Water-Soluble Copper Ink for the Inkjet Fabrication of Flexible Electronic Components
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-17457S
Grantová Agentura České Republiky
ID LM2015041
Central European Institute of Technology
PubMed
33925841
PubMed Central
PMC8123473
DOI
10.3390/ma14092218
PII: ma14092218
Knihovny.cz E-zdroje
- Klíčová slova
- conductivity, organometallic compound, thermogravimetry,
- Publikační typ
- časopisecké články MeSH
The aim of this work is preparation and investigation of copper conductive paths by printing with a different type of functional ink. The solutions based on copper-containing complex compounds were used as inks instead of dispersions of metal nanoparticles. Thermal characteristics of synthesized precursors were studied by thermogravimetry in an argon atmosphere. Based on the comparison of decomposition temperature, the dimethylamine complex of copper formate was found to be more suitable precursor for the formation of copper layers. Structure and performance of this compound was studied in detail by X-ray diffraction, test of wettability, printing on flexible substrate, and electrical measurements.
Zobrazit více v PubMed
Suganuma K. Introduction to Printed Electronics. Springer Science and Business Media LLC; Berlin, Germany: 2014.
Berggren M., Nilsson D., Robinson N.D. Organic materials for printed electronics. Nat. Mater. 2007;6:3–5. doi: 10.1038/nmat1817. PubMed DOI
Perelaer J., Smith P.J., Mager D., Soltman D., Volkman S.K., Subramanian V., Korvink J.G., Schubert U.S. Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 2010;20:8446–8453. doi: 10.1039/c0jm00264j. DOI
Kamyshny A., Magdassi S. Conductive Nanomaterials for Printed Electronics. Small. 2014;10:3515–3535. doi: 10.1002/smll.201303000. PubMed DOI
Chen C.-W., Kang H.-W., Hsiao S.-Y., Yang P.-F., Chiang K.-M., Lin H.-W. Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition. Adv. Mater. 2014;26:6647–6652. doi: 10.1002/adma.201402461. PubMed DOI
Faraji S., Ani F.N. The development supercapacitor from activated carbon by electroless plating—A review. Renew. Sustain. Energy Rev. 2015;42:823–834. doi: 10.1016/j.rser.2014.10.068. DOI
Lee H.-B., Bae C.-W., Duy L.T., Sohn I.-Y., Kim D.-I., Song Y.-J., Kim Y.-J., Lee N.-E. Mogul-Patterned Elastomeric Substrate for Stretchable Electronics. Adv. Mater. 2016;28:3069–3077. doi: 10.1002/adma.201505218. PubMed DOI
Russo A., Ahn B.Y., Adams J.J., Duoss E.B., Bernhard J.T., Lewis J.A. Pen-on-Paper Flexible Electronics. Adv. Mater. 2011;23:3426–3430. doi: 10.1002/adma.201101328. PubMed DOI
Fukuda K., Sekine T., Kumaki D., Tokito S. Profile Control of Inkjet Printed Silver Electrodes and Their Application to Organic Transistors. ACS Appl. Mater. Interfaces. 2013;5:3916–3920. doi: 10.1021/am400632s. PubMed DOI
Minari T., Kanehara Y., Liu C., Sakamoto K., Yasuda T., Yaguchi A., Tsukada S., Kashizaki K., Kanehara M. Room-Temperature Printing of Organic Thin-Film Transistors with π-Junction Gold Nanoparticles. Adv. Funct. Mater. 2014;24:4886–4892. doi: 10.1002/adfm.201400169. DOI
Fukuda K., Someya T. Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv. Mater. 2017;29:1602736. doi: 10.1002/adma.201602736. PubMed DOI
Cui Z. Printed Electronics: Materials, Technologies and Applications. John Wiley & Sons; Singapore: 2016.
