Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
733032, 859891, 857560
European Union's Horizon 2020
PubMed
33924165
PubMed Central
PMC8074384
DOI
10.3390/ijms22084282
PII: ijms22084282
Knihovny.cz E-zdroje
- Klíčová slova
- cytokines, flame retardants, interferon, metabolic disruption, metabolism-disrupting chemicals, nonalcoholic fatty liver disease,
- MeSH
- biologické markery MeSH
- cílená molekulární terapie MeSH
- cytokiny metabolismus MeSH
- interferony metabolismus MeSH
- játra účinky léků metabolismus patologie MeSH
- lidé MeSH
- mediátory zánětu metabolismus MeSH
- náchylnost k nemoci * MeSH
- nealkoholová steatóza jater etiologie metabolismus patologie MeSH
- objevování léků MeSH
- retardanty hoření škodlivé účinky MeSH
- signální transdukce * MeSH
- zánět etiologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
- cytokiny MeSH
- interferony MeSH
- mediátory zánětu MeSH
- retardanty hoření MeSH
Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system's components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.
Zobrazit více v PubMed
Younossi Z.M., Koenig A.B., Abdelatif D., Fazel Y., Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84. doi: 10.1002/hep.28431. PubMed DOI
Younossi Z., Anstee Q.M., Marietti M., Hardy T., Henry L., Eslam M., George J., Bugianesi E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018;15:11–20. doi: 10.1038/nrgastro.2017.109. PubMed DOI
Farrell G.C., Larter C.Z. Nonalcoholic fatty liver disease: From steatosis to cirrhosis. Hepatology. 2006;43:S99–S112. doi: 10.1002/hep.20973. PubMed DOI
Younossi Z.M., Blissett D., Blissett R., Henry L., Stepanova M., Younossi Y., Racila A., Hunt S., Beckerman R. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64:1577–1586. doi: 10.1002/hep.28785. PubMed DOI
Sanyal A.J. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2019;16:377–386. doi: 10.1038/s41575-019-0144-8. PubMed DOI
Alves-Bezerra M., Cohen D.E. Triglyceride metabolism in the liver. Compr. Physiol. 2018;8:1–22. doi: 10.1002/cphy.c170012. PubMed DOI PMC
Martin S., Parton R.G. Lipid droplets: A unified view of a dynamic organelle. Nat. Rev. Mol. Cell Biol. 2006;7:373–378. doi: 10.1038/nrm1912. PubMed DOI
Byrne C.D., Targher G. What’s new in NAFLD pathogenesis, biomarkers and treatment? Nat. Rev. Gastroenterol. Hepatol. 2020;17:70–71. doi: 10.1038/s41575-019-0239-2. PubMed DOI
Nassir F., Rector R.S., Hammoud G.M., Ibdah J.A. Pathogenesis and prevention of hepatic steatosis. Gastroenterol. Hepatol. 2015;11:167–175. PubMed PMC
Fielding C.M., Angulo P. Hepatic steatosis and steatohepatitis: Are they really two distinct entities? Curr. Hepatol. Rep. 2014;13:151–158. doi: 10.1007/s11901-014-0227-5. PubMed DOI PMC
Fang Y.L., Chen H., Wang C.L., Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”. World J. Gastroenterol. 2018;24:2974–2983. doi: 10.3748/wjg.v24.i27.2974. PubMed DOI PMC
Aron-Wisnewsky J., Vigliotti C., Witjes J., Le P., Holleboom A.G., Verheij J., Nieuwdorp M., Clément K. Gut microbiota and human NAFLD: Disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 2020;17:279–297. doi: 10.1038/s41575-020-0269-9. PubMed DOI
Polyzos S.A., Kountouras J., Mantzoros C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 2019;92:82–97. doi: 10.1016/j.metabol.2018.11.014. PubMed DOI
Foulds C.E., Treviño L.S., York B., Walker C.L. Endocrine-disrupting chemicals and fatty liver disease. Nat. Rev. Endocrinol. 2017;13:445–457. doi: 10.1038/nrendo.2017.42. PubMed DOI PMC
Heindel J.J., Blumberg B., Cave M., Machtinger R., Mantovani A., Mendez M.A., Nadal A., Palanza P., Panzica G., Sargis R., et al. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 2017;68:3–33. doi: 10.1016/j.reprotox.2016.10.001. PubMed DOI PMC
Suzuki T., Hidaka T., Kumagai Y., Yamamoto M. Environmental pollutants and the immune response. Nat. Immunol. 2020;21:1486–1495. doi: 10.1038/s41590-020-0802-6. PubMed DOI
Wahlang B., Jin J., Beier J.I., Hardesty J.E., Daly E.F., Schnegelberger R.D., Falkner K.C., Prough R.A., Kirpich I.A., Cave M.C. Mechanisms of Environmental Contributions to Fatty Liver Disease. Curr. Environ. Health Rep. 2019;6:80–94. doi: 10.1007/s40572-019-00232-w. PubMed DOI PMC
Wahlang B., Beier J.I., Clair H.B., Bellis-Jones H.J., Falkner K.C., McClain C.J., Cave M.C. Toxicant-associated steatohepatitis. Toxicol. Pathol. 2013;41:343–360. doi: 10.1177/0192623312468517. PubMed DOI PMC
Schwingel P.A., Cotrim H.P., Salles B.R., Almeida C.E., Dos Santos C.R., Nachef B., Andrade A.R., Zoppi C.C. Anabolic-androgenic steroids: A possible new risk factor of toxicant-associated fatty liver disease. Liver Int. 2011;31:348–353. doi: 10.1111/j.1478-3231.2010.02346.x. PubMed DOI
Cave M., Falkner K.C., Ray M., Joshi-Barve S., Brock G., Khan R., Bon Homme M., McClain C.J. Toxicant-associated steatohepatitis in vinyl chloride workers. Hepatology. 2010;51:474–481. doi: 10.1002/hep.23321. PubMed DOI PMC
Gibson E.A., Stapleton H.M., Calero L., Holmes D., Burke K., Martinez R., Cortes B., Nematollahi A., Evans D., Herbstman J.B. Flame retardant exposure assessment: Findings from a behavioral intervention study. J. Expo. Sci. Environ. Epidemiol. 2019;29:33–48. doi: 10.1038/s41370-018-0049-6. PubMed DOI PMC
Kemmlein S., Hahn O., Jann O. Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials. Atmos. Environ. 2003;37:5485–5493. doi: 10.1016/j.atmosenv.2003.09.025. DOI
González-Rubio S., Ballesteros-Gómez A., Asimakopoulos A.G., Jaspers V.L.B. A review on contaminants of emerging concern in European raptors (2002−2020) Sci. Total Environ. 2020;760:143337. doi: 10.1016/j.scitotenv.2020.143337. PubMed DOI
Yang J., Zhao Y., Li M., Du M., Li X., Li Y. A review of a class of emerging contaminants: The classification, distribution, intensity of consumption, synthesis routes, environmental effects and expectation of pollution abatement to organophosphate flame retardants (opfrs) Int. J. Mol. Sci. 2019;20:2874. doi: 10.3390/ijms20122874. PubMed DOI PMC
Maddela N.R., Venkateswarlu K., Kakarla D., Megharaj M. Inevitable human exposure to emissions of polybrominated diphenyl ethers: A perspective on potential health risks. Environ. Pollut. 2020;266:115240. doi: 10.1016/j.envpol.2020.115240. PubMed DOI
Wang R., Tang J., Xie Z., Mi W., Chen Y., Wolschke H., Tian C., Pan X., Luo Y., Ebinghaus R. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China. Environ. Pollut. 2015;198:172–178. doi: 10.1016/j.envpol.2014.12.037. PubMed DOI
Blum A., Behl M., Birnbaum L.S., Diamond M.L., Phillips A., Singla V., Sipes N.S., Stapleton H.M., Venier M. Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers? Environ. Sci. Technol. Lett. 2019;6:638–649. doi: 10.1021/acs.estlett.9b00582. PubMed DOI PMC
Van der Veen I., de Boer J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012;88:1119–1153. doi: 10.1016/j.chemosphere.2012.03.067. PubMed DOI
Mitro S.D., Dodson R.E., Singla V., Adamkiewicz G., Elmi A.F., Tilly M.K., Zota A.R. Consumer Product Chemicals in Indoor Dust: A Quantitative Meta-analysis of U.S. Studies. Environ. Sci. Technol. 2016;50:10661–10672. doi: 10.1021/acs.est.6b02023. PubMed DOI PMC
Rantakokko P., Kumar E., Braber J., Huang T., Kiviranta H., Cequier E., Thomsen C. Concentrations of brominated and phosphorous fl ame retardants in Finnish house dust and insights into children’s exposure. Chemosphere. 2019;223:99–107. doi: 10.1016/j.chemosphere.2019.02.027. PubMed DOI
Poma G., Glynn A., Malarvannan G., Covaci A., Darnerud P.O. Dietary intake of phosphorus flame retardants (PFRs) using Swedish food market basket estimations. Food Chem. Toxicol. 2017;100:1–7. doi: 10.1016/j.fct.2016.12.011. PubMed DOI
Zhao F., Chen M., Gao F., Shen H., Hu J. Organophosphorus Flame Retardants in Pregnant Women and Their Transfer to Chorionic Villi. Environ. Sci. Technol. 2017;51:6489–6497. doi: 10.1021/acs.est.7b01122. PubMed DOI
Kim J.W., Isobe T., Muto M., Tue N.M., Katsura K., Malarvannan G., Sudaryanto A., Chang K.H., Prudente M., Viet P.H., et al. Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries. Chemosphere. 2014;116:91–97. doi: 10.1016/j.chemosphere.2014.02.033. PubMed DOI
