Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease

. 2021 Apr 20 ; 22 (8) : . [epub] 20210420

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33924165

Grantová podpora
733032, 859891, 857560 European Union's Horizon 2020

Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system's components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.

Zobrazit více v PubMed

Younossi Z.M., Koenig A.B., Abdelatif D., Fazel Y., Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84. doi: 10.1002/hep.28431. PubMed DOI

Younossi Z., Anstee Q.M., Marietti M., Hardy T., Henry L., Eslam M., George J., Bugianesi E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018;15:11–20. doi: 10.1038/nrgastro.2017.109. PubMed DOI

Farrell G.C., Larter C.Z. Nonalcoholic fatty liver disease: From steatosis to cirrhosis. Hepatology. 2006;43:S99–S112. doi: 10.1002/hep.20973. PubMed DOI

Younossi Z.M., Blissett D., Blissett R., Henry L., Stepanova M., Younossi Y., Racila A., Hunt S., Beckerman R. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64:1577–1586. doi: 10.1002/hep.28785. PubMed DOI

Sanyal A.J. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2019;16:377–386. doi: 10.1038/s41575-019-0144-8. PubMed DOI

Alves-Bezerra M., Cohen D.E. Triglyceride metabolism in the liver. Compr. Physiol. 2018;8:1–22. doi: 10.1002/cphy.c170012. PubMed DOI PMC

Martin S., Parton R.G. Lipid droplets: A unified view of a dynamic organelle. Nat. Rev. Mol. Cell Biol. 2006;7:373–378. doi: 10.1038/nrm1912. PubMed DOI

Byrne C.D., Targher G. What’s new in NAFLD pathogenesis, biomarkers and treatment? Nat. Rev. Gastroenterol. Hepatol. 2020;17:70–71. doi: 10.1038/s41575-019-0239-2. PubMed DOI

Nassir F., Rector R.S., Hammoud G.M., Ibdah J.A. Pathogenesis and prevention of hepatic steatosis. Gastroenterol. Hepatol. 2015;11:167–175. PubMed PMC

Fielding C.M., Angulo P. Hepatic steatosis and steatohepatitis: Are they really two distinct entities? Curr. Hepatol. Rep. 2014;13:151–158. doi: 10.1007/s11901-014-0227-5. PubMed DOI PMC

Fang Y.L., Chen H., Wang C.L., Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”. World J. Gastroenterol. 2018;24:2974–2983. doi: 10.3748/wjg.v24.i27.2974. PubMed DOI PMC

Aron-Wisnewsky J., Vigliotti C., Witjes J., Le P., Holleboom A.G., Verheij J., Nieuwdorp M., Clément K. Gut microbiota and human NAFLD: Disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 2020;17:279–297. doi: 10.1038/s41575-020-0269-9. PubMed DOI

Polyzos S.A., Kountouras J., Mantzoros C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 2019;92:82–97. doi: 10.1016/j.metabol.2018.11.014. PubMed DOI

Foulds C.E., Treviño L.S., York B., Walker C.L. Endocrine-disrupting chemicals and fatty liver disease. Nat. Rev. Endocrinol. 2017;13:445–457. doi: 10.1038/nrendo.2017.42. PubMed DOI PMC

Heindel J.J., Blumberg B., Cave M., Machtinger R., Mantovani A., Mendez M.A., Nadal A., Palanza P., Panzica G., Sargis R., et al. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 2017;68:3–33. doi: 10.1016/j.reprotox.2016.10.001. PubMed DOI PMC

Suzuki T., Hidaka T., Kumagai Y., Yamamoto M. Environmental pollutants and the immune response. Nat. Immunol. 2020;21:1486–1495. doi: 10.1038/s41590-020-0802-6. PubMed DOI

Wahlang B., Jin J., Beier J.I., Hardesty J.E., Daly E.F., Schnegelberger R.D., Falkner K.C., Prough R.A., Kirpich I.A., Cave M.C. Mechanisms of Environmental Contributions to Fatty Liver Disease. Curr. Environ. Health Rep. 2019;6:80–94. doi: 10.1007/s40572-019-00232-w. PubMed DOI PMC

Wahlang B., Beier J.I., Clair H.B., Bellis-Jones H.J., Falkner K.C., McClain C.J., Cave M.C. Toxicant-associated steatohepatitis. Toxicol. Pathol. 2013;41:343–360. doi: 10.1177/0192623312468517. PubMed DOI PMC

Schwingel P.A., Cotrim H.P., Salles B.R., Almeida C.E., Dos Santos C.R., Nachef B., Andrade A.R., Zoppi C.C. Anabolic-androgenic steroids: A possible new risk factor of toxicant-associated fatty liver disease. Liver Int. 2011;31:348–353. doi: 10.1111/j.1478-3231.2010.02346.x. PubMed DOI

Cave M., Falkner K.C., Ray M., Joshi-Barve S., Brock G., Khan R., Bon Homme M., McClain C.J. Toxicant-associated steatohepatitis in vinyl chloride workers. Hepatology. 2010;51:474–481. doi: 10.1002/hep.23321. PubMed DOI PMC

Gibson E.A., Stapleton H.M., Calero L., Holmes D., Burke K., Martinez R., Cortes B., Nematollahi A., Evans D., Herbstman J.B. Flame retardant exposure assessment: Findings from a behavioral intervention study. J. Expo. Sci. Environ. Epidemiol. 2019;29:33–48. doi: 10.1038/s41370-018-0049-6. PubMed DOI PMC

Kemmlein S., Hahn O., Jann O. Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials. Atmos. Environ. 2003;37:5485–5493. doi: 10.1016/j.atmosenv.2003.09.025. DOI

González-Rubio S., Ballesteros-Gómez A., Asimakopoulos A.G., Jaspers V.L.B. A review on contaminants of emerging concern in European raptors (2002−2020) Sci. Total Environ. 2020;760:143337. doi: 10.1016/j.scitotenv.2020.143337. PubMed DOI

Yang J., Zhao Y., Li M., Du M., Li X., Li Y. A review of a class of emerging contaminants: The classification, distribution, intensity of consumption, synthesis routes, environmental effects and expectation of pollution abatement to organophosphate flame retardants (opfrs) Int. J. Mol. Sci. 2019;20:2874. doi: 10.3390/ijms20122874. PubMed DOI PMC

Maddela N.R., Venkateswarlu K., Kakarla D., Megharaj M. Inevitable human exposure to emissions of polybrominated diphenyl ethers: A perspective on potential health risks. Environ. Pollut. 2020;266:115240. doi: 10.1016/j.envpol.2020.115240. PubMed DOI

Wang R., Tang J., Xie Z., Mi W., Chen Y., Wolschke H., Tian C., Pan X., Luo Y., Ebinghaus R. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China. Environ. Pollut. 2015;198:172–178. doi: 10.1016/j.envpol.2014.12.037. PubMed DOI

Blum A., Behl M., Birnbaum L.S., Diamond M.L., Phillips A., Singla V., Sipes N.S., Stapleton H.M., Venier M. Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers? Environ. Sci. Technol. Lett. 2019;6:638–649. doi: 10.1021/acs.estlett.9b00582. PubMed DOI PMC

Van der Veen I., de Boer J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012;88:1119–1153. doi: 10.1016/j.chemosphere.2012.03.067. PubMed DOI

Mitro S.D., Dodson R.E., Singla V., Adamkiewicz G., Elmi A.F., Tilly M.K., Zota A.R. Consumer Product Chemicals in Indoor Dust: A Quantitative Meta-analysis of U.S. Studies. Environ. Sci. Technol. 2016;50:10661–10672. doi: 10.1021/acs.est.6b02023. PubMed DOI PMC

Rantakokko P., Kumar E., Braber J., Huang T., Kiviranta H., Cequier E., Thomsen C. Concentrations of brominated and phosphorous fl ame retardants in Finnish house dust and insights into children’s exposure. Chemosphere. 2019;223:99–107. doi: 10.1016/j.chemosphere.2019.02.027. PubMed DOI

Poma G., Glynn A., Malarvannan G., Covaci A., Darnerud P.O. Dietary intake of phosphorus flame retardants (PFRs) using Swedish food market basket estimations. Food Chem. Toxicol. 2017;100:1–7. doi: 10.1016/j.fct.2016.12.011. PubMed DOI

Zhao F., Chen M., Gao F., Shen H., Hu J. Organophosphorus Flame Retardants in Pregnant Women and Their Transfer to Chorionic Villi. Environ. Sci. Technol. 2017;51:6489–6497. doi: 10.1021/acs.est.7b01122. PubMed DOI

Kim J.W., Isobe T., Muto M., Tue N.M., Katsura K., Malarvannan G., Sudaryanto A., Chang K.H., Prudente M., Viet P.H., et al. Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries. Chemosphere. 2014;116:91–97. doi: 10.1016/j.chemosphere.2014.02.033. PubMed DOI

Ding J., Xu Z., Huang W., Feng L., Yang F. Organophosphate ester flame retardants and plasticizers in human placenta in Eastern China. Sci. Total Environ. 2016;554–555:211–217. doi: 10.1016/j.scitotenv.2016.02.171. PubMed DOI

Qiao L., Zheng X.B., Zheng J., Lei W.X., Li H.F., Wang M.H., He C.T., Chen S.J., Yuan J.G., Luo X.J., et al. Analysis of human hair to assess exposure to organophosphate flame retardants: Influence of hair segments and gender differences. Environ. Res. 2016;148:177–183. doi: 10.1016/j.envres.2016.03.032. PubMed DOI

