Thyroid Cancer Detection in a Routine Clinical Setting: Performance of ACR TI-RADS, FNAC, and Molecular Testing in Prospective Cohort Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV (NU21-01-00448)
Government of the Czech Republic
EU 00023761
Government of the Czech Republic
PubMed
35625691
PubMed Central
PMC9139136
DOI
10.3390/biomedicines10050954
PII: biomedicines10050954
Knihovny.cz E-zdroje
- Klíčová slova
- ACR-TIRADS, BRAF, FNAC, RAS, TERT, fusions, molecular testing, thyroid cancer, thyroid nodule,
- Publikační typ
- časopisecké články MeSH
The aim of our study was to address the potential for improvements in thyroid cancer detection in routine clinical settings using a clinical examination, the American College of Radiology Thyroid Imaging Reporting and Database System (ACR TI-RADS), and fine-needle aspiration cytology (FNAC) concurrently with molecular diagnostics. A prospective cohort study was performed on 178 patients. DNA from FNA samples was used for next-generation sequencing to identify mutations in the genes BRAF, HRAS, KRAS, NRAS, and TERT. RNA was used for real-time PCR to detect fusion genes. The strongest relevant positive predictors for malignancy were the presence of genetic mutations (p < 0.01), followed by FNAC (p < 0.01) and ACR TI-RADS (p < 0.01). Overall, FNAC, ACR TI-RADS, and genetic testing reached a sensitivity of up to 96.1% and a specificity of 88.3%, with a diagnostic odds ratio (DOR) of 183.6. Sensitivity, specificity, and DOR decreased to 75.0%, 88.9%, and 24.0, respectively, for indeterminate (Bethesda III, IV) FNAC results. FNA molecular testing has substantial potential for thyroid malignancy detection and could lead to improvements in our approaches to patients. However, clinical examination, ACR TI-RADS, and FNAC remained relevant factors.
Zobrazit více v PubMed
Haugen B.R., Alexander E.K., Bible K.C., Doherty G.M., Mandel S.J., Nikiforov Y.E., Pacini F., Randolph G.W., Sawka A.M., Schlumberger M., et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133. doi: 10.1089/thy.2015.0020. PubMed DOI PMC
Horvath E., Silva C.F., Majlis S., Rodriguez I., Skoknic V., Castro A., Rojas H., Niedmann J.-P., Madrid A., Capdeville F., et al. Prospective validation of the ultrasound based TIRADS (Thyroid Imaging Reporting and Data System) classification: Results in surgically resected thyroid nodules. Eur. Radiol. 2016;27:2619–2628. doi: 10.1007/s00330-016-4605-y. PubMed DOI
Kim E.-K., Park C.S., Chung W.Y., Oh K.K., Kim D.I., Lee J.T., Yoo H.S. New Sonographic Criteria for Recommending Fine-Needle Aspiration Biopsy of Nonpalpable Solid Nodules of the Thyroid. Am. J. Roentgenol. 2002;178:687–691. doi: 10.2214/ajr.178.3.1780687. PubMed DOI
Middleton W.D., Teefey S.A., Reading C.C., Langer J.E., Beland M.D., Szabunio M.M., Desser T.S. Comparison of Performance Characteristics of American College of Radiology TI-RADS, Korean Society of Thyroid Radiology TIRADS, and American Thyroid Association Guidelines. Am. J. Roentgenol. 2018;210:1148–1154. doi: 10.2214/AJR.17.18822. PubMed DOI
U.S. Preventive Services Task Force Screening for Thyroid Cancer: Recommendation Statement. Am. Fam. Physician. 2018;97 PubMed
Nguyen X.V., Choudhury K.R., Tessler F.N., Hoang J.K. Effect of Tumor Size on Risk of Metastatic Disease and Survival for Thyroid Cancer: Implications for Biopsy Guidelines. Thyroid. 2018;28:295–300. doi: 10.1089/thy.2017.0526. PubMed DOI