Ding J., Xu Z., Huang W., Feng L., Yang F. Organophosphate ester flame retardants and plasticizers in human placenta in Eastern China. Sci. Total Environ. 2016;554–555:211–217. doi: 10.1016/j.scitotenv.2016.02.171. PubMed DOI
Qiao L., Zheng X.B., Zheng J., Lei W.X., Li H.F., Wang M.H., He C.T., Chen S.J., Yuan J.G., Luo X.J., et al. Analysis of human hair to assess exposure to organophosphate flame retardants: Influence of hair segments and gender differences. Environ. Res. 2016;148:177–183. doi: 10.1016/j.envres.2016.03.032. PubMed DOI
Castorina R., Butt C., Stapleton H.M., Avery D., Harley K.G., Holland N., Eskenazi B., Bradman A. Flame retardants and their metabolites in the homes and urine of pregnant women residing in California (the CHAMACOS cohort) Chemosphere. 2017;179:159–166. doi: 10.1016/j.chemosphere.2017.03.076. PubMed DOI PMC
Saillenfait A.M., Ndaw S., Robert A., Sabaté J.P. Recent biomonitoring reports on phosphate ester flame retardants: A short review. Arch. Toxicol. 2018;92:2749–2778. doi: 10.1007/s00204-018-2275-z. PubMed DOI
Li P., Jin J., Wang Y., Hu J., Xu M., Sun Y., Ma Y. Concentrations of organophosphorus, polybromobenzene, and polybrominated diphenyl ether flame retardants in human serum, and relationships between concentrations and donor ages. Chemosphere. 2017;171:654–660. doi: 10.1016/j.chemosphere.2016.12.126. PubMed DOI
Lunder S., Hovander L., Athanassiadis I., Bergman Å. Significantly higher polybrominated diphenyl ether levels in young U.S. children than in their mothers. Environ. Sci. Technol. 2010;44:5256–5262. doi: 10.1021/es1009357. PubMed DOI
Harrad S., de Wit C.A., Abdallah M.A.-E., Bergh C., Björklund J.A., Covaci A., Darnerud P.O., de Boer J., Diamond M., Huber S., et al. Indoor Contamination with Hexabromocyclododecanes, Polybrominated Diphenyl Ethers, and Perfluoroalkyl Compounds: An Important Exposure Pathway for People? Environ. Sci. Technol. 2010;44:3221–3231. doi: 10.1021/es903476t. PubMed DOI
Schreder E.D., Uding N., La Guardia M.J. Inhalation a significant exposure route for chlorinated organophosphate flame retardants. Chemosphere. 2016;150:499–504. doi: 10.1016/j.chemosphere.2015.11.084. PubMed DOI
Makinen M.S.E., Makinen M.R.A., Koistinen J.T.B., Pasanen A.-L., Pasanen P.O., Kalliokoski P.J., Korpi A.M. Respiratory and dermal exposure to organophosphorus flame retardants and tetrabromobisphenol A at five work environments. Environ. Sci. Technol. 2009;43:941–947. doi: 10.1021/es802593t. PubMed DOI
Gravel S., Aubin S., Labrèche F. Assessment of Occupational Exposure to Organic Flame Retardants: A Systematic Review. Ann. Work Expo. Health. 2019;63:386–406. doi: 10.1093/annweh/wxz012. PubMed DOI
Estill C.F., Slone J., Mayer A., Chen I.C., La Guardia M.J. Worker exposure to flame retardants in manufacturing, construction and service industries. Environ. Int. 2020;135:105349. doi: 10.1016/j.envint.2019.105349. PubMed DOI PMC
HBM4EU-Science and Policy for a Healthy Future. [(accessed on 19 April 2021)]; Available online: https://www.hbm4eu.eu/
Costa L.G., de Laat R., Tagliaferri S., Pellacani C. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol. Lett. 2014;230:282–294. doi: 10.1016/j.toxlet.2013.11.011. PubMed DOI PMC
Makey C.M., McClean M.D., Braverman L.E., Pearce E.N., He X.-M., Sjödin A., Weinberg J.M., Webster T.F. Polybrominated Diphenyl Ether Exposure and Thyroid Function Tests in North American Adults. Environ. Health Perspect. 2016;124:420–425. doi: 10.1289/ehp.1509755. PubMed DOI PMC
Johnson P.I., Stapleton H.M., Mukherjee B., Hauser R., Meeker J.D. Associations between brominated flame retardants in house dust and hormone levels in men. Sci. Total Environ. 2013;445–446:177–184. doi: 10.1016/j.scitotenv.2012.12.017. PubMed DOI PMC
Schreiber T., Gassmann K., Götz C., Hübenthal U., Moors M., Krause G., Merk H.F., Nguyen N.H., Scanlan T.S., Abel J., et al. Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: Evidence for endocrine disruption. Environ. Health Perspect. 2010;118:572–578. doi: 10.1289/ehp.0901435. PubMed DOI PMC
Martin O.V., Evans R.M., Faust M., Kortenkamp A. A Human Mixture Risk Assessment for Neurodevelopmental Toxicity Associated with Polybrominated Diphenyl Ethers Used as Flame Retardants. Environ. Health Perspect. 2017;125:087016. doi: 10.1289/EHP826. PubMed DOI PMC
He Y., Peng L., Zhang W., Liu C., Yang Q., Zheng S., Bao M., Huang Y., Wu K. Adipose tissue levels of polybrominated diphenyl ethers and breast cancer risk in Chinese women: A case–control study. Environ. Res. 2018;167:160–168. doi: 10.1016/j.envres.2018.07.009. PubMed DOI
Bajard L., Melymuk L., Blaha L. Prioritization of hazards of novel flame retardants using the mechanistic toxicology information from ToxCast and Adverse Outcome Pathways. Environ. Sci. Eur. 2019;31:14. doi: 10.1186/s12302-019-0195-z. DOI
Hood E. Endocrine Disruption and Flame-Retardant Chemicals: PBDE-99 Effects on Rat Sexual Development. Environ. Health Perspect. 2006;114:A112. doi: 10.1289/ehp.114-a112b. DOI
Dishaw L.V., Macaulay L.J., Roberts S.C., Stapleton H.M. Exposures, mechanisms, and impacts of endocrine-active flame retardants. Curr. Opin. Pharmacol. 2014;19:125–133. doi: 10.1016/j.coph.2014.09.018. PubMed DOI PMC
Kojima H., Takeuchi S., Van den Eede N., Covaci A. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors. Toxicol. Lett. 2016;245:31–39. doi: 10.1016/j.toxlet.2016.01.004. PubMed DOI
Diamanti-Kandarakis E., Bourguignon J.P., Giudice L.C., Hauser R., Prins G.S., Soto A.M., Zoeller R.T., Gore A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009;30:293–342. doi: 10.1210/er.2009-0002. PubMed DOI PMC
Gore A.C., Chappell V.A., Fenton S.E., Flaws J.A., Nadal A., Prins G.S., Toppari J., Zoeller R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015;36:1–150. doi: 10.1210/er.2015-1010. PubMed DOI PMC
Llm J.S., Lee D.H., Jacobs D.R. Association of brominated flame retardants with diabetes and metabolic syndrome in the U.S. population, 2003–2004. Diabetes Care. 2008;31:1802–1807. doi: 10.2337/dc08-0850. PubMed DOI PMC
Zhang Z., Li S., Liu L., Wang L., Xiao X., Sun Z., Wang X., Wang C., Wang M., Li L., et al. Environmental exposure to BDE47 is associated with increased diabetes prevalence: Evidence from community-based case-control studies and an animal experiment. Sci. Rep. 2016;6:1–9. doi: 10.1038/srep27854. PubMed DOI PMC
Zhao F., Li Y., Zhang S., Ding M., Hu J. Association of Aryl Organophosphate Flame Retardants Triphenyl Phosphate and 2-Ethylhexyl Diphenyl Phosphate with Human Blood Triglyceride and Total Cholesterol Levels. Environ. Sci. Technol. Lett. 2019;6:532–537. doi: 10.1021/acs.estlett.9b00417. DOI
Ongono J.S., Dow C., Gambaretti J., Severi G., Boutron-Ruault M.C., Bonnet F., Fagherazzi G., Mancini F.R. Dietary exposure to brominated flame retardants and risk of type 2 diabetes in the French E3N cohort. Environ. Int. 2019;123:54–60. doi: 10.1016/j.envint.2018.11.040. PubMed DOI
Eslam M., Sanyal A.J., George J., Sanyal A., Neuschwander-Tetri B., Tiribelli C., Kleiner D.E., Brunt E., Bugianesi E., Yki-Järvinen H., et al. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158:1999–2014.e1. doi: 10.1053/j.gastro.2019.11.312. PubMed DOI
Day C.P., James O.F.W. Steatohepatitis: A tale of two “Hits”? Gastroenterology. 1998;114:842–845. doi: 10.1016/S0016-5085(98)70599-2. PubMed DOI
Guturu P., Duchini A. Etiopathogenesis of Nonalcoholic Steatohepatitis: Role of Obesity, Insulin Resistance and Mechanisms of Hepatotoxicity. Int. J. Hepatol. 2012;2012:212865. doi: 10.1155/2012/212865. PubMed DOI PMC
Tilg H., Moschen A.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology. 2010;52:1–8. doi: 10.1002/hep.24001. PubMed DOI
Tilg H., Adolph T.E., Moschen A.R. Multiple Parallel Hits Hypothesis in NAFLD—Revisited After a Decade. Hepatology. 2020;73:833–842. doi: 10.1002/hep.31518. PubMed DOI PMC
Angrish M.M., Kaiser J.P., McQueen C.A., Chorley B.N. Tipping the balance: Hepatotoxicity and the 4 apical key events of hepatic steatosis. Toxicol. Sci. 2016;150:261–268. doi: 10.1093/toxsci/kfw018. PubMed DOI
Amacher D.E. The mechanistic basis for the induction of hepatic steatosis by xenobiotics. Expert Opin. Drug Metab. Toxicol. 2011;7:949–965. doi: 10.1517/17425255.2011.577740. PubMed DOI