Castorina R., Butt C., Stapleton H.M., Avery D., Harley K.G., Holland N., Eskenazi B., Bradman A. Flame retardants and their metabolites in the homes and urine of pregnant women residing in California (the CHAMACOS cohort) Chemosphere. 2017;179:159–166. doi: 10.1016/j.chemosphere.2017.03.076. PubMed DOI PMC

Saillenfait A.M., Ndaw S., Robert A., Sabaté J.P. Recent biomonitoring reports on phosphate ester flame retardants: A short review. Arch. Toxicol. 2018;92:2749–2778. doi: 10.1007/s00204-018-2275-z. PubMed DOI

Li P., Jin J., Wang Y., Hu J., Xu M., Sun Y., Ma Y. Concentrations of organophosphorus, polybromobenzene, and polybrominated diphenyl ether flame retardants in human serum, and relationships between concentrations and donor ages. Chemosphere. 2017;171:654–660. doi: 10.1016/j.chemosphere.2016.12.126. PubMed DOI

Lunder S., Hovander L., Athanassiadis I., Bergman Å. Significantly higher polybrominated diphenyl ether levels in young U.S. children than in their mothers. Environ. Sci. Technol. 2010;44:5256–5262. doi: 10.1021/es1009357. PubMed DOI

Harrad S., de Wit C.A., Abdallah M.A.-E., Bergh C., Björklund J.A., Covaci A., Darnerud P.O., de Boer J., Diamond M., Huber S., et al. Indoor Contamination with Hexabromocyclododecanes, Polybrominated Diphenyl Ethers, and Perfluoroalkyl Compounds: An Important Exposure Pathway for People? Environ. Sci. Technol. 2010;44:3221–3231. doi: 10.1021/es903476t. PubMed DOI

Schreder E.D., Uding N., La Guardia M.J. Inhalation a significant exposure route for chlorinated organophosphate flame retardants. Chemosphere. 2016;150:499–504. doi: 10.1016/j.chemosphere.2015.11.084. PubMed DOI

Makinen M.S.E., Makinen M.R.A., Koistinen J.T.B., Pasanen A.-L., Pasanen P.O., Kalliokoski P.J., Korpi A.M. Respiratory and dermal exposure to organophosphorus flame retardants and tetrabromobisphenol A at five work environments. Environ. Sci. Technol. 2009;43:941–947. doi: 10.1021/es802593t. PubMed DOI

Gravel S., Aubin S., Labrèche F. Assessment of Occupational Exposure to Organic Flame Retardants: A Systematic Review. Ann. Work Expo. Health. 2019;63:386–406. doi: 10.1093/annweh/wxz012. PubMed DOI

Estill C.F., Slone J., Mayer A., Chen I.C., La Guardia M.J. Worker exposure to flame retardants in manufacturing, construction and service industries. Environ. Int. 2020;135:105349. doi: 10.1016/j.envint.2019.105349. PubMed DOI PMC

HBM4EU-Science and Policy for a Healthy Future. [(accessed on 19 April 2021)]; Available online: https://www.hbm4eu.eu/

Costa L.G., de Laat R., Tagliaferri S., Pellacani C. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol. Lett. 2014;230:282–294. doi: 10.1016/j.toxlet.2013.11.011. PubMed DOI PMC

Makey C.M., McClean M.D., Braverman L.E., Pearce E.N., He X.-M., Sjödin A., Weinberg J.M., Webster T.F. Polybrominated Diphenyl Ether Exposure and Thyroid Function Tests in North American Adults. Environ. Health Perspect. 2016;124:420–425. doi: 10.1289/ehp.1509755. PubMed DOI PMC

Johnson P.I., Stapleton H.M., Mukherjee B., Hauser R., Meeker J.D. Associations between brominated flame retardants in house dust and hormone levels in men. Sci. Total Environ. 2013;445–446:177–184. doi: 10.1016/j.scitotenv.2012.12.017. PubMed DOI PMC

Schreiber T., Gassmann K., Götz C., Hübenthal U., Moors M., Krause G., Merk H.F., Nguyen N.H., Scanlan T.S., Abel J., et al. Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: Evidence for endocrine disruption. Environ. Health Perspect. 2010;118:572–578. doi: 10.1289/ehp.0901435. PubMed DOI PMC

Martin O.V., Evans R.M., Faust M., Kortenkamp A. A Human Mixture Risk Assessment for Neurodevelopmental Toxicity Associated with Polybrominated Diphenyl Ethers Used as Flame Retardants. Environ. Health Perspect. 2017;125:087016. doi: 10.1289/EHP826. PubMed DOI PMC

He Y., Peng L., Zhang W., Liu C., Yang Q., Zheng S., Bao M., Huang Y., Wu K. Adipose tissue levels of polybrominated diphenyl ethers and breast cancer risk in Chinese women: A case–control study. Environ. Res. 2018;167:160–168. doi: 10.1016/j.envres.2018.07.009. PubMed DOI

Bajard L., Melymuk L., Blaha L. Prioritization of hazards of novel flame retardants using the mechanistic toxicology information from ToxCast and Adverse Outcome Pathways. Environ. Sci. Eur. 2019;31:14. doi: 10.1186/s12302-019-0195-z. DOI

Hood E. Endocrine Disruption and Flame-Retardant Chemicals: PBDE-99 Effects on Rat Sexual Development. Environ. Health Perspect. 2006;114:A112. doi: 10.1289/ehp.114-a112b. DOI

Dishaw L.V., Macaulay L.J., Roberts S.C., Stapleton H.M. Exposures, mechanisms, and impacts of endocrine-active flame retardants. Curr. Opin. Pharmacol. 2014;19:125–133. doi: 10.1016/j.coph.2014.09.018. PubMed DOI PMC

Kojima H., Takeuchi S., Van den Eede N., Covaci A. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors. Toxicol. Lett. 2016;245:31–39. doi: 10.1016/j.toxlet.2016.01.004. PubMed DOI

Diamanti-Kandarakis E., Bourguignon J.P., Giudice L.C., Hauser R., Prins G.S., Soto A.M., Zoeller R.T., Gore A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009;30:293–342. doi: 10.1210/er.2009-0002. PubMed DOI PMC

Gore A.C., Chappell V.A., Fenton S.E., Flaws J.A., Nadal A., Prins G.S., Toppari J., Zoeller R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015;36:1–150. doi: 10.1210/er.2015-1010. PubMed DOI PMC

Llm J.S., Lee D.H., Jacobs D.R. Association of brominated flame retardants with diabetes and metabolic syndrome in the U.S. population, 2003–2004. Diabetes Care. 2008;31:1802–1807. doi: 10.2337/dc08-0850. PubMed DOI PMC

Zhang Z., Li S., Liu L., Wang L., Xiao X., Sun Z., Wang X., Wang C., Wang M., Li L., et al. Environmental exposure to BDE47 is associated with increased diabetes prevalence: Evidence from community-based case-control studies and an animal experiment. Sci. Rep. 2016;6:1–9. doi: 10.1038/srep27854. PubMed DOI PMC

Zhao F., Li Y., Zhang S., Ding M., Hu J. Association of Aryl Organophosphate Flame Retardants Triphenyl Phosphate and 2-Ethylhexyl Diphenyl Phosphate with Human Blood Triglyceride and Total Cholesterol Levels. Environ. Sci. Technol. Lett. 2019;6:532–537. doi: 10.1021/acs.estlett.9b00417. DOI

Ongono J.S., Dow C., Gambaretti J., Severi G., Boutron-Ruault M.C., Bonnet F., Fagherazzi G., Mancini F.R. Dietary exposure to brominated flame retardants and risk of type 2 diabetes in the French E3N cohort. Environ. Int. 2019;123:54–60. doi: 10.1016/j.envint.2018.11.040. PubMed DOI

Eslam M., Sanyal A.J., George J., Sanyal A., Neuschwander-Tetri B., Tiribelli C., Kleiner D.E., Brunt E., Bugianesi E., Yki-Järvinen H., et al. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158:1999–2014.e1. doi: 10.1053/j.gastro.2019.11.312. PubMed DOI

Day C.P., James O.F.W. Steatohepatitis: A tale of two “Hits”? Gastroenterology. 1998;114:842–845. doi: 10.1016/S0016-5085(98)70599-2. PubMed DOI

Guturu P., Duchini A. Etiopathogenesis of Nonalcoholic Steatohepatitis: Role of Obesity, Insulin Resistance and Mechanisms of Hepatotoxicity. Int. J. Hepatol. 2012;2012:212865. doi: 10.1155/2012/212865. PubMed DOI PMC

Tilg H., Moschen A.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology. 2010;52:1–8. doi: 10.1002/hep.24001. PubMed DOI

Tilg H., Adolph T.E., Moschen A.R. Multiple Parallel Hits Hypothesis in NAFLD—Revisited After a Decade. Hepatology. 2020;73:833–842. doi: 10.1002/hep.31518. PubMed DOI PMC

Angrish M.M., Kaiser J.P., McQueen C.A., Chorley B.N. Tipping the balance: Hepatotoxicity and the 4 apical key events of hepatic steatosis. Toxicol. Sci. 2016;150:261–268. doi: 10.1093/toxsci/kfw018. PubMed DOI

Amacher D.E. The mechanistic basis for the induction of hepatic steatosis by xenobiotics. Expert Opin. Drug Metab. Toxicol. 2011;7:949–965. doi: 10.1517/17425255.2011.577740. PubMed DOI

Yamaguchi K., Yang L., McCall S., Huang J., Xing X.Y., Pandey S.K., Bhanot S., Monia B.P., Li Y.X., Diehl A.M. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology. 2007;45:1366–1374. doi: 10.1002/hep.21655. PubMed DOI

Listenberger L.L., Han X., Lewis S.E., Cases S., Farese R.V., Ory D.S., Schaffer J.E. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA. 2003;100:3077–3082. doi: 10.1073/pnas.0630588100. PubMed DOI PMC