Bongiovanni M., Spitale A., Faquin W.C., Mazzucchelli L., Baloch Z.W. The Bethesda System for Reporting Thyroid Cytopathology: A Meta-Analysis. Acta Cytol. 2012;56:333–339. doi: 10.1159/000339959. PubMed DOI
Nikiforov Y.E., Baloch Z.W. Clinical validation of the ThyroSeq v3 genomic classifier in thyroid nodules with indeterminate FNA cytology. Cancer Cytopathol. 2019;127:225–230. doi: 10.1002/cncy.22112. PubMed DOI PMC
Lu Z., Zhang Y., Feng D., Sheng J., Yang W., Liu B. Targeted next generation sequencing identifies somatic mutations and gene fusions in papillary thyroid carcinoma. Oncotarget. 2017;8:45784–45792. doi: 10.18632/oncotarget.17412. PubMed DOI PMC
Valderrabano P., Leon M.E., Centeno B.A., Otto K.J., Khazai L., McCaffrey J.C., Russell J.S., McIver B. Institutional prevalence of malignancy of indeterminate thyroid cytology is necessary but insufficient to accurately interpret molecular marker tests. Eur. J. Endocrinol. 2016;174:621–629. doi: 10.1530/EJE-15-1163. PubMed DOI
Steward D.L., Carty S.E., Sippel R.S., Yang S.P., Sosa J.A., Sipos J.A., Figge J.J., Mandel S., Haugen B.R., Burman K.D., et al. Performance of a Multigene Genomic Classifier in Thyroid Nodules with Indeterminate Cytology. JAMA Oncol. 2019;5:204–212. doi: 10.1001/jamaoncol.2018.4616. PubMed DOI PMC
Guth S., Theune U., Aberle J., Galach A., Bamberger C.M. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Investig. 2009;39:699–706. doi: 10.1111/j.1365-2362.2009.02162.x. PubMed DOI
Zamrazil V., Bilek R., Cerovska J., Delange F. The Elimination of Iodine Deficiency in the Czech Republic: The Steps Toward Success. Thyroid. 2004;14:49–56. doi: 10.1089/105072504322783849. PubMed DOI
Bai Y., Kakudo K., Jung C.K. Updates in the Pathologic Classification of Thyroid Neoplasms: A Review of the World Health Organization Classification. Endocrinol. Metab. 2020;35:696–715. doi: 10.3803/EnM.2020.807. PubMed DOI PMC
Grant E.G., Tessler F.N., Hoang J.K., Langer J.E., Beland M.D., Berland L.L., Cronan J.J., Desser T.S., Frates M.C., Hamper U.M., et al. Thyroid Ultrasound Reporting Lexicon: White Paper of the ACR Thyroid Imaging, Reporting and Data System (TIRADS) Committee. J. Am. Coll. Radiol. 2015;12:1272–1279. doi: 10.1016/j.jacr.2015.07.011. PubMed DOI
Tessler F.N., Middleton W.D., Grant E.G., Hoang J.K., Berland L.L., Teefey S.A., Cronan J.J., Beland M.D., Desser T.S., Frates M.C., et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017;14:587–595. doi: 10.1016/j.jacr.2017.01.046. PubMed DOI
Cibas E.S., Ali S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2017;27:1341–1346. doi: 10.1089/thy.2017.0500. PubMed DOI
Pekova B., Sykorova V., Dvorakova S., Vaclavikova E., Moravcova J., Katra R., Astl J., Vlcek P., Kodetova D., Vcelak J., et al. RET, NTRK, ALK, BRAF, and MET Fusions in a Large Cohort of Pediatric Papillary Thyroid Carcinomas. Thyroid. 2020;30:1771–1780. doi: 10.1089/thy.2019.0802. PubMed DOI
Meloun M., Hill M., Militky J., Kupka K. Transformation in the PC-Aided Biochemical Data Analysis. Clin. Chem. Lab. Med. (CCLM) 2000;38:553–559. doi: 10.1515/CCLM.2000.081. PubMed DOI
Trygg J., Wold S. Orthogonal projections to latent structures (O-PLS) J. Chemom. 2002;16:119–128. doi: 10.1002/cem.695. DOI