Yamaguchi K., Yang L., McCall S., Huang J., Xing X.Y., Pandey S.K., Bhanot S., Monia B.P., Li Y.X., Diehl A.M. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology. 2007;45:1366–1374. doi: 10.1002/hep.21655. PubMed DOI
Listenberger L.L., Han X., Lewis S.E., Cases S., Farese R.V., Ory D.S., Schaffer J.E. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA. 2003;100:3077–3082. doi: 10.1073/pnas.0630588100. PubMed DOI PMC
Huang W., Metlakunta A., Dedousis N., Zhang P., Sipula I., Dube J.J., Scott D.K., O’Doherty R.M. Depletion of liver kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes. 2010;59:347–357. doi: 10.2337/db09-0016. PubMed DOI PMC
Cai Y., Li H., Liu M., Pei Y., Zheng J., Zhou J., Luo X., Huang W., Ma L., Yang Q., et al. Disruption of adenosine 2A receptor exacerbates NAFLD through increasing inflammatory responses and SREBP1c activity. Hepatology. 2018;68:48–61. doi: 10.1002/hep.29777. PubMed DOI PMC
Deng Z.B., Liu Y., Liu C., Xiang X., Wang J., Cheng Z., Shah S.V., Zhang S., Zhang L., Zhuang X., et al. Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology. 2009;50:1412–1420. doi: 10.1002/hep.23148. PubMed DOI PMC
Cai J., Zhang X.J., Li H. Role of Innate Immune Signaling in Non-Alcoholic Fatty Liver Disease. Trends Endocrinol. Metab. 2018;29:712–722. doi: 10.1016/j.tem.2018.08.003. PubMed DOI
Schuster S., Cabrera D., Arrese M., Feldstein A.E. Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 2018;15:349–364. doi: 10.1038/s41575-018-0009-6. PubMed DOI
Pestka S., Baron S. Definition and Classification of the Interferons. Methods Enzymol. 1981;78:3–14. doi: 10.1016/0076-6879(81)78091-1. PubMed DOI
Handa P., Vemulakonda A., Kowdley K.V., Uribe M., Méndez-Sánchez N. Mitochondrial DNA from hepatocytes as a ligand for TLR9: Drivers of nonalcoholic steatohepatitis? World J. Gastroenterol. 2016;22:6965. doi: 10.3748/wjg.v22.i31.6965. PubMed DOI PMC
Ganz M., Szabo G. Immune and inflammatory pathways in NASH. Hepatol. Int. 2013;7:S771–S781. doi: 10.1007/s12072-013-9468-6. PubMed DOI PMC
Arrese M., Cabrera D., Kalergis A.M., Feldstein A.E. Innate Immunity and Inflammation in NAFLD/NASH. Dig. Dis. Sci. 2016;61:1294–1303. doi: 10.1007/s10620-016-4049-x. PubMed DOI PMC
Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005;5:375–386. doi: 10.1038/nri1604. PubMed DOI
Der S.D., Zhou A., Williams B.R.G., Silverman R.H. Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc. Natl. Acad. Sci. USA. 1998;95:15623–15628. doi: 10.1073/pnas.95.26.15623. PubMed DOI PMC
Pestka S., Krause C.D., Walter M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 2004;202:8–32. doi: 10.1111/j.0105-2896.2004.00204.x. PubMed DOI
Wack A., Terczyńska-Dyla E., Hartmann R. Guarding the frontiers: The biology of type III interferons. Nat. Immunol. 2015;16:802–809. doi: 10.1038/ni.3212. PubMed DOI PMC
Qiao J.T., Cui C., Qing L., Wang L.S., He T.Y., Yan F., Liu F.Q., Shen Y.H., Hou X.G., Chen L. Activation of the STING-IRF3 pathway promotes hepatocyte inflammation, apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease. Metabolism. 2018;81:13–24. doi: 10.1016/j.metabol.2017.09.010. PubMed DOI
Luo X., Li H., Ma L., Zhou J., Guo X., Woo S.L., Pei Y., Knight L.R., Deveau M., Chen Y., et al. Expression of STING Is Increased in Liver Tissues From Patients With NAFLD and Promotes Macrophage-Mediated Hepatic Inflammation and Fibrosis in Mice. Gastroenterology. 2018;155:1971–1984.e4. doi: 10.1053/j.gastro.2018.09.010. PubMed DOI PMC
Li Y.N., Su Y. Remdesivir attenuates high fat diet (HFD)-induced NAFLD by regulating hepatocyte dyslipidemia and inflammation via the suppression of STING. Biochem. Biophys. Res. Commun. 2020;526:381–388. doi: 10.1016/j.bbrc.2020.03.034. PubMed DOI PMC
Ishikawa H., Barber G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455:674–678. doi: 10.1038/nature07317. PubMed DOI PMC
Gaidt M.M., Ebert T.S., Chauhan D., Ramshorn K., Pinci F., Zuber S., O’Duill F., Schmid-Burgk J.L., Hoss F., Buhmann R., et al. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell. 2017;171:1110–1124.e18. doi: 10.1016/j.cell.2017.09.039. PubMed DOI PMC
Abe T., Barber G.N. Cytosolic-DNA-Mediated, STING-Dependent Proinflammatory Gene Induction Necessitates Canonical NF- B Activation through TBK1. J. Virol. 2014;88:5328–5341. doi: 10.1128/JVI.00037-14. PubMed DOI PMC
Kumari M., Wang X., Lantier L., Lyubetskaya A., Eguchi J., Kang S., Tenen D., Roh H.C., Kong X., Kazak L., et al. IRF3 promotes adipose inflammation and insulin resistance and represses browning. J. Clin. Investig. 2016;126:2839–2854. doi: 10.1172/JCI86080. PubMed DOI PMC
Honda K., Takaoka A., Taniguchi T. Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription Factors. Immunity. 2006;25:349–360. doi: 10.1016/j.immuni.2006.08.009. PubMed DOI
Ghazarian M., Revelo X.S., Nøhr M.K., Luck H., Zeng K., Lei H., Tsai S., Schroer S.A., Park Y.J., Chng M.H.Y., et al. Type I interferon responses drive intrahepatic T cells to promote metabolic syndrome. Sci. Immunol. 2017;2:eaai7616. doi: 10.1126/sciimmunol.aai7616. PubMed DOI PMC
Mitsumoto K., Watanabe R., Nakao K., Yonenaka H., Hashimoto T., Kato N., Kumrungsee T., Yanaka N. Time-course microarrays reveal early activation of the immune transcriptome in a choline-deficient mouse model of liver injury. Life Sci. 2017;184:103–111. doi: 10.1016/j.lfs.2017.07.009. PubMed DOI
Wieser V., Adolph T.E., Grander C., Grabherr F., Enrich B., Moser P., Moschen A.R., Kaser S., Tilg H. Adipose type i interferon signalling protects against metabolic dysfunction. Gut. 2018;67:157–165. doi: 10.1136/gutjnl-2016-313155. PubMed DOI
Wang X.-A., Zhang R., Zhang S., Deng S., Jiang D., Zhong J., Yang L., Wang T., Hong S., Guo S., et al. Interferon regulatory factor 7 deficiency prevents diet-induced obesity and insulin resistance. Am. J. Physiol. Metab. 2013;305:E485–E495. doi: 10.1152/ajpendo.00505.2012. PubMed DOI
Hao J., Zhang Y., Lv X., Xu N., Liu Q., Zhao S., Feng X., Xing L., Kang P., Li G., et al. IFN-induces lipogenesis in mouse mesangial cells via the JAK2/STAT1 pathway. Am. J. Physiol. Cell Physiol. 2013;304:760–767. doi: 10.1152/ajpcell.00352.2012. PubMed DOI
Grunfeld C., Soued M., Adi S., Moser A.H., Dinarello C.A., Feingold K.R. Evidence for Two Classes of Cytokines That Stimulate Hepatic Lipogenesis: Relationships among Tumor Necrosis Factor, Interleukin-1 and Interferon-Alpha*. Endocrinology. 1990;127:46–54. doi: 10.1210/endo-127-1-46. PubMed DOI
Tarantino G., Costantini S., Citro V., Conforti P., Capone F., Sorice A., Capone D. Interferon-alpha 2 but not Interferon-gamma serum levels are associated with intramuscular fat in obese patients with nonalcoholic fatty liver disease 11 Medical and Health Sciences 1103 Clinical Sciences. J. Transl. Med. 2019;17:8. doi: 10.1186/s12967-018-1754-6. PubMed DOI PMC
Feingold K.R., Soued M., Serio M.K., Moser A.H., Dinarello C.A., Grunfeld C. Multiple cytokines stimulate hepatic lipid synthesis in vivo. Endocrinology. 1989;125:267–274. doi: 10.1210/endo-125-1-267. PubMed DOI
Wada T., Hoshino M., Kimura Y., Ojima M., Nakano T., Koya D., Tsuneki H., Sasaoka T. Both type I and II IFN induce insulin resistance by inducing different isoforms of SOCS expression in 3T3-L1 adipocytes. Am. J. Physiol. Metab. 2011;300:E1112–E1123. doi: 10.1152/ajpendo.00370.2010. PubMed DOI
Ueki K., Kondo T., Kahn C.R. Suppressor of Cytokine Signaling 1 (SOCS-1) and SOCS-3 Cause Insulin Resistance through Inhibition of Tyrosine Phosphorylation of Insulin Receptor Substrate Proteins by Discrete Mechanisms. Mol. Cell. Biol. 2004;24:5434–5446. doi: 10.1128/MCB.24.12.5434-5446.2004. PubMed DOI PMC
Ueki K., Kondo T., Tseng Y.H., Kahn C.R. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc. Natl. Acad. Sci. USA. 2004;101:10422–10427. doi: 10.1073/pnas.0402511101. PubMed DOI PMC
Hardardottir I., Doerrler W., Feingold K.R., Grunfeld C. Cytokines stimulate lipolysis and decrease lipoprotein lipase activity in cultured fat cells by a prostaglandin independent mechanism. Biochem. Biophys. Res. Commun. 1992;186:237–243. doi: 10.1016/S0006-291X(05)80798-3. PubMed DOI