Huang W., Metlakunta A., Dedousis N., Zhang P., Sipula I., Dube J.J., Scott D.K., O’Doherty R.M. Depletion of liver kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes. 2010;59:347–357. doi: 10.2337/db09-0016. PubMed DOI PMC

Cai Y., Li H., Liu M., Pei Y., Zheng J., Zhou J., Luo X., Huang W., Ma L., Yang Q., et al. Disruption of adenosine 2A receptor exacerbates NAFLD through increasing inflammatory responses and SREBP1c activity. Hepatology. 2018;68:48–61. doi: 10.1002/hep.29777. PubMed DOI PMC

Deng Z.B., Liu Y., Liu C., Xiang X., Wang J., Cheng Z., Shah S.V., Zhang S., Zhang L., Zhuang X., et al. Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology. 2009;50:1412–1420. doi: 10.1002/hep.23148. PubMed DOI PMC

Cai J., Zhang X.J., Li H. Role of Innate Immune Signaling in Non-Alcoholic Fatty Liver Disease. Trends Endocrinol. Metab. 2018;29:712–722. doi: 10.1016/j.tem.2018.08.003. PubMed DOI

Schuster S., Cabrera D., Arrese M., Feldstein A.E. Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 2018;15:349–364. doi: 10.1038/s41575-018-0009-6. PubMed DOI

Pestka S., Baron S. Definition and Classification of the Interferons. Methods Enzymol. 1981;78:3–14. doi: 10.1016/0076-6879(81)78091-1. PubMed DOI

Handa P., Vemulakonda A., Kowdley K.V., Uribe M., Méndez-Sánchez N. Mitochondrial DNA from hepatocytes as a ligand for TLR9: Drivers of nonalcoholic steatohepatitis? World J. Gastroenterol. 2016;22:6965. doi: 10.3748/wjg.v22.i31.6965. PubMed DOI PMC

Ganz M., Szabo G. Immune and inflammatory pathways in NASH. Hepatol. Int. 2013;7:S771–S781. doi: 10.1007/s12072-013-9468-6. PubMed DOI PMC

Arrese M., Cabrera D., Kalergis A.M., Feldstein A.E. Innate Immunity and Inflammation in NAFLD/NASH. Dig. Dis. Sci. 2016;61:1294–1303. doi: 10.1007/s10620-016-4049-x. PubMed DOI PMC

Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005;5:375–386. doi: 10.1038/nri1604. PubMed DOI

Der S.D., Zhou A., Williams B.R.G., Silverman R.H. Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc. Natl. Acad. Sci. USA. 1998;95:15623–15628. doi: 10.1073/pnas.95.26.15623. PubMed DOI PMC

Pestka S., Krause C.D., Walter M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 2004;202:8–32. doi: 10.1111/j.0105-2896.2004.00204.x. PubMed DOI

Wack A., Terczyńska-Dyla E., Hartmann R. Guarding the frontiers: The biology of type III interferons. Nat. Immunol. 2015;16:802–809. doi: 10.1038/ni.3212. PubMed DOI PMC

Qiao J.T., Cui C., Qing L., Wang L.S., He T.Y., Yan F., Liu F.Q., Shen Y.H., Hou X.G., Chen L. Activation of the STING-IRF3 pathway promotes hepatocyte inflammation, apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease. Metabolism. 2018;81:13–24. doi: 10.1016/j.metabol.2017.09.010. PubMed DOI

Luo X., Li H., Ma L., Zhou J., Guo X., Woo S.L., Pei Y., Knight L.R., Deveau M., Chen Y., et al. Expression of STING Is Increased in Liver Tissues From Patients With NAFLD and Promotes Macrophage-Mediated Hepatic Inflammation and Fibrosis in Mice. Gastroenterology. 2018;155:1971–1984.e4. doi: 10.1053/j.gastro.2018.09.010. PubMed DOI PMC

Li Y.N., Su Y. Remdesivir attenuates high fat diet (HFD)-induced NAFLD by regulating hepatocyte dyslipidemia and inflammation via the suppression of STING. Biochem. Biophys. Res. Commun. 2020;526:381–388. doi: 10.1016/j.bbrc.2020.03.034. PubMed DOI PMC

Ishikawa H., Barber G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455:674–678. doi: 10.1038/nature07317. PubMed DOI PMC

Gaidt M.M., Ebert T.S., Chauhan D., Ramshorn K., Pinci F., Zuber S., O’Duill F., Schmid-Burgk J.L., Hoss F., Buhmann R., et al. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell. 2017;171:1110–1124.e18. doi: 10.1016/j.cell.2017.09.039. PubMed DOI PMC

Abe T., Barber G.N. Cytosolic-DNA-Mediated, STING-Dependent Proinflammatory Gene Induction Necessitates Canonical NF- B Activation through TBK1. J. Virol. 2014;88:5328–5341. doi: 10.1128/JVI.00037-14. PubMed DOI PMC

Kumari M., Wang X., Lantier L., Lyubetskaya A., Eguchi J., Kang S., Tenen D., Roh H.C., Kong X., Kazak L., et al. IRF3 promotes adipose inflammation and insulin resistance and represses browning. J. Clin. Investig. 2016;126:2839–2854. doi: 10.1172/JCI86080. PubMed DOI PMC

Honda K., Takaoka A., Taniguchi T. Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription Factors. Immunity. 2006;25:349–360. doi: 10.1016/j.immuni.2006.08.009. PubMed DOI

Ghazarian M., Revelo X.S., Nøhr M.K., Luck H., Zeng K., Lei H., Tsai S., Schroer S.A., Park Y.J., Chng M.H.Y., et al. Type I interferon responses drive intrahepatic T cells to promote metabolic syndrome. Sci. Immunol. 2017;2:eaai7616. doi: 10.1126/sciimmunol.aai7616. PubMed DOI PMC

Mitsumoto K., Watanabe R., Nakao K., Yonenaka H., Hashimoto T., Kato N., Kumrungsee T., Yanaka N. Time-course microarrays reveal early activation of the immune transcriptome in a choline-deficient mouse model of liver injury. Life Sci. 2017;184:103–111. doi: 10.1016/j.lfs.2017.07.009. PubMed DOI

Wieser V., Adolph T.E., Grander C., Grabherr F., Enrich B., Moser P., Moschen A.R., Kaser S., Tilg H. Adipose type i interferon signalling protects against metabolic dysfunction. Gut. 2018;67:157–165. doi: 10.1136/gutjnl-2016-313155. PubMed DOI

Wang X.-A., Zhang R., Zhang S., Deng S., Jiang D., Zhong J., Yang L., Wang T., Hong S., Guo S., et al. Interferon regulatory factor 7 deficiency prevents diet-induced obesity and insulin resistance. Am. J. Physiol. Metab. 2013;305:E485–E495. doi: 10.1152/ajpendo.00505.2012. PubMed DOI

Hao J., Zhang Y., Lv X., Xu N., Liu Q., Zhao S., Feng X., Xing L., Kang P., Li G., et al. IFN-induces lipogenesis in mouse mesangial cells via the JAK2/STAT1 pathway. Am. J. Physiol. Cell Physiol. 2013;304:760–767. doi: 10.1152/ajpcell.00352.2012. PubMed DOI

Grunfeld C., Soued M., Adi S., Moser A.H., Dinarello C.A., Feingold K.R. Evidence for Two Classes of Cytokines That Stimulate Hepatic Lipogenesis: Relationships among Tumor Necrosis Factor, Interleukin-1 and Interferon-Alpha*. Endocrinology. 1990;127:46–54. doi: 10.1210/endo-127-1-46. PubMed DOI

Tarantino G., Costantini S., Citro V., Conforti P., Capone F., Sorice A., Capone D. Interferon-alpha 2 but not Interferon-gamma serum levels are associated with intramuscular fat in obese patients with nonalcoholic fatty liver disease 11 Medical and Health Sciences 1103 Clinical Sciences. J. Transl. Med. 2019;17:8. doi: 10.1186/s12967-018-1754-6. PubMed DOI PMC

Feingold K.R., Soued M., Serio M.K., Moser A.H., Dinarello C.A., Grunfeld C. Multiple cytokines stimulate hepatic lipid synthesis in vivo. Endocrinology. 1989;125:267–274. doi: 10.1210/endo-125-1-267. PubMed DOI

Wada T., Hoshino M., Kimura Y., Ojima M., Nakano T., Koya D., Tsuneki H., Sasaoka T. Both type I and II IFN induce insulin resistance by inducing different isoforms of SOCS expression in 3T3-L1 adipocytes. Am. J. Physiol. Metab. 2011;300:E1112–E1123. doi: 10.1152/ajpendo.00370.2010. PubMed DOI

Ueki K., Kondo T., Kahn C.R. Suppressor of Cytokine Signaling 1 (SOCS-1) and SOCS-3 Cause Insulin Resistance through Inhibition of Tyrosine Phosphorylation of Insulin Receptor Substrate Proteins by Discrete Mechanisms. Mol. Cell. Biol. 2004;24:5434–5446. doi: 10.1128/MCB.24.12.5434-5446.2004. PubMed DOI PMC

Ueki K., Kondo T., Tseng Y.H., Kahn C.R. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc. Natl. Acad. Sci. USA. 2004;101:10422–10427. doi: 10.1073/pnas.0402511101. PubMed DOI PMC

Hardardottir I., Doerrler W., Feingold K.R., Grunfeld C. Cytokines stimulate lipolysis and decrease lipoprotein lipase activity in cultured fat cells by a prostaglandin independent mechanism. Biochem. Biophys. Res. Commun. 1992;186:237–243. doi: 10.1016/S0006-291X(05)80798-3. PubMed DOI