Grimmichová T., Pačesová P., Srbová L., Vrbíková J., Havrdová T., Hill M. The Gold Standard of Thyroid Nodule Examination? Prospective Validation of the ACR TI-RADS in a Secondary Referral Center. Physiol. Res. 2020;69:S329–S337. doi: 10.33549/physiolres.934515. PubMed DOI PMC
Takano T. Natural history of thyroid cancer. Endocr. J. 2017;64:237–244. doi: 10.1507/endocrj.EJ17-0026. PubMed DOI
Williams D. Thyroid Growth and Cancer. Eur. Thyroid J. 2015;4:164–173. doi: 10.1159/000437263. PubMed DOI PMC
Coca-Pelaz A., Shah J.P., Hernandez-Prera J.C., Ghossein R.A., Rodrigo J.P., Hartl D.M., Olsen K.D., Shaha A.R., Zafereo M., Suarez C., et al. Papillary Thyroid Cancer—Aggressive Variants and Impact on Management: A Narrative Review. Adv. Ther. 2020;37:3112–3128. doi: 10.1007/s12325-020-01391-1. PubMed DOI PMC
Lin J.S., Bowles E.J.A., Williams S.B., Morrison C.C. Screening for Thyroid Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2017;317:1888–1903. doi: 10.1001/jama.2017.0562. PubMed DOI
Nam I.-C., Choi H., Kim E.-S., Mo E.-Y., Park Y.-H., Sun D.-I. Characteristics of thyroid nodules causing globus symptoms. Eur. Arch. Otorhinolaryngol. 2015;272:1181–1188. doi: 10.1007/s00405-015-3525-9. PubMed DOI
Malone M.K., Zagzag J., Ogilvie J., Patel K., Heller K.S. Thyroid Cancers Detected by Imaging Are Not Necessarily Small or Early Stage. Thyroid. 2014;24:314–318. doi: 10.1089/thy.2012.0651. PubMed DOI
Grimmichova T., Haluzik M., Vondra K., Matucha P., Hill M. Relation of prediabetes and type 2 diabetes mellitus to thyroid cancer. Endocr. Connect. 2020;9:607–616. doi: 10.1530/EC-20-0180. PubMed DOI PMC
Anil C., Goksel S., Gursoy A. Hashimoto’s Thyroiditis Is Not Associated with Increased Risk of Thyroid Cancer in Patients with Thyroid Nodules: A Single-Center Prospective Study. Thyroid. 2010;20:601–606. doi: 10.1089/thy.2009.0450. PubMed DOI
Lopes N.M.D., Lens H.H.M., Armani A., Marinello P.C., Cecchini A.L. Thyroid cancer and thyroid autoimmune disease: A review of molecular aspects and clinical outcomes. Pathol. Res. Pract. 2020;216:153098. doi: 10.1016/j.prp.2020.153098. PubMed DOI
Pantano A.L., Maddaloni E., Briganti S.I., Anguissola G.B., Perrella E., Taffon C., Palermo A., Pozzilli P., Manfrini S., Crescenzi A. Differences between ATA, AACE/ACE/AME and ACR TI-RADS ultrasound classifications performance in identifying cytological high-risk thyroid nodules. Eur. J. Endocrinol. 2018;178:595–603. doi: 10.1530/EJE-18-0083. PubMed DOI
Koc A.M., Adıbelli Z.H., Erkul Z., Sahin Y., Dilek I. Comparison of diagnostic accuracy of ACR-TIRADS, American Thyroid Association (ATA), and EU-TIRADS guidelines in detecting thyroid malignancy. Eur. J. Radiol. 2020;133:109390. doi: 10.1016/j.ejrad.2020.109390. PubMed DOI
Ng D.L., van Zante A., Griffin A., Hills N.K., Ljung B.-M.E. A Large Thyroid Fine Needle Aspiration Biopsy Cohort with Long-Term Population-Based Follow-Up. Thyroid. 2021;31:1086–1095. doi: 10.1089/thy.2020.0689. PubMed DOI PMC
Paschke R., Cantara S., Crescenzi A., Jarzab B., Musholt T.J., Simoes M.S. European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. Eur. Thyroid J. 2017;6:115–129. doi: 10.1159/000468519. PubMed DOI PMC
Haddad R.I., Nasr C., Bischoff L., Busaidy N.L., Byrd D., Callender G., Dickson P., Duh Q.-Y., Ehya H., Goldner W., et al. NCCN Guidelines Insights: Thyroid Carcinoma, Version 2.2018. J. Natl. Compr. Cancer Netw. 2018;16:1429–1440. doi: 10.6004/jnccn.2018.0089. PubMed DOI