Doerrler W., Feingold K.R., Grunfeld C. Cytokines induce catabolic effects in cultured adipocytes by multiple mechanisms. Cytokine. 1994;6:478–484. doi: 10.1016/1043-4666(94)90074-4. PubMed DOI
Truong N.T.T., Lydic T.A., Bazil J.N., Suryadevara A., Olson L.K. Regulation of lipid metabolism in pancreatic beta cells by interferon gamma: A link to anti-viral function. Cytokine. 2020;133 doi: 10.1016/j.cyto.2020.155147. PubMed DOI
Luo X.-Y., Takahara T., Kawai K., Fujino M., Sugiyama T., Tsuneyama K., Tsukada K., Nakae S., Zhong L., Li X.-K. IFN-γ deficiency attenuates hepatic inflammation and fibrosis in a steatohepatitis model induced by a methionine- and choline-deficient high-fat diet. Am. J. Physiol. Liver Physiol. 2013;305:G891–G899. doi: 10.1152/ajpgi.00193.2013. PubMed DOI
Yu Shi S., García Martin R., Duncan R.E., Choi D., Lu S.-Y., Schroer S.A., Cai E.P., Luk C.T., Hopperton K.E., Domenichiello A.F., et al. Hepatocyte-specific Deletion of Janus Kinase 2 (JAK2) Protects against Diet-induced Steatohepatitis and Glucose Intolerance. J. Biol. Chem. 2012;287:10277–10288. doi: 10.1074/jbc.M111.317453. PubMed DOI PMC
Sos B.C., Harris C., Nordstrom S.M., Tran J.L., Balázs M., Caplazi P., Febbraio M., Applegate M.A.B., Wagner K.U., Weiss E.J. Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocytespecific deletion of JAK2. J. Clin. Invest. 2011;121:1412–1423. doi: 10.1172/JCI42894. PubMed DOI PMC
Themanns M., Mueller K.M., Kessler S.M., Golob-Schwarzl N., Mohr T., Kaltenecker D., Bourgeais J., Paier-Pourani J., Friedbichler K., Schneller D., et al. Hepatic deletion of Janus Kinase 2 counteracts oxidative stress in mice. Sci. Rep. 2016;6:1–13. doi: 10.1038/srep34719. PubMed DOI PMC
Chen Y., Yu C.Y., Deng W.M. The role of pro-inflammatory cytokines in lipid metabolism of metabolic diseases. Int. Rev. Immunol. 2019;38:249–266. doi: 10.1080/08830185.2019.1645138. PubMed DOI
Niederreiter L., Tilg H. Cytokines and fatty liver diseases. Liver Res. 2018;2:14–20. doi: 10.1016/j.livres.2018.03.003. DOI
Tilg H., Diehl A.M. Cytokines in Alcoholic and Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2000;343:1467–1476. doi: 10.1056/NEJM200011163432007. PubMed DOI
Negrin K.A., Flach R.J.R., DiStefano M.T., Matevossian A., Friedline R.H., Jung D., Kim J.K., Czech M.P. IL-1 Signaling in obesity-induced hepatic lipogenesis and steatosis. PLoS ONE. 2014;9:e107265. doi: 10.1371/journal.pone.0107265. PubMed DOI PMC
Stienstra R., Saudale F., Duval C., Keshtkar S., Groener J.E.M., Van Rooijen N., Staels B., Kersten S., Müller M. Kupffer cells promote hepatic steatosis via interleukin-1β-dependent suppression of peroxisome proliferator-activated receptor α activity. Hepatology. 2010;51:511–522. doi: 10.1002/hep.23337. PubMed DOI
Fève B., Bastard J.P. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2009;5:305–311. doi: 10.1038/nrendo.2009.62. PubMed DOI
Cobbina E., Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD)–pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev. 2017;49:197–211. doi: 10.1080/03602532.2017.1293683. PubMed DOI PMC
Buzzetti E., Pinzani M., Tsochatzis E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) Metabolism. 2016;65:1038–1048. doi: 10.1016/j.metabol.2015.12.012. PubMed DOI
Brown M.S., Goldstein J.L. Selective versus Total Insulin Resistance: A Pathogenic Paradox. Cell Metab. 2008;7:95–96. doi: 10.1016/j.cmet.2007.12.009. PubMed DOI
Hectors T.L.M., Vanparys C., Van Gaal L.F., Jorens P.G., Covaci A., Blust R. Insulin resistance and environmental pollutants: Experimental evidence and future perspectives. Environ. Health Perspect. 2013;121:1273–1281. doi: 10.1289/ehp.1307082. PubMed DOI PMC
Moon Y.A., Liang G., Xie X., Frank-Kamenetsky M., Fitzgerald K., Koteliansky V., Brown M.S., Goldstein J.L., Horton J.D. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell Metab. 2012;15:240–246. doi: 10.1016/j.cmet.2011.12.017. PubMed DOI PMC
Iizuka K., Bruick R.K., Liang G., Horton J.D., Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl. Acad. Sci. USA. 2004;101:7281–7286. doi: 10.1073/pnas.0401516101. PubMed DOI PMC
Kaiser J.P., Lipscomb J.C., Wesselkamper S.C. Putative mechanisms of environmental chemical-induced steatosis. Int. J. Toxicol. 2012;31:551–563. doi: 10.1177/1091581812466418. PubMed DOI
Hotamisligil G.S., Murray D.L., Choy L.N., Spiegelman B.M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc. Natl. Acad. Sci. USA. 1994;91:4854–4858. doi: 10.1073/pnas.91.11.4854. PubMed DOI PMC
Hotamisligil G.S., Peraldi P., Budavari A., Ellis R., White M.F., Spiegelman B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science. 1996;271:665–668. doi: 10.1126/science.271.5249.665. PubMed DOI
Tang Y., Bian Z., Zhao L., Liu Y., Liang S., Wang Q., Han X., Peng Y., Chen X., Shen L., et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin. Exp. Immunol. 2011;166:281–290. doi: 10.1111/j.1365-2249.2011.04471.x. PubMed DOI PMC
Herbstman J.B., Sjödin A., Apelberg B.J., Witter F.R., Haiden R.U., Patterson D.G., Panny S.R., Needham L.L., Goldman L.R. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) and neonatal thyroid hormone levels. Environ. Health Perspect. 2008;116:1376–1382. doi: 10.1289/ehp.11379. PubMed DOI PMC
Julander A., Karlsson M., Hagström K., Ohlson C.G., Engwall M., Bryngelsson I.L., Westberg H., van Bavel B. Polybrominated diphenyl ethers—Plasma levels and thyroid status of workers at an electronic recycling facility. Int. Arch. Occup. Environ. Health. 2005;78:584–592. doi: 10.1007/s00420-005-0627-5. PubMed DOI
Turyk M.E., Persky V.W., Imm P., Knobeloch L., Chatterton R., Anderson H.A. Hormone disruption by PBDEs in adult male sport fish consumers. Environ. Health Perspect. 2008;116:1635–1641. doi: 10.1289/ehp.11707. PubMed DOI PMC
Branchi I., Capone F., Alleva E., Costa L.G. Polybrominated diphenyl ethers: Neurobehavioral effects following developmental exposure. Neurotoxicology. 2003;24:449–462. doi: 10.1016/S0161-813X(03)00020-2. PubMed DOI
Ping He; Aiguo Wang; Qiang Niu; Lijuan Guo; Tao Xia; Xuemin Chen Toxic effect of PBDE-47 on thyroid development, learning, and memory, and the interaction between PBDE-47 and PCB153 that enhances toxicity in rats. Toxicol. Ind. Health. 2011;27:279–288. doi: 10.1177/0748233710387002. PubMed DOI
Szabo D.T., Richardson V.M., Ross D.G., Diliberto J.J., Kodavanti P.R.S., Birnbaum L.S. Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression Involved in thyroid hormone metabolism in male rat pups. Toxicol. Sci. 2009;107:27–39. doi: 10.1093/toxsci/kfn230. PubMed DOI PMC
Vuong A.M., Braun J.M., Webster G.M., Thomas Zoeller R., Hoofnagle A.N., Sjödin A., Yolton K., Lanphear B.P., Chen A. Polybrominated diphenyl ether (PBDE) exposures and thyroid hormones in children at age 3 years. Environ. Int. 2018;117:339–347. doi: 10.1016/j.envint.2018.05.019. PubMed DOI PMC
Sinha R.A., Singh B.K., Yen P.M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 2018;14:259–269. doi: 10.1038/nrendo.2018.10. PubMed DOI PMC
Lu S.-Y., Li Y.-X., Zhang T., Cai D., Ruan J.-J., Huang M.-Z., Wang L., Zhang J.-Q., Qiu R.-L. Effect of E-waste Recycling on Urinary Metabolites of Organophosphate Flame Retardants and Plasticizers and Their Association with Oxidative Stress. Environ. Sci. Technol. 2017;51:2427–2437. doi: 10.1021/acs.est.6b05462. PubMed DOI
Chen G., Jin Y., Wu Y., Liu L., Fu Z. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption. Environ. Toxicol. Pharmacol. 2015;40:310–318. doi: 10.1016/j.etap.2015.06.021. PubMed DOI
Gu J., Su F., Hong P.P., Zhang Q., Zhao M. 1 H NMR-based metabolomic analysis of nine organophosphate flame retardants metabolic disturbance in Hep G2 cell line. Sci. Total Environ. 2019;665:162–170. doi: 10.1016/j.scitotenv.2019.02.055. PubMed DOI
Papalou O., Kandaraki E.A., Papadakis G., Diamanti-Kandarakis E. Endocrine disrupting chemicals: An occult mediator of metabolic disease. Front. Endocrinol. 2019;10:112. doi: 10.3389/fendo.2019.00112. PubMed DOI PMC
Spahis S., Delvin E., Borys J.M., Levy E. Oxidative Stress as a Critical Factor in Nonalcoholic Fatty Liver Disease Pathogenesis. Antioxid. Redox Signal. 2017;26:519–541. doi: 10.1089/ars.2016.6776. PubMed DOI