Doerrler W., Feingold K.R., Grunfeld C. Cytokines induce catabolic effects in cultured adipocytes by multiple mechanisms. Cytokine. 1994;6:478–484. doi: 10.1016/1043-4666(94)90074-4. PubMed DOI

Truong N.T.T., Lydic T.A., Bazil J.N., Suryadevara A., Olson L.K. Regulation of lipid metabolism in pancreatic beta cells by interferon gamma: A link to anti-viral function. Cytokine. 2020;133 doi: 10.1016/j.cyto.2020.155147. PubMed DOI

Luo X.-Y., Takahara T., Kawai K., Fujino M., Sugiyama T., Tsuneyama K., Tsukada K., Nakae S., Zhong L., Li X.-K. IFN-γ deficiency attenuates hepatic inflammation and fibrosis in a steatohepatitis model induced by a methionine- and choline-deficient high-fat diet. Am. J. Physiol. Liver Physiol. 2013;305:G891–G899. doi: 10.1152/ajpgi.00193.2013. PubMed DOI

Yu Shi S., García Martin R., Duncan R.E., Choi D., Lu S.-Y., Schroer S.A., Cai E.P., Luk C.T., Hopperton K.E., Domenichiello A.F., et al. Hepatocyte-specific Deletion of Janus Kinase 2 (JAK2) Protects against Diet-induced Steatohepatitis and Glucose Intolerance. J. Biol. Chem. 2012;287:10277–10288. doi: 10.1074/jbc.M111.317453. PubMed DOI PMC

Sos B.C., Harris C., Nordstrom S.M., Tran J.L., Balázs M., Caplazi P., Febbraio M., Applegate M.A.B., Wagner K.U., Weiss E.J. Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocytespecific deletion of JAK2. J. Clin. Invest. 2011;121:1412–1423. doi: 10.1172/JCI42894. PubMed DOI PMC

Themanns M., Mueller K.M., Kessler S.M., Golob-Schwarzl N., Mohr T., Kaltenecker D., Bourgeais J., Paier-Pourani J., Friedbichler K., Schneller D., et al. Hepatic deletion of Janus Kinase 2 counteracts oxidative stress in mice. Sci. Rep. 2016;6:1–13. doi: 10.1038/srep34719. PubMed DOI PMC

Chen Y., Yu C.Y., Deng W.M. The role of pro-inflammatory cytokines in lipid metabolism of metabolic diseases. Int. Rev. Immunol. 2019;38:249–266. doi: 10.1080/08830185.2019.1645138. PubMed DOI

Niederreiter L., Tilg H. Cytokines and fatty liver diseases. Liver Res. 2018;2:14–20. doi: 10.1016/j.livres.2018.03.003. DOI

Tilg H., Diehl A.M. Cytokines in Alcoholic and Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2000;343:1467–1476. doi: 10.1056/NEJM200011163432007. PubMed DOI

Negrin K.A., Flach R.J.R., DiStefano M.T., Matevossian A., Friedline R.H., Jung D., Kim J.K., Czech M.P. IL-1 Signaling in obesity-induced hepatic lipogenesis and steatosis. PLoS ONE. 2014;9:e107265. doi: 10.1371/journal.pone.0107265. PubMed DOI PMC

Stienstra R., Saudale F., Duval C., Keshtkar S., Groener J.E.M., Van Rooijen N., Staels B., Kersten S., Müller M. Kupffer cells promote hepatic steatosis via interleukin-1β-dependent suppression of peroxisome proliferator-activated receptor α activity. Hepatology. 2010;51:511–522. doi: 10.1002/hep.23337. PubMed DOI

Fève B., Bastard J.P. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2009;5:305–311. doi: 10.1038/nrendo.2009.62. PubMed DOI

Cobbina E., Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD)–pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev. 2017;49:197–211. doi: 10.1080/03602532.2017.1293683. PubMed DOI PMC

Buzzetti E., Pinzani M., Tsochatzis E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) Metabolism. 2016;65:1038–1048. doi: 10.1016/j.metabol.2015.12.012. PubMed DOI

Brown M.S., Goldstein J.L. Selective versus Total Insulin Resistance: A Pathogenic Paradox. Cell Metab. 2008;7:95–96. doi: 10.1016/j.cmet.2007.12.009. PubMed DOI

Hectors T.L.M., Vanparys C., Van Gaal L.F., Jorens P.G., Covaci A., Blust R. Insulin resistance and environmental pollutants: Experimental evidence and future perspectives. Environ. Health Perspect. 2013;121:1273–1281. doi: 10.1289/ehp.1307082. PubMed DOI PMC

Moon Y.A., Liang G., Xie X., Frank-Kamenetsky M., Fitzgerald K., Koteliansky V., Brown M.S., Goldstein J.L., Horton J.D. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell Metab. 2012;15:240–246. doi: 10.1016/j.cmet.2011.12.017. PubMed DOI PMC

Iizuka K., Bruick R.K., Liang G., Horton J.D., Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl. Acad. Sci. USA. 2004;101:7281–7286. doi: 10.1073/pnas.0401516101. PubMed DOI PMC

Kaiser J.P., Lipscomb J.C., Wesselkamper S.C. Putative mechanisms of environmental chemical-induced steatosis. Int. J. Toxicol. 2012;31:551–563. doi: 10.1177/1091581812466418. PubMed DOI

Hotamisligil G.S., Murray D.L., Choy L.N., Spiegelman B.M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc. Natl. Acad. Sci. USA. 1994;91:4854–4858. doi: 10.1073/pnas.91.11.4854. PubMed DOI PMC

Hotamisligil G.S., Peraldi P., Budavari A., Ellis R., White M.F., Spiegelman B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science. 1996;271:665–668. doi: 10.1126/science.271.5249.665. PubMed DOI

Tang Y., Bian Z., Zhao L., Liu Y., Liang S., Wang Q., Han X., Peng Y., Chen X., Shen L., et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin. Exp. Immunol. 2011;166:281–290. doi: 10.1111/j.1365-2249.2011.04471.x. PubMed DOI PMC

Herbstman J.B., Sjödin A., Apelberg B.J., Witter F.R., Haiden R.U., Patterson D.G., Panny S.R., Needham L.L., Goldman L.R. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) and neonatal thyroid hormone levels. Environ. Health Perspect. 2008;116:1376–1382. doi: 10.1289/ehp.11379. PubMed DOI PMC

Julander A., Karlsson M., Hagström K., Ohlson C.G., Engwall M., Bryngelsson I.L., Westberg H., van Bavel B. Polybrominated diphenyl ethers—Plasma levels and thyroid status of workers at an electronic recycling facility. Int. Arch. Occup. Environ. Health. 2005;78:584–592. doi: 10.1007/s00420-005-0627-5. PubMed DOI

Turyk M.E., Persky V.W., Imm P., Knobeloch L., Chatterton R., Anderson H.A. Hormone disruption by PBDEs in adult male sport fish consumers. Environ. Health Perspect. 2008;116:1635–1641. doi: 10.1289/ehp.11707. PubMed DOI PMC

Branchi I., Capone F., Alleva E., Costa L.G. Polybrominated diphenyl ethers: Neurobehavioral effects following developmental exposure. Neurotoxicology. 2003;24:449–462. doi: 10.1016/S0161-813X(03)00020-2. PubMed DOI

Ping He; Aiguo Wang; Qiang Niu; Lijuan Guo; Tao Xia; Xuemin Chen Toxic effect of PBDE-47 on thyroid development, learning, and memory, and the interaction between PBDE-47 and PCB153 that enhances toxicity in rats. Toxicol. Ind. Health. 2011;27:279–288. doi: 10.1177/0748233710387002. PubMed DOI

Szabo D.T., Richardson V.M., Ross D.G., Diliberto J.J., Kodavanti P.R.S., Birnbaum L.S. Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression Involved in thyroid hormone metabolism in male rat pups. Toxicol. Sci. 2009;107:27–39. doi: 10.1093/toxsci/kfn230. PubMed DOI PMC

Vuong A.M., Braun J.M., Webster G.M., Thomas Zoeller R., Hoofnagle A.N., Sjödin A., Yolton K., Lanphear B.P., Chen A. Polybrominated diphenyl ether (PBDE) exposures and thyroid hormones in children at age 3 years. Environ. Int. 2018;117:339–347. doi: 10.1016/j.envint.2018.05.019. PubMed DOI PMC

Sinha R.A., Singh B.K., Yen P.M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 2018;14:259–269. doi: 10.1038/nrendo.2018.10. PubMed DOI PMC

Lu S.-Y., Li Y.-X., Zhang T., Cai D., Ruan J.-J., Huang M.-Z., Wang L., Zhang J.-Q., Qiu R.-L. Effect of E-waste Recycling on Urinary Metabolites of Organophosphate Flame Retardants and Plasticizers and Their Association with Oxidative Stress. Environ. Sci. Technol. 2017;51:2427–2437. doi: 10.1021/acs.est.6b05462. PubMed DOI

Chen G., Jin Y., Wu Y., Liu L., Fu Z. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption. Environ. Toxicol. Pharmacol. 2015;40:310–318. doi: 10.1016/j.etap.2015.06.021. PubMed DOI

Gu J., Su F., Hong P.P., Zhang Q., Zhao M. 1 H NMR-based metabolomic analysis of nine organophosphate flame retardants metabolic disturbance in Hep G2 cell line. Sci. Total Environ. 2019;665:162–170. doi: 10.1016/j.scitotenv.2019.02.055. PubMed DOI

Papalou O., Kandaraki E.A., Papadakis G., Diamanti-Kandarakis E. Endocrine disrupting chemicals: An occult mediator of metabolic disease. Front. Endocrinol. 2019;10:112. doi: 10.3389/fendo.2019.00112. PubMed DOI PMC