Gharib H., Papini E., Garber J.R., Duick D.S., Harrell R.M., Hegedüs L., Paschke R., Valcavi R., Vitti P. AACE/ACE/AME Task Force on Thyroid Nodules. American Association of Clinical endocrinologists, american college of endocrinology, and associazione medici endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules 2016 UPDATE. Endocr. Pract. 2016;22:622–639. doi: 10.4158/EP161208.GL. PubMed DOI
Niemeier L.A., Akatsu H.K., Song C., Carty S.E., Hodak S.P., Yip L., Ferris R.L., Tseng G.C., Seethala R.R., Lebeau S.O., et al. A combined molecular-pathologic score improves risk stratification of thyroid papillary microcarcinoma. Cancer. 2011;118:2069–2077. doi: 10.1002/cncr.26425. PubMed DOI PMC
Zheng X., Wei S., Han Y., Li Y., Yu Y., Yun X., Ren X., Gao M. Papillary Microcarcinoma of the Thyroid: Clinical Characteristics and BRAFV600E Mutational Status of 977 Cases. Ann. Surg. Oncol. 2013;20:2266–2273. doi: 10.1245/s10434-012-2851-z. PubMed DOI
Melo M., da Rocha A.G., Vinagre J., Batista R., Peixoto J., Tavares C., Celestino R., Almeida A., Salgado C., Eloy C., et al. TERT Promoter Mutations Are a Major Indicator of Poor Outcome in Differentiated Thyroid Carcinomas. J. Clin. Endocrinol. Metab. 2014;99:E754–E765. doi: 10.1210/jc.2013-3734. PubMed DOI PMC
Lee S.E., Hwang T.S., Choi Y.-L., Han H.S., Kim W.S., Jang M.H., Kim S.K., Yang J.H. Prognostic Significance of TERT Promoter Mutations in Papillary Thyroid Carcinomas in a BRAFV600E Mutation–Prevalent Population. Thyroid. 2016;26:901–910. doi: 10.1089/thy.2015.0488. PubMed DOI
Pekova B., Sykorova V., Mastnikova K., Vaclavikova E., Moravcova J., Vlcek P., Lastuvka P., Taudy M., Katra R., Bavor P., et al. NTRK Fusion Genes in Thyroid Carcinomas: Clinicopathological Characteristics and Their Impacts on Prognosis. Cancers. 2021;13:1932. doi: 10.3390/cancers13081932. PubMed DOI PMC
Ito Y., Miyauchi A., Kihara M., Higashiyama T., Kobayashi K., Miya A. Patient Age Is Significantly Related to the Progression of Papillary Microcarcinoma of the Thyroid Under Observation. Thyroid. 2014;24:27–34. doi: 10.1089/thy.2013.0367. PubMed DOI PMC
Marina M., Zatelli M.C., Goldoni M., Del Rio P., Corcione L., Martorana D., Percesepe A., Bonatti F., Mozzoni P., Crociara A., et al. Combination of ultrasound and molecular testing in malignancy risk estimate of Bethesda category IV thyroid nodules: Results from a single-institution prospective study. J. Endocrinol. Investig. 2021;44:2635–2643. doi: 10.1007/s40618-021-01571-y. PubMed DOI PMC
Figge J.J., Gooding W.E., Steward D.L., Yip L., Sippel R.S., Yang S.P., Scheri R.P., Sipos J.A., Mandel S.J., Mayson S.E., et al. Do Ultrasound Patterns and Clinical Parameters Inform the Probability of Thyroid Cancer Predicted by Molecular Testing in Nodules with Indeterminate Cytology? Thyroid. 2021;31:1673–1682. doi: 10.1089/thy.2021.0119. PubMed DOI PMC
Zhu Y., Wu H., Huang B., Shen X., Cai G., Gu X. BRAFV600E mutation combined with American College of Radiology thyroid imaging report and data system significantly changes surgical resection rate and risk of malignancy in thyroid cytopathology practice. Gland Surg. 2020;9:1674–1684. doi: 10.21037/gs-20-535. PubMed DOI PMC
Type 2 Diabetes, Obesity and Their Relation to the Risks of Thyroid Cancer