Kang H., Moon H.B., Choi K. Toxicological responses following short-term exposure through gavage feeding or water-borne exposure to Dechlorane Plus in zebrafish (Danio rerio) Chemosphere. 2016;146:226–232. doi: 10.1016/j.chemosphere.2015.12.024. PubMed DOI
Bruchajzer E., Frydrych B., Sporny S., Szymańska J.A. The effect of short-term intoxication of rats with pentabromodiphenyl ether (in mixture mimic commercial products) Hum. Exp. Toxicol. 2011;30:363–378. doi: 10.1177/0960327110371261. PubMed DOI
Bondy G.S., Lefebvre D.E., Aziz S., Cherry W., Coady L., MacLellan E., Armstrong C., Barker M., Cooke G., Gaertner D., et al. Toxicologic and immunologic effects of perinatal exposure to the brominated diphenyl ether (BDE) mixture DE-71 in the Sprague-Dawley rat. Environ. Toxicol. 2013;28:215–228. doi: 10.1002/tox.20713. PubMed DOI
Dunnick J.K., Brix A., Cunny H., Vallant M., Shockley K.R. Characterization of polybrominated diphenyl ether toxicity in Wistar Han rats and use of liver microarray data for predicting disease susceptibilities. Toxicol. Pathol. 2012;40:93–106. doi: 10.1177/0192623311429973. PubMed DOI PMC
SUN R.B., SHANG S., ZHANG W., LIN B.C., WANG Q., SHI Y., XI Z.G. Endocrine Disruption Activity of 30-day Dietary Exposure to Decabromodiphenyl Ethane in Balb/C Mouse. Biomed. Environ. Sci. 2018;31:12–22. doi: 10.3967/bes2018.002. PubMed DOI
Suvorov A., Takser L. Global Gene Expression Analysis in the Livers of Rat Offspring Perinatally Exposed to Low Doses of 2,2′,4,4′-Tetrabromodiphenyl Ether. Environ. Health Perspect. 2010;118:97–102. doi: 10.1289/ehp.0901031. PubMed DOI PMC
van der Ven L.T.M., van de Kuil T., Verhoef A., Leonards P.E.G., Slob W., Cantón R.F., Germer S., Hamers T., Visser T.J., Litens S., et al. A 28-day oral dose toxicity study enhanced to detect endocrine effects of a purified technical pentabromodiphenyl ether (pentaBDE) mixture in Wistar rats. Toxicology. 2008;245:109–122. doi: 10.1016/j.tox.2007.12.016. PubMed DOI
Hao Z., Zhang Z., Lu D., Ding B., Shu L., Zhang Q., Wang C. Organophosphorus Flame Retardants Impair Intracellular Lipid Metabolic Function in Human Hepatocellular Cells. Chem. Res. Toxicol. 2019;32:1250–1258. doi: 10.1021/acs.chemrestox.9b00058. PubMed DOI
Adams S., Wiersielis K., Yasrebi A., Conde K., Armstrong L., Guo G.L., Roepke T.A. Sex- and age-dependent effects of maternal organophosphate flame-retardant exposure on neonatal hypothalamic and hepatic gene expression. Reprod. Toxicol. 2020;94:65–74. doi: 10.1016/j.reprotox.2020.04.001. PubMed DOI PMC
Krivoshiev B.V., Beemster G.T.S., Sprangers K., Cuypers B., Laukens K., Blust R., Husson S.J. Transcriptome profiling of HepG2 cells exposed to the flame retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) Toxicol. Res. 2018;7:492–502. doi: 10.1039/C8TX00006A. PubMed DOI PMC
Wang D., Zhu W., Chen L., Yan J., Teng M., Zhou Z. Neonatal triphenyl phosphate and its metabolite diphenyl phosphate exposure induce sex- and dose-dependent metabolic disruptions in adult mice. Environ. Pollut. 2018;237:10–17. doi: 10.1016/j.envpol.2018.01.047. PubMed DOI
Dunnick J.K., Shockley K.R., Morgan D.L., Travlos G.S., Gerrish K., Ton T.V.T., Wilson R., Brar S.S., Brix A.E., Waidyanatha S., et al. Hepatic Transcriptomic Patterns in the Neonatal Rat After Pentabromodiphenyl Ether Exposure. Toxicol. Pathol. 2020;48:338–349. doi: 10.1177/0192623319888433. PubMed DOI PMC
Patisaul H.B., Roberts S.C., Mabrey N., Mccaffrey K.A., Gear R.B., Braun J., Belcher S.M., Stapleton H.M. Accumulation and Endocrine Disrupting Effects of the Flame Retardant Mixture Firemaster® 550 in Rats: An Exploratory Assessment. J. Biochem. Mol. Toxicol. 2013;27:124–136. doi: 10.1002/jbt.21439. PubMed DOI PMC
Yang C., Zhu L., Kang Q., Lee H.K., Li D., Chung A.C.K., Cai Z. Chronic exposure to tetrabromodiphenyl ether (BDE-47) aggravates hepatic steatosis and liver fibrosis in diet-induced obese mice. J. Hazard. Mater. 2019;378 doi: 10.1016/j.jhazmat.2019.120766. PubMed DOI
Sun Y., Wang Y., Liang B., Chen T., Zheng D., Zhao X., Jing L., Zhou X., Sun Z., Shi Z. Hepatotoxicity of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE-209) in 28-day exposed Sprague-Dawley rats. Sci. Total Environ. 2020;705:135783. doi: 10.1016/j.scitotenv.2019.135783. PubMed DOI
Saquib Q., Siddiqui M.A., Ahmed J., Al-Salim A., Ansari S.M., Faisal M., Al-Khedhairy A.A., Musarrat J., AlWathnani H.A., Alatar A.A., et al. Hazards of low dose flame-retardants (BDE-47 and BDE-32): Influence on transcriptome regulation and cell death in human liver cells. J. Hazard. Mater. 2016;308:37–49. doi: 10.1016/j.jhazmat.2016.01.025. PubMed DOI
Guo M., Gu Y., Fan X. Chlorinated phosphorus flame retardants exert oxidative damage to SMMC-7721 human hepatocarcinoma cells. Sci. Total Environ. 2020;705:135777. doi: 10.1016/j.scitotenv.2019.135777. PubMed DOI
Chen H., Wang P., Du Z., Wang G., Gao S. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish (Danio rerio) induced by tris(1,3-dichloro-2-propyl) phosphate. Aquat. Toxicol. 2018;194:37–45. doi: 10.1016/j.aquatox.2017.11.001. PubMed DOI
Xu L.L., Long C.Y., Wang J.L., Yu M., Chen J.X. Involvement of oxidative stress in tri-ortho-cresyl phosphate-induced liver injury in male mice. Hum. Exp. Toxicol. 2016;35:1093–1101. doi: 10.1177/0960327115621363. PubMed DOI
Pereira L.C., Cabral Miranda L.F.C., Franco-Bernardes M.F., Tasso M.J., Duarte F.V., Inácio Varela A.T., Rolo A.P., Marques Palmeira C.M., Dorta D.J. Mitochondrial damage and apoptosis: Key features in BDE-153-induced hepatotoxicity. Chem. Biol. Interact. 2018;291:192–201. doi: 10.1016/j.cbi.2018.06.021. PubMed DOI
Bruchajzer E., Frydrych B., Kilanowicz A., Sapota A., Szymańska J.A. Selected oxidative stress parameters after single and repeated administration of octabromodiphenyl ether to rats. Int. J. Occup. Med. Environ. Health. 2014;27:808–820. doi: 10.2478/s13382-014-0312-6. PubMed DOI
Li F., Wang L., Ji C., Wu H., Zhao J., Tang J. Toxicological effects of tris(2-chloropropyl) phosphate in human hepatic cells. Chemosphere. 2017;187:88–96. doi: 10.1016/j.chemosphere.2017.08.083. PubMed DOI
Dunnick J.K., Nyska A. Characterization of liver toxicity in F344/N rats and B6C3F1 mice after exposure to a flame retardant containing lower molecular weight polybrominated diphenyl ethers. Exp. Toxicol. Pathol. 2009;61:1–12. doi: 10.1016/j.etp.2008.06.008. PubMed DOI PMC
Shao J., White C.C., Dabrowski M.J., Kavanagh T.J., Eckert M.L., Gallagher E.P. The role of mitochondrial and oxidative injury in BDE 47 toxicity to human fetal liver hematopoietic stem cells. Toxicol. Sci. 2008;101:81–90. doi: 10.1093/toxsci/kfm256. PubMed DOI
Zhu Y., Li X., Liu J., Zhou G., Yu Y., Jing L., Shi Z., Zhou X., Sun Z. The effects of decabromodiphenyl ether on glycolipid metabolism and related signaling pathways in mice. Chemosphere. 2019;222:849–855. doi: 10.1016/j.chemosphere.2019.02.003. PubMed DOI
Khalil A., Cevik S.E., Hung S., Kolla S., Roy M.A., Suvorov A. Developmental exposure to 2,2′,4,4′-Tetrabromodiphenyl ether permanently alters blood-liver balance of lipids in male mice. Front. Endocrinol. 2018;9:548. doi: 10.3389/fendo.2018.00548. PubMed DOI PMC
Farmahin R., Gannon A.M., Gagné R., Rowan-Carroll A., Kuo B., Williams A., Curran I., Yauk C.L. Hepatic transcriptional dose-response analysis of male and female Fischer rats exposed to hexabromocyclododecane. Food Chem. Toxicol. 2019;133:110262. doi: 10.1016/j.fct.2018.12.032. PubMed DOI
Farhat A., Buick J.K., Williams A., Yauk C.L., O’Brien J.M., Crump D., Williams K.L., Chiu S., Kennedy S.W. Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos. Toxicol. Appl. Pharmacol. 2014;275:104–112. doi: 10.1016/j.taap.2013.12.020. PubMed DOI
Du Z., Zhang Y., Wang G., Peng J., Wang Z., Gao S. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver. Sci. Rep. 2016;6:21827. doi: 10.1038/srep21827. PubMed DOI PMC
Yanagisawa R., Koike E., Win-Shwe T.T., Yamamoto M., Takano H. Impaired lipid and glucose homeostasis in hexabromocyclododecane- exposed mice fed a high-fat diet. Environ. Health Perspect. 2014;122:277–283. doi: 10.1289/ehp.1307421. PubMed DOI PMC