Spahis S., Delvin E., Borys J.M., Levy E. Oxidative Stress as a Critical Factor in Nonalcoholic Fatty Liver Disease Pathogenesis. Antioxid. Redox Signal. 2017;26:519–541. doi: 10.1089/ars.2016.6776. PubMed DOI

Kang H., Moon H.B., Choi K. Toxicological responses following short-term exposure through gavage feeding or water-borne exposure to Dechlorane Plus in zebrafish (Danio rerio) Chemosphere. 2016;146:226–232. doi: 10.1016/j.chemosphere.2015.12.024. PubMed DOI

Bruchajzer E., Frydrych B., Sporny S., Szymańska J.A. The effect of short-term intoxication of rats with pentabromodiphenyl ether (in mixture mimic commercial products) Hum. Exp. Toxicol. 2011;30:363–378. doi: 10.1177/0960327110371261. PubMed DOI

Bondy G.S., Lefebvre D.E., Aziz S., Cherry W., Coady L., MacLellan E., Armstrong C., Barker M., Cooke G., Gaertner D., et al. Toxicologic and immunologic effects of perinatal exposure to the brominated diphenyl ether (BDE) mixture DE-71 in the Sprague-Dawley rat. Environ. Toxicol. 2013;28:215–228. doi: 10.1002/tox.20713. PubMed DOI

Dunnick J.K., Brix A., Cunny H., Vallant M., Shockley K.R. Characterization of polybrominated diphenyl ether toxicity in Wistar Han rats and use of liver microarray data for predicting disease susceptibilities. Toxicol. Pathol. 2012;40:93–106. doi: 10.1177/0192623311429973. PubMed DOI PMC

SUN R.B., SHANG S., ZHANG W., LIN B.C., WANG Q., SHI Y., XI Z.G. Endocrine Disruption Activity of 30-day Dietary Exposure to Decabromodiphenyl Ethane in Balb/C Mouse. Biomed. Environ. Sci. 2018;31:12–22. doi: 10.3967/bes2018.002. PubMed DOI

Suvorov A., Takser L. Global Gene Expression Analysis in the Livers of Rat Offspring Perinatally Exposed to Low Doses of 2,2′,4,4′-Tetrabromodiphenyl Ether. Environ. Health Perspect. 2010;118:97–102. doi: 10.1289/ehp.0901031. PubMed DOI PMC

van der Ven L.T.M., van de Kuil T., Verhoef A., Leonards P.E.G., Slob W., Cantón R.F., Germer S., Hamers T., Visser T.J., Litens S., et al. A 28-day oral dose toxicity study enhanced to detect endocrine effects of a purified technical pentabromodiphenyl ether (pentaBDE) mixture in Wistar rats. Toxicology. 2008;245:109–122. doi: 10.1016/j.tox.2007.12.016. PubMed DOI

Hao Z., Zhang Z., Lu D., Ding B., Shu L., Zhang Q., Wang C. Organophosphorus Flame Retardants Impair Intracellular Lipid Metabolic Function in Human Hepatocellular Cells. Chem. Res. Toxicol. 2019;32:1250–1258. doi: 10.1021/acs.chemrestox.9b00058. PubMed DOI

Adams S., Wiersielis K., Yasrebi A., Conde K., Armstrong L., Guo G.L., Roepke T.A. Sex- and age-dependent effects of maternal organophosphate flame-retardant exposure on neonatal hypothalamic and hepatic gene expression. Reprod. Toxicol. 2020;94:65–74. doi: 10.1016/j.reprotox.2020.04.001. PubMed DOI PMC

Krivoshiev B.V., Beemster G.T.S., Sprangers K., Cuypers B., Laukens K., Blust R., Husson S.J. Transcriptome profiling of HepG2 cells exposed to the flame retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) Toxicol. Res. 2018;7:492–502. doi: 10.1039/C8TX00006A. PubMed DOI PMC

Wang D., Zhu W., Chen L., Yan J., Teng M., Zhou Z. Neonatal triphenyl phosphate and its metabolite diphenyl phosphate exposure induce sex- and dose-dependent metabolic disruptions in adult mice. Environ. Pollut. 2018;237:10–17. doi: 10.1016/j.envpol.2018.01.047. PubMed DOI

Dunnick J.K., Shockley K.R., Morgan D.L., Travlos G.S., Gerrish K., Ton T.V.T., Wilson R., Brar S.S., Brix A.E., Waidyanatha S., et al. Hepatic Transcriptomic Patterns in the Neonatal Rat After Pentabromodiphenyl Ether Exposure. Toxicol. Pathol. 2020;48:338–349. doi: 10.1177/0192623319888433. PubMed DOI PMC

Patisaul H.B., Roberts S.C., Mabrey N., Mccaffrey K.A., Gear R.B., Braun J., Belcher S.M., Stapleton H.M. Accumulation and Endocrine Disrupting Effects of the Flame Retardant Mixture Firemaster® 550 in Rats: An Exploratory Assessment. J. Biochem. Mol. Toxicol. 2013;27:124–136. doi: 10.1002/jbt.21439. PubMed DOI PMC

Yang C., Zhu L., Kang Q., Lee H.K., Li D., Chung A.C.K., Cai Z. Chronic exposure to tetrabromodiphenyl ether (BDE-47) aggravates hepatic steatosis and liver fibrosis in diet-induced obese mice. J. Hazard. Mater. 2019;378 doi: 10.1016/j.jhazmat.2019.120766. PubMed DOI

Sun Y., Wang Y., Liang B., Chen T., Zheng D., Zhao X., Jing L., Zhou X., Sun Z., Shi Z. Hepatotoxicity of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE-209) in 28-day exposed Sprague-Dawley rats. Sci. Total Environ. 2020;705:135783. doi: 10.1016/j.scitotenv.2019.135783. PubMed DOI

Saquib Q., Siddiqui M.A., Ahmed J., Al-Salim A., Ansari S.M., Faisal M., Al-Khedhairy A.A., Musarrat J., AlWathnani H.A., Alatar A.A., et al. Hazards of low dose flame-retardants (BDE-47 and BDE-32): Influence on transcriptome regulation and cell death in human liver cells. J. Hazard. Mater. 2016;308:37–49. doi: 10.1016/j.jhazmat.2016.01.025. PubMed DOI

Guo M., Gu Y., Fan X. Chlorinated phosphorus flame retardants exert oxidative damage to SMMC-7721 human hepatocarcinoma cells. Sci. Total Environ. 2020;705:135777. doi: 10.1016/j.scitotenv.2019.135777. PubMed DOI

Chen H., Wang P., Du Z., Wang G., Gao S. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish (Danio rerio) induced by tris(1,3-dichloro-2-propyl) phosphate. Aquat. Toxicol. 2018;194:37–45. doi: 10.1016/j.aquatox.2017.11.001. PubMed DOI

Xu L.L., Long C.Y., Wang J.L., Yu M., Chen J.X. Involvement of oxidative stress in tri-ortho-cresyl phosphate-induced liver injury in male mice. Hum. Exp. Toxicol. 2016;35:1093–1101. doi: 10.1177/0960327115621363. PubMed DOI

Pereira L.C., Cabral Miranda L.F.C., Franco-Bernardes M.F., Tasso M.J., Duarte F.V., Inácio Varela A.T., Rolo A.P., Marques Palmeira C.M., Dorta D.J. Mitochondrial damage and apoptosis: Key features in BDE-153-induced hepatotoxicity. Chem. Biol. Interact. 2018;291:192–201. doi: 10.1016/j.cbi.2018.06.021. PubMed DOI

Bruchajzer E., Frydrych B., Kilanowicz A., Sapota A., Szymańska J.A. Selected oxidative stress parameters after single and repeated administration of octabromodiphenyl ether to rats. Int. J. Occup. Med. Environ. Health. 2014;27:808–820. doi: 10.2478/s13382-014-0312-6. PubMed DOI

Li F., Wang L., Ji C., Wu H., Zhao J., Tang J. Toxicological effects of tris(2-chloropropyl) phosphate in human hepatic cells. Chemosphere. 2017;187:88–96. doi: 10.1016/j.chemosphere.2017.08.083. PubMed DOI

Dunnick J.K., Nyska A. Characterization of liver toxicity in F344/N rats and B6C3F1 mice after exposure to a flame retardant containing lower molecular weight polybrominated diphenyl ethers. Exp. Toxicol. Pathol. 2009;61:1–12. doi: 10.1016/j.etp.2008.06.008. PubMed DOI PMC

Shao J., White C.C., Dabrowski M.J., Kavanagh T.J., Eckert M.L., Gallagher E.P. The role of mitochondrial and oxidative injury in BDE 47 toxicity to human fetal liver hematopoietic stem cells. Toxicol. Sci. 2008;101:81–90. doi: 10.1093/toxsci/kfm256. PubMed DOI

Zhu Y., Li X., Liu J., Zhou G., Yu Y., Jing L., Shi Z., Zhou X., Sun Z. The effects of decabromodiphenyl ether on glycolipid metabolism and related signaling pathways in mice. Chemosphere. 2019;222:849–855. doi: 10.1016/j.chemosphere.2019.02.003. PubMed DOI

Khalil A., Cevik S.E., Hung S., Kolla S., Roy M.A., Suvorov A. Developmental exposure to 2,2′,4,4′-Tetrabromodiphenyl ether permanently alters blood-liver balance of lipids in male mice. Front. Endocrinol. 2018;9:548. doi: 10.3389/fendo.2018.00548. PubMed DOI PMC

