC
Chu Y.-H., Dias-Santagata D., Farahani A.A., Boyraz B., Faquin W.C., Nosé V., Sadow P.M. Clinicopathologic and molecular characterization of NTRK-rearranged thyroid carcinoma (NRTC) Mod. Pathol. 2020;33:2186–2197. doi: 10.1038/s41379-020-0574-4. PubMed DOI PMC
Gatalica Z., Xiu J., Swensen J., Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod. Pathol. 2019;32:147–153. doi: 10.1038/s41379-018-0118-3. PubMed DOI
Chu Y.-H., Wirth L.J., Farahani A.A., Nosé V., Faquin W.C., Dias-Santagata D., Sadow P.M. Clinicopathologic features of kinase fusion-related thyroid carcinomas: An integrative analysis with molecular characterization. Mod. Pathol. 2020;33:2458–2472. doi: 10.1038/s41379-020-0638-5. PubMed DOI PMC
Xu B., Fuchs T.L., Dogan S., Landa I., Katabi N., Fagin J.A., TuttleMD R.M., Sherman E.J., Gill A.J., GhosseinMD R. Dissecting Anaplastic Thyroid Carcinoma: A Comprehensive Clinical, Histologic, Immunophenotypic, and Molecular Study of 360 Cases. Thyroid. 2020;30:1505–1517. doi: 10.1089/thy.2020.0086. PubMed DOI PMC
Tavares C., Melo M., Teijeiro J.M.C., Soares P., Sobrinho-Simões M. ENDOCRINE TUMOURS: Genetic predictors of thyroid cancer outcome. Eur. J. Endocrinol. 2016;174:R117–R126. doi: 10.1530/EJE-15-0605. PubMed DOI
Borre P.V., Schrock A.B., Anderson P.M., Morris J.C., Heilmann A.M., Holmes O., Wang K., Johnson A., Waguespack S.G., Ou S.I., et al. Pediatric, Adolescent, and Young Adult Thyroid Carcinoma Harbors Frequent and Diverse Targetable Genomic Alterations, Including Kinase Fusions. Oncologist. 2017;22:255–263. doi: 10.1634/theoncologist.2016-0279. PubMed DOI PMC
Duan H., Li Y., Hu P., Gao J., Ying J., Xu W., Zhao D., Wang Z., Ye J., Lizaso A., et al. Mutational profiling of poorly differentiated and anaplastic thyroid carcinoma by the use of targeted next-generation sequencing. Histopathology. 2019;75:890–899. doi: 10.1111/his.13942. PubMed DOI
Kummar S., Lassen U.N. TRK Inhibition: A New Tumor-Agnostic Treatment Strategy. Target. Oncol. 2018;13:545–556. doi: 10.1007/s11523-018-0590-1. PubMed DOI
RET fusion genes in pediatric and adult thyroid carcinomas: cohort characteristics and prognosis