Bruchajzer E., Frydrych B., Sporny S., Szymańska J.A. Toxicity of penta- and decabromodiphenyl ethers after repeated administration to rats: A comparative study. Arch. Toxicol. 2010;84:287–299. doi: 10.1007/s00204-009-0495-y. PubMed DOI
Wang D., Yan J., Teng M., Yan S., Zhou Z., Zhu W. In utero and lactational exposure to BDE-47 promotes obesity development in mouse offspring fed a high-fat diet: Impaired lipid metabolism and intestinal dysbiosis. Arch. Toxicol. 2018;92:1847–1860. doi: 10.1007/s00204-018-2177-0. PubMed DOI
Bao J., Liu Y., Li L., Chen M., Liu J., Niu Y., Liu J., Liang Y. Biological effects of new-generation dialkyl phosphinate flame retardants and their hydrolysates in BALB/C mice. Environ. Toxicol. 2017;32:1578–1586. doi: 10.1002/tox.22383. PubMed DOI
Wu B., Liu S., Guo X., Zhang Y., Zhang X., Li M., Cheng S. Responses of Mouse Liver to Dechlorane Plus Exposure by Integrative Transcriptomic and Metabonomic Studies. Environ. Sci. Technol. 2012;46:10758–10764. doi: 10.1021/es301804t. PubMed DOI
Al-Salem A.M., Saquib Q., Al-Khedhairy A.A., Siddiqui M.A., Ahmad J. Tris(2-chloroethyl) phosphate (tcep) elicits hepatotoxicity by activating human cancer pathway genes in hepg2 cells. Toxics. 2020;8:109. doi: 10.3390/toxics8040109. PubMed DOI PMC
Li Z., Tang X., Zhu L., Qi X., Cao G., Lu G. Cytotoxic Screening and Transcriptomics Reveal Insights into the Molecular Mechanisms of Trihexyl Phosphate-Triggered Hepatotoxicity. Environ. Sci. Technol. 2020;54:11464–11475. doi: 10.1021/acs.est.0c03824. PubMed DOI
Blanco J., Mulero M., Domingo J.L., Sanchez D.J. Perinatal Exposure to BDE-99 Causes Decreased Protein Levels of Cyclin D1 via GSK3β Activation and Increased ROS Production in Rat Pup Livers. Toxicol. Sci. 2014;137:491–498. doi: 10.1093/toxsci/kft257. PubMed DOI
Zhu L., Huang X., Li Z., Cao G., Zhu X., She S., Huang T., Lu G. Evaluation of hepatotoxicity induced by 2-ethylhexyldiphenyl phosphate based on transcriptomics and its potential metabolism pathway in human hepatocytes. J. Hazard. Mater. 2021;413:125281. doi: 10.1016/j.jhazmat.2021.125281. PubMed DOI
Zhang Y., Wang X., Chen C., An J., Shang Y., Li H., Xia H., Yu J., Wang C., Liu Y., et al. Regulation of TBBPA-induced oxidative stress on mitochondrial apoptosis in L02cells through the Nrf2 signaling pathway. Chemosphere. 2019;226:463–471. doi: 10.1016/j.chemosphere.2019.03.167. PubMed DOI
Mynster Kronborg T., Frohnert Hansen J., Nielsen C.H., Ramhøj L., Frederiksen M., Vorkamp K., Feldt-Rasmussen U. Effects of the Commercial Flame Retardant Mixture DE-71 on Cytokine Production by Human Immune Cells. PLoS ONE. 2016;11:e0154621. doi: 10.1371/journal.pone.0154621. PubMed DOI PMC
Park H.R., Kamau P.W., Loch-Caruso R. Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro. Toxicol. Appl. Pharmacol. 2014;274:283–292. doi: 10.1016/j.taap.2013.11.015. PubMed DOI PMC
Yasmin S., Whalen M. Flame retardants, hexabromocyclododecane (HCBD) and tetrabromobisphenol a (TBBPA), alter secretion of tumor necrosis factor alpha (TNFα) from human immune cells. Arch. Toxicol. 2018;92:1483–1494. doi: 10.1007/s00204-018-2156-5. PubMed DOI PMC
Almughamsi H., Whalen M.M. Hexabromocyclododecane and tetrabromobisphenol A alter secretion of interferon gamma (IFN-γ) from human immune cells. Arch. Toxicol. 2016;90:1695–1707. doi: 10.1007/s00204-015-1586-6. PubMed DOI PMC
Koike E., Yanagisawa R., Takano H. Brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, affect proinflammatory protein expression in human bronchial epithelial cells via disruption of intracellular signaling. Toxicol. Vitr. 2016;32:212–219. doi: 10.1016/j.tiv.2015.12.013. PubMed DOI
Verstraete S.G., Wojcicki J.M., Perito E.R., Rosenthal P. Bisphenol a increases risk for presumed non-alcoholic fatty liver disease in Hispanic adolescents in NHANES 2003–2010. Environ. Health. 2018;17:12. doi: 10.1186/s12940-018-0356-3. PubMed DOI PMC
Kim D., Yoo E.R., Li A.A., Cholankeril G., Tighe S.P., Kim W., Harrison S.A., Ahmed A. Elevated urinary bisphenol A levels are associated with non-alcoholic fatty liver disease among adults in the United States. Liver Int. 2019;39:1335–1342. doi: 10.1111/liv.14110. PubMed DOI
Nakagawa Y., Suzuki T., Ishii H., Ogata A. Biotransformation and cytotoxicity of a brominated flame retardant, tetrabromobisphenol A, and its analogues in rat hepatocytes. Xenobiotica. 2007;37:693–708. doi: 10.1080/00498250701397697. PubMed DOI
Wang Y., Zhang W., Li A., Song M. Tetrachlorobisphenol A induced immunosuppression and uterine injury in mice. Ecotoxicol. Environ. Saf. 2021;207:111527. doi: 10.1016/j.ecoenv.2020.111527. PubMed DOI
Dunnick J.K., Morgan D.L., Elmore S.A., Gerrish K., Pandiri A., Ton T.V., Shockley K.R., Merrick B.A. Tetrabromobisphenol A activates the hepatic interferon pathway in rats. Toxicol. Lett. 2017;266:32–41. doi: 10.1016/j.toxlet.2016.11.019. PubMed DOI PMC
Chappell V.A., Janesick A., Blumberg B., Fenton S.E. Tetrabromobisphenol-A Promotes Early Adipogenesis and Lipogenesis in 3T3-L1 Cells. Toxicol. Sci. 2018;166:332–344. doi: 10.1093/toxsci/kfy209. PubMed DOI PMC
Wang X., Wei L., Zhu J., He B., Kong B., Jin Y., Fu Z. Tetrabromoethylcyclohexane (TBECH) exhibits immunotoxicity in murine macrophages. Environ. Toxicol. 2020;35:159–166. doi: 10.1002/tox.22852. PubMed DOI
Jing L., Sun Y., Wang Y., Liang B., Chen T., Zheng D., Zhao X., Zhou X., Sun Z., Shi Z. Cardiovascular toxicity of decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats. Chemosphere. 2019;223:675–685. doi: 10.1016/j.chemosphere.2019.02.115. PubMed DOI
Chen Y., Liu S., Xu H., Zheng H., Bai C., Pan W., Zhou H., Liao M., Huang C., Dong Q. Maternal exposure to low dose BDE209 and Pb mixture induced neurobehavioral anomalies in C57BL/6 male offspring. Toxicology. 2019;418:70–80. doi: 10.1016/j.tox.2019.02.016. PubMed DOI
Zhi H., Wu J.P., Lu L.M., Li Y., Chen X.Y., Tao J., Mai B.X. Decabromodiphenyl ether (BDE-209) enhances foam cell formation in human macrophages via augmenting Toll-like receptor 4-dependent lipid uptake. Food Chem. Toxicol. 2018;121:367–373. doi: 10.1016/j.fct.2018.09.024. PubMed DOI
Li X., Li N., Rao K., Huang Q., Ma M. In Vitro Immunotoxicity of Organophosphate Flame Retardants in Human THP-1-Derived Macrophages. Environ. Sci. Technol. 2020;54:8900–8908. doi: 10.1021/acs.est.0c01152. PubMed DOI
Zhang Z.-F., Zhang Y.-Q., Fan S.-H., Zhuang J., Zheng Y.-L., Lu J., Wu D.-M., Shan Q., Hu B. Troxerutin protects against 2,2,4,4-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD +-depletion. J. Hazard. Mater. 2015;283:98–109. doi: 10.1016/j.jhazmat.2014.09.012. PubMed DOI
Pereira L.C., Souza A.O., Tasso M.J., Oliveira A.M.C., Duarte F.V., Palmeira C.M., Dorta D.J. Exposure to decabromodiphenyl ether (BDE-209) produces mitochondrial dysfunction in rat liver and cell death. J. Toxicol. Environ. Health Part A Curr. Issues. 2017;80:1129–1144. doi: 10.1080/15287394.2017.1357370. PubMed DOI
Liu C., Su G., Giesy J.P., Letcher R.J., Li G., Agrawal I., Li J., Yu L., Wang J., Gong Z. Acute exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) causes hepatic inflammation and leads to hepatotoxicity in zebrafish. Sci. Rep. 2016;6:19045. doi: 10.1038/srep19045. PubMed DOI PMC
Rau M., Schilling A.-K., Meertens J., Hering I., Weiss J., Jurowich C., Kudlich T., Hermanns H.M., Bantel H., Beyersdorf N., et al. Progression from Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis Is Marked by a Higher Frequency of Th17 Cells in the Liver and an Increased Th17/Resting Regulatory T Cell Ratio in Peripheral Blood and in the Liver. J. Immunol. 2016;196:97–105. doi: 10.4049/jimmunol.1501175. PubMed DOI
Ferreyra Solari N.E., Inzaugarat M.E., Baz P., De Matteo E., Lezama C., Galoppo M., Galoppo C., Cherñavsky A.C. The role of innate cells is coupled to a Th1-polarized immune response in pediatric nonalcoholic steatohepatitis. J. Clin. Immunol. 2012;32:611–621. doi: 10.1007/s10875-011-9635-2. PubMed DOI
Watanabe W., Shimizu T., Hino A., Kurokawa M. Effects of decabrominated diphenyl ether (DBDE) on developmental immunotoxicity in offspring mice. Environ. Toxicol. Pharmacol. 2008;26:315–319. doi: 10.1016/j.etap.2008.06.004. PubMed DOI