Farmahin R., Gannon A.M., Gagné R., Rowan-Carroll A., Kuo B., Williams A., Curran I., Yauk C.L. Hepatic transcriptional dose-response analysis of male and female Fischer rats exposed to hexabromocyclododecane. Food Chem. Toxicol. 2019;133:110262. doi: 10.1016/j.fct.2018.12.032. PubMed DOI

Farhat A., Buick J.K., Williams A., Yauk C.L., O’Brien J.M., Crump D., Williams K.L., Chiu S., Kennedy S.W. Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos. Toxicol. Appl. Pharmacol. 2014;275:104–112. doi: 10.1016/j.taap.2013.12.020. PubMed DOI

Du Z., Zhang Y., Wang G., Peng J., Wang Z., Gao S. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver. Sci. Rep. 2016;6:21827. doi: 10.1038/srep21827. PubMed DOI PMC

Yanagisawa R., Koike E., Win-Shwe T.T., Yamamoto M., Takano H. Impaired lipid and glucose homeostasis in hexabromocyclododecane- exposed mice fed a high-fat diet. Environ. Health Perspect. 2014;122:277–283. doi: 10.1289/ehp.1307421. PubMed DOI PMC

Bruchajzer E., Frydrych B., Sporny S., Szymańska J.A. Toxicity of penta- and decabromodiphenyl ethers after repeated administration to rats: A comparative study. Arch. Toxicol. 2010;84:287–299. doi: 10.1007/s00204-009-0495-y. PubMed DOI

Wang D., Yan J., Teng M., Yan S., Zhou Z., Zhu W. In utero and lactational exposure to BDE-47 promotes obesity development in mouse offspring fed a high-fat diet: Impaired lipid metabolism and intestinal dysbiosis. Arch. Toxicol. 2018;92:1847–1860. doi: 10.1007/s00204-018-2177-0. PubMed DOI

Bao J., Liu Y., Li L., Chen M., Liu J., Niu Y., Liu J., Liang Y. Biological effects of new-generation dialkyl phosphinate flame retardants and their hydrolysates in BALB/C mice. Environ. Toxicol. 2017;32:1578–1586. doi: 10.1002/tox.22383. PubMed DOI

Wu B., Liu S., Guo X., Zhang Y., Zhang X., Li M., Cheng S. Responses of Mouse Liver to Dechlorane Plus Exposure by Integrative Transcriptomic and Metabonomic Studies. Environ. Sci. Technol. 2012;46:10758–10764. doi: 10.1021/es301804t. PubMed DOI

Al-Salem A.M., Saquib Q., Al-Khedhairy A.A., Siddiqui M.A., Ahmad J. Tris(2-chloroethyl) phosphate (tcep) elicits hepatotoxicity by activating human cancer pathway genes in hepg2 cells. Toxics. 2020;8:109. doi: 10.3390/toxics8040109. PubMed DOI PMC

Li Z., Tang X., Zhu L., Qi X., Cao G., Lu G. Cytotoxic Screening and Transcriptomics Reveal Insights into the Molecular Mechanisms of Trihexyl Phosphate-Triggered Hepatotoxicity. Environ. Sci. Technol. 2020;54:11464–11475. doi: 10.1021/acs.est.0c03824. PubMed DOI

Blanco J., Mulero M., Domingo J.L., Sanchez D.J. Perinatal Exposure to BDE-99 Causes Decreased Protein Levels of Cyclin D1 via GSK3β Activation and Increased ROS Production in Rat Pup Livers. Toxicol. Sci. 2014;137:491–498. doi: 10.1093/toxsci/kft257. PubMed DOI

Zhu L., Huang X., Li Z., Cao G., Zhu X., She S., Huang T., Lu G. Evaluation of hepatotoxicity induced by 2-ethylhexyldiphenyl phosphate based on transcriptomics and its potential metabolism pathway in human hepatocytes. J. Hazard. Mater. 2021;413:125281. doi: 10.1016/j.jhazmat.2021.125281. PubMed DOI

Zhang Y., Wang X., Chen C., An J., Shang Y., Li H., Xia H., Yu J., Wang C., Liu Y., et al. Regulation of TBBPA-induced oxidative stress on mitochondrial apoptosis in L02cells through the Nrf2 signaling pathway. Chemosphere. 2019;226:463–471. doi: 10.1016/j.chemosphere.2019.03.167. PubMed DOI

Mynster Kronborg T., Frohnert Hansen J., Nielsen C.H., Ramhøj L., Frederiksen M., Vorkamp K., Feldt-Rasmussen U. Effects of the Commercial Flame Retardant Mixture DE-71 on Cytokine Production by Human Immune Cells. PLoS ONE. 2016;11:e0154621. doi: 10.1371/journal.pone.0154621. PubMed DOI PMC

Park H.R., Kamau P.W., Loch-Caruso R. Involvement of reactive oxygen species in brominated diphenyl ether-47-induced inflammatory cytokine release from human extravillous trophoblasts in vitro. Toxicol. Appl. Pharmacol. 2014;274:283–292. doi: 10.1016/j.taap.2013.11.015. PubMed DOI PMC

Yasmin S., Whalen M. Flame retardants, hexabromocyclododecane (HCBD) and tetrabromobisphenol a (TBBPA), alter secretion of tumor necrosis factor alpha (TNFα) from human immune cells. Arch. Toxicol. 2018;92:1483–1494. doi: 10.1007/s00204-018-2156-5. PubMed DOI PMC

Almughamsi H., Whalen M.M. Hexabromocyclododecane and tetrabromobisphenol A alter secretion of interferon gamma (IFN-γ) from human immune cells. Arch. Toxicol. 2016;90:1695–1707. doi: 10.1007/s00204-015-1586-6. PubMed DOI PMC

Koike E., Yanagisawa R., Takano H. Brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, affect proinflammatory protein expression in human bronchial epithelial cells via disruption of intracellular signaling. Toxicol. Vitr. 2016;32:212–219. doi: 10.1016/j.tiv.2015.12.013. PubMed DOI

Verstraete S.G., Wojcicki J.M., Perito E.R., Rosenthal P. Bisphenol a increases risk for presumed non-alcoholic fatty liver disease in Hispanic adolescents in NHANES 2003–2010. Environ. Health. 2018;17:12. doi: 10.1186/s12940-018-0356-3. PubMed DOI PMC

Kim D., Yoo E.R., Li A.A., Cholankeril G., Tighe S.P., Kim W., Harrison S.A., Ahmed A. Elevated urinary bisphenol A levels are associated with non-alcoholic fatty liver disease among adults in the United States. Liver Int. 2019;39:1335–1342. doi: 10.1111/liv.14110. PubMed DOI

Nakagawa Y., Suzuki T., Ishii H., Ogata A. Biotransformation and cytotoxicity of a brominated flame retardant, tetrabromobisphenol A, and its analogues in rat hepatocytes. Xenobiotica. 2007;37:693–708. doi: 10.1080/00498250701397697. PubMed DOI

Wang Y., Zhang W., Li A., Song M. Tetrachlorobisphenol A induced immunosuppression and uterine injury in mice. Ecotoxicol. Environ. Saf. 2021;207:111527. doi: 10.1016/j.ecoenv.2020.111527. PubMed DOI

Dunnick J.K., Morgan D.L., Elmore S.A., Gerrish K., Pandiri A., Ton T.V., Shockley K.R., Merrick B.A. Tetrabromobisphenol A activates the hepatic interferon pathway in rats. Toxicol. Lett. 2017;266:32–41. doi: 10.1016/j.toxlet.2016.11.019. PubMed DOI PMC

Chappell V.A., Janesick A., Blumberg B., Fenton S.E. Tetrabromobisphenol-A Promotes Early Adipogenesis and Lipogenesis in 3T3-L1 Cells. Toxicol. Sci. 2018;166:332–344. doi: 10.1093/toxsci/kfy209. PubMed DOI PMC

Wang X., Wei L., Zhu J., He B., Kong B., Jin Y., Fu Z. Tetrabromoethylcyclohexane (TBECH) exhibits immunotoxicity in murine macrophages. Environ. Toxicol. 2020;35:159–166. doi: 10.1002/tox.22852. PubMed DOI

Jing L., Sun Y., Wang Y., Liang B., Chen T., Zheng D., Zhao X., Zhou X., Sun Z., Shi Z. Cardiovascular toxicity of decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats. Chemosphere. 2019;223:675–685. doi: 10.1016/j.chemosphere.2019.02.115. PubMed DOI

Chen Y., Liu S., Xu H., Zheng H., Bai C., Pan W., Zhou H., Liao M., Huang C., Dong Q. Maternal exposure to low dose BDE209 and Pb mixture induced neurobehavioral anomalies in C57BL/6 male offspring. Toxicology. 2019;418:70–80. doi: 10.1016/j.tox.2019.02.016. PubMed DOI

Zhi H., Wu J.P., Lu L.M., Li Y., Chen X.Y., Tao J., Mai B.X. Decabromodiphenyl ether (BDE-209) enhances foam cell formation in human macrophages via augmenting Toll-like receptor 4-dependent lipid uptake. Food Chem. Toxicol. 2018;121:367–373. doi: 10.1016/j.fct.2018.09.024. PubMed DOI

Li X., Li N., Rao K., Huang Q., Ma M. In Vitro Immunotoxicity of Organophosphate Flame Retardants in Human THP-1-Derived Macrophages. Environ. Sci. Technol. 2020;54:8900–8908. doi: 10.1021/acs.est.0c01152. PubMed DOI

Zhang Z.-F., Zhang Y.-Q., Fan S.-H., Zhuang J., Zheng Y.-L., Lu J., Wu D.-M., Shan Q., Hu B. Troxerutin protects against 2,2,4,4-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD +-depletion. J. Hazard. Mater. 2015;283:98–109. doi: 10.1016/j.jhazmat.2014.09.012. PubMed DOI