Li J., Chen Q., Yi J., Lan X., Lu K., Du X., Guo Z., Guo Y., Geng M., Li D., et al. IFN-γ contributes to the hepatic inflammation in HFD-induced nonalcoholic steatohepatitis by STAT1β/TLR2 signaling pathway. Mol. Immunol. 2021;134:118–128. doi: 10.1016/j.molimm.2021.03.005. PubMed DOI
Knight B., Lim R., Yeoh G.C., Olynyk J.K. Interferon-γ exacerbates liver damage, the hepatic progenitor cell response and fibrosis in a mouse model of chronic liver injury. J. Hepatol. 2007;47:826–833. doi: 10.1016/j.jhep.2007.06.022. PubMed DOI
Bhattacharya A., Hegazy A.N., Deigendesch N., Kosack L., Cupovic J., Kandasamy R.K., Hildebrandt A., Merkler D., Kühl A.A., Vilagos B., et al. Superoxide Dismutase 1 Protects Hepatocytes from Type I Interferon-Driven Oxidative Damage. Immunity. 2015;43:974–986. doi: 10.1016/j.immuni.2015.10.013. PubMed DOI PMC
Roh Y.S., Kim J.W., Park S., Shon C., Kim S., Eo S.K., Kwon J.K., Lim C.W., Kim B. Toll-Like Receptor-7 Signaling Promotes Nonalcoholic Steatohepatitis by Inhibiting Regulatory T Cells in Mice. Am. J. Pathol. 2018;188:2574–2588. doi: 10.1016/j.ajpath.2018.07.011. PubMed DOI
Klein T., Fujii M., Sandel J., Shibazaki Y., Wakamatsu K., Mark M., Yoneyama H. Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis. Med. Mol. Morphol. 2014;47:137–149. doi: 10.1007/s00795-013-0053-9. PubMed DOI
Afrin R., Arumugam S., Rahman A., Wahed M.I.I., Karuppagounder V., Harima M., Suzuki H., Miyashita S., Suzuki K., Yoneyama H., et al. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation. Int. Immunopharmacol. 2017;44:174–182. doi: 10.1016/j.intimp.2017.01.016. PubMed DOI
Sharifnia T., Antoun J., Verriere T.G.C., Suarez G., Wattacheril J., Wilson K.T., Peek R.M., Abumrad N.N., Flynn C.R. Hepatic TLR4 signaling in obese NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol. 2015;309:G270–G278. doi: 10.1152/ajpgi.00304.2014. PubMed DOI PMC
Li D., Wang X., Lan X., Li Y., Liu L., Yi J., Li J., Sun Q., Wang Y., Li H., et al. Down-regulation of miR-144 elicits proinflammatory cytokine production by targeting toll-like receptor 2 in nonalcoholic steatohepatitis of high-fat-diet-induced metabolic syndrome E3 rats. Mol. Cell. Endocrinol. 2015;402:1–12. doi: 10.1016/j.mce.2014.12.007. PubMed DOI
Mills E.L., Kelly B., O’Neill L.A.J. Mitochondria are the powerhouses of immunity. Nat. Immunol. 2017;18:488–498. doi: 10.1038/ni.3704. PubMed DOI
Weinberg S.E., Sena L.A., Chandel N.S. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42:406–417. doi: 10.1016/j.immuni.2015.02.002. PubMed DOI PMC
Riley J.S., Tait S.W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21:e49799. doi: 10.15252/embr.201949799. PubMed DOI PMC
Walker M.A., Volpi S., Sims K.B., Walter J.E., Traggiai E. Powering the immune system: Mitochondria in immune function and deficiency. J. Immunol. Res. 2014;2014:164309. doi: 10.1155/2014/164309. PubMed DOI PMC
Dutta S., Das N., Mukherjee P. Picking up a Fight: Fine Tuning Mitochondrial Innate Immune Defenses Against RNA Viruses. Front. Microbiol. 2020;11:1990. doi: 10.3389/fmicb.2020.01990. PubMed DOI PMC
Backer J.M., Weinstein I.B. Interaction of Benzo(a)pyrene and Its Dihydrodiol-Epoxide Derivative with Nuclear and Mitochondrial DNA in C3H10T½ Cell Cultures. Cancer Res. 1982;42:2764–2769. PubMed
Zolkipli-Cunningham Z., Falk M.J. Clinical effects of chemical exposures on mitochondrial function. Toxicology. 2017;391:90–99. doi: 10.1016/j.tox.2017.07.009. PubMed DOI PMC
Yuan S., Zhu K., Ma M., Zhu X., Rao K., Wang Z. In vitro oxidative stress, mitochondrial impairment and G1 phase cell cycle arrest induced by alkyl-phosphorus-containing flame retardants. Chemosphere. 2020;248:126026. doi: 10.1016/j.chemosphere.2020.126026. PubMed DOI
Huang C., Li N., Yuan S., Ji X., Ma M., Rao K., Wang Z. Aryl- and alkyl-phosphorus-containing flame retardants induced mitochondrial impairment and cell death in Chinese hamster ovary (CHO-k1) cells. Environ. Pollut. 2017;230:775–786. doi: 10.1016/j.envpol.2017.07.024. PubMed DOI
Sun M.H., Li X.H., Xu Y., Xu Y., Sun S.C. Exposure to PBDE47 affects mouse oocyte quality via mitochondria dysfunction-induced oxidative stress and apoptosis. Ecotoxicol. Environ. Saf. 2020;198:110662. doi: 10.1016/j.ecoenv.2020.110662. PubMed DOI
Le Y., Shen H., Yang Z., Lu D., Wang C. Comprehensive analysis of organophosphorus flame retardant-induced mitochondrial abnormalities: Potential role in lipid accumulation. Environ. Pollut. 2021;274:116541. doi: 10.1016/j.envpol.2021.116541. PubMed DOI
Pessayre D., Fromenty B. NASH: A mitochondrial disease. J. Hepatol. 2005;42:928–940. doi: 10.1016/j.jhep.2005.03.004. PubMed DOI
Mao K., Ji F., Breen P., Sewell A., Han M., Sadreyev R., Correspondence G.R. Mitochondrial Dysfunction in C. elegans Activates Mitochondrial Relocalization and Nuclear Hormone Receptor-Dependent Detoxification Genes. Cell Metab. 2019;29:1182–1191.e4. doi: 10.1016/j.cmet.2019.01.022. PubMed DOI PMC
Wei Y., Rector R.S., Thyfault J.P., Ibdah J.A. Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J. Gastroenterol. 2008;14:193–199. doi: 10.3748/wjg.14.193. PubMed DOI PMC
Chen Q., Sun L., Chen Z.J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 2016;17:1142–1149. doi: 10.1038/ni.3558. PubMed DOI
Bai J., Liu F. The cGAS-cGAMP-STING pathway: A molecular link between immunity and metabolism. Diabetes. 2019;68:1099–1108. doi: 10.2337/dbi18-0052. PubMed DOI PMC
Shu H.B., Wang Y.Y. Adding to the STING. Immunity. 2014;41:871–873. doi: 10.1016/j.immuni.2014.12.002. PubMed DOI
Garcia-Martinez I., Santoro N., Chen Y., Hoque R., Ouyang X., Caprio S., Shlomchik M.J., Coffman R.L., Candia A., Mehal W.Z. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J. Clin. Investig. 2016;126:859–864. doi: 10.1172/JCI83885. PubMed DOI PMC
Yu Y., Liu Y., An W., Song J., Zhang Y., Zhao X. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. J. Clin. Investig. 2019;129:546–555. doi: 10.1172/JCI121842. PubMed DOI PMC
Henriksen E.J., Diamond-Stanic M.K., Marchionne E.M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med. 2011;51:993–999. doi: 10.1016/j.freeradbiomed.2010.12.005. PubMed DOI PMC
Dodson R.E., Van Den Eede N., Covaci A., Perovich L.J., Brody J.G., Rudel R.A. Urinary biomonitoring of phosphate flame retardants: Levels in california adults and recommendations for future studies. Environ. Sci. Technol. 2014;48:13625–13633. doi: 10.1021/es503445c. PubMed DOI PMC
Zhang Q., Ji S., Chai L., Yang F., Zhao M., Liu W., Schu G., Ji L. Metabolic Mechanism of Aryl Phosphorus Flame Retardants by Cytochromes P450: A Combined Experimental and Computational Study on Triphenyl Phosphate. Environ. Sci. Technol. 2018;52:14411–14421. doi: 10.1021/acs.est.8b03965. PubMed DOI
Zota A.R., Mitro S.D., Robinson J.F., Hamilton E.G., Park J.S., Parry E., Zoeller R.T., Woodruff T.J. Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs) in maternal and fetal tissues, and associations with fetal cytochrome P450 gene expression. Environ. Int. 2018;112:269–278. doi: 10.1016/j.envint.2017.12.030. PubMed DOI PMC
Schattenberg J.M., Czaja M.J. Regulation of the effects of CYP2E1-induced oxidative stress by JNK signaling. Redox Biol. 2014;3:7–15. doi: 10.1016/j.redox.2014.09.004. PubMed DOI PMC
Aubert J., Begriche K., Knockaert L., Robin M.A., Fromenty B. Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: Mechanisms and pathophysiological role. Clin. Res. Hepatol. Gastroenterol. 2011;35:630–637. doi: 10.1016/j.clinre.2011.04.015. PubMed DOI
Fery Y., Buschauer I., Salzig C., Lang P., Schrenk D. Technical pentabromodiphenyl ether and hexabromocyclododecane as activators of the pregnane-X-receptor (PXR) Toxicology. 2009;264:45–51. doi: 10.1016/j.tox.2009.07.009. PubMed DOI
Pacyniak E.K., Cheng X., Cunningham M.L., Crofton K., Klaassen C.D., Guo G.L. The flame retardants, polybrominated diphenyl ethers, are pregnane X receptor activators. Toxicol. Sci. 2007;97:94–102. doi: 10.1093/toxsci/kfm025. PubMed DOI
Lee H.K., Pak Y.K. Mitochondrial Dysfunction Caused by Drugs and Environmental Toxicants. Volume 2. John Wiley & Sons Inc.; Hoboken, NJ, USA: 2018. Persistent Organic Pollutants, Mitochondrial Dysfunction, and Metabolic Syndrome; pp. 691–707.