Pereira L.C., Souza A.O., Tasso M.J., Oliveira A.M.C., Duarte F.V., Palmeira C.M., Dorta D.J. Exposure to decabromodiphenyl ether (BDE-209) produces mitochondrial dysfunction in rat liver and cell death. J. Toxicol. Environ. Health Part A Curr. Issues. 2017;80:1129–1144. doi: 10.1080/15287394.2017.1357370. PubMed DOI

Liu C., Su G., Giesy J.P., Letcher R.J., Li G., Agrawal I., Li J., Yu L., Wang J., Gong Z. Acute exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) causes hepatic inflammation and leads to hepatotoxicity in zebrafish. Sci. Rep. 2016;6:19045. doi: 10.1038/srep19045. PubMed DOI PMC

Rau M., Schilling A.-K., Meertens J., Hering I., Weiss J., Jurowich C., Kudlich T., Hermanns H.M., Bantel H., Beyersdorf N., et al. Progression from Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis Is Marked by a Higher Frequency of Th17 Cells in the Liver and an Increased Th17/Resting Regulatory T Cell Ratio in Peripheral Blood and in the Liver. J. Immunol. 2016;196:97–105. doi: 10.4049/jimmunol.1501175. PubMed DOI

Ferreyra Solari N.E., Inzaugarat M.E., Baz P., De Matteo E., Lezama C., Galoppo M., Galoppo C., Cherñavsky A.C. The role of innate cells is coupled to a Th1-polarized immune response in pediatric nonalcoholic steatohepatitis. J. Clin. Immunol. 2012;32:611–621. doi: 10.1007/s10875-011-9635-2. PubMed DOI

Watanabe W., Shimizu T., Hino A., Kurokawa M. Effects of decabrominated diphenyl ether (DBDE) on developmental immunotoxicity in offspring mice. Environ. Toxicol. Pharmacol. 2008;26:315–319. doi: 10.1016/j.etap.2008.06.004. PubMed DOI

Li J., Chen Q., Yi J., Lan X., Lu K., Du X., Guo Z., Guo Y., Geng M., Li D., et al. IFN-γ contributes to the hepatic inflammation in HFD-induced nonalcoholic steatohepatitis by STAT1β/TLR2 signaling pathway. Mol. Immunol. 2021;134:118–128. doi: 10.1016/j.molimm.2021.03.005. PubMed DOI

Knight B., Lim R., Yeoh G.C., Olynyk J.K. Interferon-γ exacerbates liver damage, the hepatic progenitor cell response and fibrosis in a mouse model of chronic liver injury. J. Hepatol. 2007;47:826–833. doi: 10.1016/j.jhep.2007.06.022. PubMed DOI

Bhattacharya A., Hegazy A.N., Deigendesch N., Kosack L., Cupovic J., Kandasamy R.K., Hildebrandt A., Merkler D., Kühl A.A., Vilagos B., et al. Superoxide Dismutase 1 Protects Hepatocytes from Type I Interferon-Driven Oxidative Damage. Immunity. 2015;43:974–986. doi: 10.1016/j.immuni.2015.10.013. PubMed DOI PMC

Roh Y.S., Kim J.W., Park S., Shon C., Kim S., Eo S.K., Kwon J.K., Lim C.W., Kim B. Toll-Like Receptor-7 Signaling Promotes Nonalcoholic Steatohepatitis by Inhibiting Regulatory T Cells in Mice. Am. J. Pathol. 2018;188:2574–2588. doi: 10.1016/j.ajpath.2018.07.011. PubMed DOI

Klein T., Fujii M., Sandel J., Shibazaki Y., Wakamatsu K., Mark M., Yoneyama H. Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis. Med. Mol. Morphol. 2014;47:137–149. doi: 10.1007/s00795-013-0053-9. PubMed DOI

Afrin R., Arumugam S., Rahman A., Wahed M.I.I., Karuppagounder V., Harima M., Suzuki H., Miyashita S., Suzuki K., Yoneyama H., et al. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation. Int. Immunopharmacol. 2017;44:174–182. doi: 10.1016/j.intimp.2017.01.016. PubMed DOI

Sharifnia T., Antoun J., Verriere T.G.C., Suarez G., Wattacheril J., Wilson K.T., Peek R.M., Abumrad N.N., Flynn C.R. Hepatic TLR4 signaling in obese NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol. 2015;309:G270–G278. doi: 10.1152/ajpgi.00304.2014. PubMed DOI PMC

Li D., Wang X., Lan X., Li Y., Liu L., Yi J., Li J., Sun Q., Wang Y., Li H., et al. Down-regulation of miR-144 elicits proinflammatory cytokine production by targeting toll-like receptor 2 in nonalcoholic steatohepatitis of high-fat-diet-induced metabolic syndrome E3 rats. Mol. Cell. Endocrinol. 2015;402:1–12. doi: 10.1016/j.mce.2014.12.007. PubMed DOI

Mills E.L., Kelly B., O’Neill L.A.J. Mitochondria are the powerhouses of immunity. Nat. Immunol. 2017;18:488–498. doi: 10.1038/ni.3704. PubMed DOI

Weinberg S.E., Sena L.A., Chandel N.S. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42:406–417. doi: 10.1016/j.immuni.2015.02.002. PubMed DOI PMC

Riley J.S., Tait S.W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21:e49799. doi: 10.15252/embr.201949799. PubMed DOI PMC

Walker M.A., Volpi S., Sims K.B., Walter J.E., Traggiai E. Powering the immune system: Mitochondria in immune function and deficiency. J. Immunol. Res. 2014;2014:164309. doi: 10.1155/2014/164309. PubMed DOI PMC

Dutta S., Das N., Mukherjee P. Picking up a Fight: Fine Tuning Mitochondrial Innate Immune Defenses Against RNA Viruses. Front. Microbiol. 2020;11:1990. doi: 10.3389/fmicb.2020.01990. PubMed DOI PMC

Backer J.M., Weinstein I.B. Interaction of Benzo(a)pyrene and Its Dihydrodiol-Epoxide Derivative with Nuclear and Mitochondrial DNA in C3H10T½ Cell Cultures. Cancer Res. 1982;42:2764–2769. PubMed

Zolkipli-Cunningham Z., Falk M.J. Clinical effects of chemical exposures on mitochondrial function. Toxicology. 2017;391:90–99. doi: 10.1016/j.tox.2017.07.009. PubMed DOI PMC

Yuan S., Zhu K., Ma M., Zhu X., Rao K., Wang Z. In vitro oxidative stress, mitochondrial impairment and G1 phase cell cycle arrest induced by alkyl-phosphorus-containing flame retardants. Chemosphere. 2020;248:126026. doi: 10.1016/j.chemosphere.2020.126026. PubMed DOI

Huang C., Li N., Yuan S., Ji X., Ma M., Rao K., Wang Z. Aryl- and alkyl-phosphorus-containing flame retardants induced mitochondrial impairment and cell death in Chinese hamster ovary (CHO-k1) cells. Environ. Pollut. 2017;230:775–786. doi: 10.1016/j.envpol.2017.07.024. PubMed DOI

Sun M.H., Li X.H., Xu Y., Xu Y., Sun S.C. Exposure to PBDE47 affects mouse oocyte quality via mitochondria dysfunction-induced oxidative stress and apoptosis. Ecotoxicol. Environ. Saf. 2020;198:110662. doi: 10.1016/j.ecoenv.2020.110662. PubMed DOI

Le Y., Shen H., Yang Z., Lu D., Wang C. Comprehensive analysis of organophosphorus flame retardant-induced mitochondrial abnormalities: Potential role in lipid accumulation. Environ. Pollut. 2021;274:116541. doi: 10.1016/j.envpol.2021.116541. PubMed DOI

Pessayre D., Fromenty B. NASH: A mitochondrial disease. J. Hepatol. 2005;42:928–940. doi: 10.1016/j.jhep.2005.03.004. PubMed DOI

Mao K., Ji F., Breen P., Sewell A., Han M., Sadreyev R., Correspondence G.R. Mitochondrial Dysfunction in C. elegans Activates Mitochondrial Relocalization and Nuclear Hormone Receptor-Dependent Detoxification Genes. Cell Metab. 2019;29:1182–1191.e4. doi: 10.1016/j.cmet.2019.01.022. PubMed DOI PMC

Wei Y., Rector R.S., Thyfault J.P., Ibdah J.A. Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J. Gastroenterol. 2008;14:193–199. doi: 10.3748/wjg.14.193. PubMed DOI PMC

Chen Q., Sun L., Chen Z.J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 2016;17:1142–1149. doi: 10.1038/ni.3558. PubMed DOI

Bai J., Liu F. The cGAS-cGAMP-STING pathway: A molecular link between immunity and metabolism. Diabetes. 2019;68:1099–1108. doi: 10.2337/dbi18-0052. PubMed DOI PMC

Shu H.B., Wang Y.Y. Adding to the STING. Immunity. 2014;41:871–873. doi: 10.1016/j.immuni.2014.12.002. PubMed DOI

Garcia-Martinez I., Santoro N., Chen Y., Hoque R., Ouyang X., Caprio S., Shlomchik M.J., Coffman R.L., Candia A., Mehal W.Z. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J. Clin. Investig. 2016;126:859–864. doi: 10.1172/JCI83885. PubMed DOI PMC

Yu Y., Liu Y., An W., Song J., Zhang Y., Zhao X. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. J. Clin. Investig. 2019;129:546–555. doi: 10.1172/JCI121842. PubMed DOI PMC

Henriksen E.J., Diamond-Stanic M.K., Marchionne E.M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med. 2011;51:993–999. doi: 10.1016/j.freeradbiomed.2010.12.005. PubMed DOI PMC