Zhou P.K., Huang R.X. Targeting of the respiratory chain by toxicants: Beyond the toxicities to mitochondrial morphology. Toxicol. Res. Viewp. Toxicol. Res. 2018;7:1008–1011. doi: 10.1039/c8tx00207j. PubMed DOI PMC
Meyer J.N., Leung M.C.K., Rooney J.P., Sendoel A., Hengartner M.O., Kisby G.E., Bess A.S. Mitochondria as a Target of environmental Toxicants. Toxicol. Sci. 2013;134:1–17. doi: 10.1093/toxsci/kft102. PubMed DOI PMC
Waxman D.J. P450 gene induction by structurally diverse xenochemicals: Central role of nuclear receptors CAR, PXR, and PPAR. Arch. Biochem. Biophys. 1999;369:11–23. doi: 10.1006/abbi.1999.1351. PubMed DOI
Ghosh C., Hossain M., Solanki J., Najm I.M., Marchi N., Janigro D. Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells. Epilepsia. 2017;58:576–585. doi: 10.1111/epi.13703. PubMed DOI PMC
Guo Z., Li M., Han B., Qi X. Association of non-alcoholic fatty liver disease with thyroid function: A systematic review and meta-analysis. Dig. Liver Dis. 2018;50:1153–1162. doi: 10.1016/j.dld.2018.08.012. PubMed DOI
Tanase D.M., Gosav E.M., Neculae E., Costea C.F., Ciocoiu M., Hurjui L.L., Tarniceriu C.C., Floria M. Hypothyroidism-induced nonalcoholic fatty liver disease (Hin): Mechanisms and emerging therapeutic options. Int. J. Mol. Sci. 2020;21:5927. doi: 10.3390/ijms21165927. PubMed DOI PMC
Meerts I.A.T.M., Van Zanden J.J., Luijks E.A.C., Van Leeuwen-Bol I., Marsh G., Jakobsson E., Bergman Å., Brouwer A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in Vitro. Toxicol. Sci. 2000;56:95–104. doi: 10.1093/toxsci/56.1.95. PubMed DOI
Zhang Q., Ji C., Yin X., Yan L., Lu M., Zhao M. Thyroid hormone-disrupting activity and ecological risk assessment of phosphorus-containing flame retardants by in vitro, in vivo and in silico approaches. Environ. Pollut. 2016;210:27–33. doi: 10.1016/j.envpol.2015.11.051. PubMed DOI
Yan F., Wang Q., Lu M., Chen W., Song Y., Jing F., Guan Y., Wang L., Lin Y., Bo T., et al. Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity. J. Hepatol. 2014;61:1358–1364. doi: 10.1016/j.jhep.2014.06.037. PubMed DOI
Song Y., Xu C., Shao S., Liu J., Xing W., Xu J., Qin C., Li C., Hu B., Yi S., et al. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J. Hepatol. 2015;62:1171–1179. doi: 10.1016/j.jhep.2014.12.006. PubMed DOI
Wang H., Chen J., Hollister K., Sowers L.C., Forman B.M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell. 1999;3:543–553. doi: 10.1016/S1097-2765(00)80348-2. PubMed DOI
Teodoro J.S., Rolo A.P., Palmeira C.M. Hepatic FXR: Key regulator of whole-body energy metabolism. Trends Endocrinol. Metab. 2011;22:458–466. doi: 10.1016/j.tem.2011.07.002. PubMed DOI
Mullur R., Liu Y.Y., Brent G.A. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014;94:355–382. doi: 10.1152/physrev.00030.2013. PubMed DOI PMC
Liu Y.Y., Brent G.A. Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation. Trends Endocrinol. Metab. 2010;21:166–173. doi: 10.1016/j.tem.2009.11.004. PubMed DOI PMC
Vinken M. Adverse Outcome Pathways and Drug-Induced Liver Injury Testing. Chem. Res. Toxicol. 2015;28:1391–1397. doi: 10.1021/acs.chemrestox.5b00208. PubMed DOI PMC
Cave M.C., Clair H.B., Hardesty J.E., Falkner K.C., Feng W., Clark B.J., Sidey J., Shi H., Aqel B.A., McClain C.J., et al. Nuclear receptors and nonalcoholic fatty liver disease. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2016;1859:1083–1099. doi: 10.1016/j.bbagrm.2016.03.002. PubMed DOI PMC
Semple S. Assessing occupational and environmental exposure. Occup. Med. 2005;55:419–424. doi: 10.1093/occmed/kqi135. PubMed DOI
Ingle M.E., Watkins D., Rosario Z., VélezVega C.M., Calafat A.M., Ospina M., Ferguson K.K., Cordero J.F., Alshawabkeh A., Meeker J.D. An exploratory analysis of urinary organophosphate ester metabolites and oxidative stress among pregnant women in Puerto Rico. Sci. Total Environ. 2020;703:134798. doi: 10.1016/j.scitotenv.2019.134798. PubMed DOI PMC
Yao Y., Li M., Pan L., Duan Y., Duan X., Li Y., Sun H. Exposure to organophosphate ester flame retardants and plasticizers during pregnancy: Thyroid endocrine disruption and mediation role of oxidative stress. Environ. Int. 2021;146:106215. doi: 10.1016/j.envint.2020.106215. PubMed DOI
Yuan Y., Meeker J.D., Ferguson K.K. Serum polybrominated diphenyl ether (PBDE) concentrations in relation to biomarkers of oxidative stress and inflammation: The National Health and Nutrition Examination Survey 2003–2004. Sci. Total Environ. 2017;575:400–405. doi: 10.1016/j.scitotenv.2016.10.028. PubMed DOI PMC
Matsubara K., Nakamura N., Sanoh S., Ohta S., Kitamura S., Uramaru N., Miyagawa S., Iguchi T., Fujimoto N. Altered expression of the Olr59, Ethe1, and Slc10a2 genes in the liver of F344 rats by neonatal thyroid hormone disruption. J. Appl. Toxicol. 2017;37:1030–1035. doi: 10.1002/jat.3452. PubMed DOI
Walley S.N., Krumm E.A., Yasrebi A., Kwiecinski J., Wright V., Baker C., Roepke T.A. Maternal organophosphate flame-retardant exposure alters offspring energy and glucose homeostasis in a sexually dimorphic manner in mice. Appl. Toxicol. 2021;41:572–586. doi: 10.1002/jat.4066. PubMed DOI PMC
Jurenka J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev. 2009;14:141–153. PubMed
Wree A., Broderick L., Canbay A., Hoffman H.M., Feldstein A.E. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat. Rev. Gastroenterol. Hepatol. 2013;10:627–636. PubMed
Joshi-Barve S., Kirpich I., Cave M.C., Marsano L.S., McClain C.J. Alcoholic, Nonalcoholic, and Toxicant-Associated Steatohepatitis: Mechanistic Similarities and Differences. Cell. Mol. Gastroenterol. Hepatol. 2015;1:356–367. PubMed PMC
Treviño L.S., Katz T.A. Endocrine disruptors and developmental origins of nonalcoholic fatty liver disease. Endocrinology. 2018;159:20–31. PubMed PMC