Dodson R.E., Van Den Eede N., Covaci A., Perovich L.J., Brody J.G., Rudel R.A. Urinary biomonitoring of phosphate flame retardants: Levels in california adults and recommendations for future studies. Environ. Sci. Technol. 2014;48:13625–13633. doi: 10.1021/es503445c. PubMed DOI PMC

Zhang Q., Ji S., Chai L., Yang F., Zhao M., Liu W., Schu G., Ji L. Metabolic Mechanism of Aryl Phosphorus Flame Retardants by Cytochromes P450: A Combined Experimental and Computational Study on Triphenyl Phosphate. Environ. Sci. Technol. 2018;52:14411–14421. doi: 10.1021/acs.est.8b03965. PubMed DOI

Zota A.R., Mitro S.D., Robinson J.F., Hamilton E.G., Park J.S., Parry E., Zoeller R.T., Woodruff T.J. Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs) in maternal and fetal tissues, and associations with fetal cytochrome P450 gene expression. Environ. Int. 2018;112:269–278. doi: 10.1016/j.envint.2017.12.030. PubMed DOI PMC

Schattenberg J.M., Czaja M.J. Regulation of the effects of CYP2E1-induced oxidative stress by JNK signaling. Redox Biol. 2014;3:7–15. doi: 10.1016/j.redox.2014.09.004. PubMed DOI PMC

Aubert J., Begriche K., Knockaert L., Robin M.A., Fromenty B. Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: Mechanisms and pathophysiological role. Clin. Res. Hepatol. Gastroenterol. 2011;35:630–637. doi: 10.1016/j.clinre.2011.04.015. PubMed DOI

Fery Y., Buschauer I., Salzig C., Lang P., Schrenk D. Technical pentabromodiphenyl ether and hexabromocyclododecane as activators of the pregnane-X-receptor (PXR) Toxicology. 2009;264:45–51. doi: 10.1016/j.tox.2009.07.009. PubMed DOI

Pacyniak E.K., Cheng X., Cunningham M.L., Crofton K., Klaassen C.D., Guo G.L. The flame retardants, polybrominated diphenyl ethers, are pregnane X receptor activators. Toxicol. Sci. 2007;97:94–102. doi: 10.1093/toxsci/kfm025. PubMed DOI

Lee H.K., Pak Y.K. Mitochondrial Dysfunction Caused by Drugs and Environmental Toxicants. Volume 2. John Wiley & Sons Inc.; Hoboken, NJ, USA: 2018. Persistent Organic Pollutants, Mitochondrial Dysfunction, and Metabolic Syndrome; pp. 691–707.

Zhou P.K., Huang R.X. Targeting of the respiratory chain by toxicants: Beyond the toxicities to mitochondrial morphology. Toxicol. Res. Viewp. Toxicol. Res. 2018;7:1008–1011. doi: 10.1039/c8tx00207j. PubMed DOI PMC

Meyer J.N., Leung M.C.K., Rooney J.P., Sendoel A., Hengartner M.O., Kisby G.E., Bess A.S. Mitochondria as a Target of environmental Toxicants. Toxicol. Sci. 2013;134:1–17. doi: 10.1093/toxsci/kft102. PubMed DOI PMC

Waxman D.J. P450 gene induction by structurally diverse xenochemicals: Central role of nuclear receptors CAR, PXR, and PPAR. Arch. Biochem. Biophys. 1999;369:11–23. doi: 10.1006/abbi.1999.1351. PubMed DOI

Ghosh C., Hossain M., Solanki J., Najm I.M., Marchi N., Janigro D. Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells. Epilepsia. 2017;58:576–585. doi: 10.1111/epi.13703. PubMed DOI PMC

Guo Z., Li M., Han B., Qi X. Association of non-alcoholic fatty liver disease with thyroid function: A systematic review and meta-analysis. Dig. Liver Dis. 2018;50:1153–1162. doi: 10.1016/j.dld.2018.08.012. PubMed DOI

Tanase D.M., Gosav E.M., Neculae E., Costea C.F., Ciocoiu M., Hurjui L.L., Tarniceriu C.C., Floria M. Hypothyroidism-induced nonalcoholic fatty liver disease (Hin): Mechanisms and emerging therapeutic options. Int. J. Mol. Sci. 2020;21:5927. doi: 10.3390/ijms21165927. PubMed DOI PMC

Meerts I.A.T.M., Van Zanden J.J., Luijks E.A.C., Van Leeuwen-Bol I., Marsh G., Jakobsson E., Bergman Å., Brouwer A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in Vitro. Toxicol. Sci. 2000;56:95–104. doi: 10.1093/toxsci/56.1.95. PubMed DOI

Zhang Q., Ji C., Yin X., Yan L., Lu M., Zhao M. Thyroid hormone-disrupting activity and ecological risk assessment of phosphorus-containing flame retardants by in vitro, in vivo and in silico approaches. Environ. Pollut. 2016;210:27–33. doi: 10.1016/j.envpol.2015.11.051. PubMed DOI

Yan F., Wang Q., Lu M., Chen W., Song Y., Jing F., Guan Y., Wang L., Lin Y., Bo T., et al. Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity. J. Hepatol. 2014;61:1358–1364. doi: 10.1016/j.jhep.2014.06.037. PubMed DOI

Song Y., Xu C., Shao S., Liu J., Xing W., Xu J., Qin C., Li C., Hu B., Yi S., et al. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J. Hepatol. 2015;62:1171–1179. doi: 10.1016/j.jhep.2014.12.006. PubMed DOI

Wang H., Chen J., Hollister K., Sowers L.C., Forman B.M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell. 1999;3:543–553. doi: 10.1016/S1097-2765(00)80348-2. PubMed DOI

Teodoro J.S., Rolo A.P., Palmeira C.M. Hepatic FXR: Key regulator of whole-body energy metabolism. Trends Endocrinol. Metab. 2011;22:458–466. doi: 10.1016/j.tem.2011.07.002. PubMed DOI

Mullur R., Liu Y.Y., Brent G.A. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014;94:355–382. doi: 10.1152/physrev.00030.2013. PubMed DOI PMC

Liu Y.Y., Brent G.A. Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation. Trends Endocrinol. Metab. 2010;21:166–173. doi: 10.1016/j.tem.2009.11.004. PubMed DOI PMC

Vinken M. Adverse Outcome Pathways and Drug-Induced Liver Injury Testing. Chem. Res. Toxicol. 2015;28:1391–1397. doi: 10.1021/acs.chemrestox.5b00208. PubMed DOI PMC

Cave M.C., Clair H.B., Hardesty J.E., Falkner K.C., Feng W., Clark B.J., Sidey J., Shi H., Aqel B.A., McClain C.J., et al. Nuclear receptors and nonalcoholic fatty liver disease. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2016;1859:1083–1099. doi: 10.1016/j.bbagrm.2016.03.002. PubMed DOI PMC

Semple S. Assessing occupational and environmental exposure. Occup. Med. 2005;55:419–424. doi: 10.1093/occmed/kqi135. PubMed DOI

Ingle M.E., Watkins D., Rosario Z., VélezVega C.M., Calafat A.M., Ospina M., Ferguson K.K., Cordero J.F., Alshawabkeh A., Meeker J.D. An exploratory analysis of urinary organophosphate ester metabolites and oxidative stress among pregnant women in Puerto Rico. Sci. Total Environ. 2020;703:134798. doi: 10.1016/j.scitotenv.2019.134798. PubMed DOI PMC

Yao Y., Li M., Pan L., Duan Y., Duan X., Li Y., Sun H. Exposure to organophosphate ester flame retardants and plasticizers during pregnancy: Thyroid endocrine disruption and mediation role of oxidative stress. Environ. Int. 2021;146:106215. doi: 10.1016/j.envint.2020.106215. PubMed DOI

Yuan Y., Meeker J.D., Ferguson K.K. Serum polybrominated diphenyl ether (PBDE) concentrations in relation to biomarkers of oxidative stress and inflammation: The National Health and Nutrition Examination Survey 2003–2004. Sci. Total Environ. 2017;575:400–405. doi: 10.1016/j.scitotenv.2016.10.028. PubMed DOI PMC

Matsubara K., Nakamura N., Sanoh S., Ohta S., Kitamura S., Uramaru N., Miyagawa S., Iguchi T., Fujimoto N. Altered expression of the Olr59, Ethe1, and Slc10a2 genes in the liver of F344 rats by neonatal thyroid hormone disruption. J. Appl. Toxicol. 2017;37:1030–1035. doi: 10.1002/jat.3452. PubMed DOI

Walley S.N., Krumm E.A., Yasrebi A., Kwiecinski J., Wright V., Baker C., Roepke T.A. Maternal organophosphate flame-retardant exposure alters offspring energy and glucose homeostasis in a sexually dimorphic manner in mice. Appl. Toxicol. 2021;41:572–586. doi: 10.1002/jat.4066. PubMed DOI PMC

Jurenka J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev. 2009;14:141–153. PubMed

Wree A., Broderick L., Canbay A., Hoffman H.M., Feldstein A.E. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat. Rev. Gastroenterol. Hepatol. 2013;10:627–636. PubMed

Joshi-Barve S., Kirpich I., Cave M.C., Marsano L.S., McClain C.J. Alcoholic, Nonalcoholic, and Toxicant-Associated Steatohepatitis: Mechanistic Similarities and Differences. Cell. Mol. Gastroenterol. Hepatol. 2015;1:356–367. PubMed PMC

Treviño L.S., Katz T.A. Endocrine disruptors and developmental origins of nonalcoholic fatty liver disease. Endocrinology. 2018;159:20–31. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...