Kamyshny A., Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem. Soc. Rev. 2018;48:1712–1740. doi: 10.1039/C8CS00738A. PubMed DOI
Grouchko M., Kamyshny A., Mihailescu C.F., Anghel D.F., Magdassi S. Conductive inks with a Built-In mechanism that enables sintering at room temperature. ACS Nano. 2011;5:3354–3359. doi: 10.1021/nn2005848. PubMed DOI
Li W., Zhang H., Gao Y., Jiu J., Li C.-F., Chen C., Hu D., Goya Y., Wang Y., Koga H., et al. Highly reliable and highly conductive submicron Cu particle patterns fabricated by low temperature heat-welding and subsequent flash light sinter-reinforcement. J. Mater. Chem. C. 2017;5:1155–1164. doi: 10.1039/C6TC04892G. DOI
Pischiutta M., Fondriest M., Demurtas M., Magnoni F., Di Toron G., Rovelli A. Structural control on the directional amplification of seismic noise (campo imperatore, central Italy) Earth Planet Sci. Lett. 2017;471:10–18. doi: 10.1016/j.epsl.2017.04.017. DOI
Kim S.-G., Terashi Y., Purwanto A., Okuyama K. Synthesis and film deposition of Ni nanoparticles for base metal electrode applications. Colloids Surf. A Phys. Eng. Asp. 2009;337:96–101. doi: 10.1016/j.colsurfa.2008.12.022. DOI
Park B.K., Kim D., Jeong S., Moon J., Kim J.S. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Film. 2007;515:7706–7711. doi: 10.1016/j.tsf.2006.11.142. DOI
Magdassi S., Grouchko M., Kamyshny A. Copper Nanoparticles for Printed Electronics: Routes towards Achieving Oxidation Stability. Materials. 2010;3:4626–4638. doi: 10.3390/ma3094626. PubMed DOI PMC
Hokita Y., Kanzaki M., Sugiyama T., Arakawa R., Kawasaki H. High-Concentration Synthesis of Sub-10-nm Copper Nanoparticles for Application to Conductive Nanoinks. ACS Appl. Mater. Interfaces. 2015;7:19382–19389. doi: 10.1021/acsami.5b05542. PubMed DOI
Li W., Sun Q., Li L., Jiu J., Liu X.-Y., Kanehara M., Minari T., Suganuma K. The rise of conductive copper inks: Challenges and perspectives. Appl. Mater. Today. 2020;18:100451. doi: 10.1016/j.apmt.2019.100451. DOI
Jeong S., Woo K., Kim D., Lim S., Kim J.S., Shin H., Xia Y., Moon J. Controlling the Thickness of the Surface Oxide Layer on Cu Nanoparticles for the Fabrication of Conductive Structures by Ink-Jet Printing. Adv. Funct. Mater. 2008;18:679–686. doi: 10.1002/adfm.200700902. DOI
Gawande M.B., Goswami A., Felpin F.-X., Asefa T., Huang X., Silva R., Zou X., Zboril R., Varma R.S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016;116:3722–3811. doi: 10.1021/acs.chemrev.5b00482. PubMed DOI
Venkata A.K., Rao V.K.R., Karthik P., Singh S.P. Copper conductive inks: Synthesis and utilization in flexible electronics. RSC Adv. 2015;5:63985–64030. doi: 10.1039/c5ra08205f. DOI
Shabanov N.S., Asvarov A.S., Chiolerio A., Rabadanov K. Peroxy-Titanium Complex-based inks for low temperature compliant anatase thin films. J. Colloid Interface Sci. 2017;498:306. doi: 10.1016/j.jcis.2017.03.075. PubMed DOI
Raghavachari K., Trucks G.W. Highly correlated systems. Excitation energies of first row transition metals Sc–Cu. J. Chem. Phys. 1989;91:1062–1065. doi: 10.1063/1.457230. DOI
Wiberg K.B. Basis set effects on calculated geometries: 6-311++G** vs. aug-cc-pVDZ. J. Comput. Chem. 2004;25:1342–1346. doi: 10.1002/jcc.20058. PubMed DOI
Ganesan A., Dreyer J., Wang F., Akola J., Larrucea J. Density functional study of Cu2+-phenylalanine complex under micro-solvation environment. J. Mol. Graph. Model. 2013;45:180–191. doi: 10.1016/j.jmgm.2013.08.015. PubMed DOI
Krishnan B., Ramanujam P. Raman and infrared spectra of copper formate tetrahydrate. Spectrochim. Acta Part A Mol. Spectrosc. 1972;28:2227–2231. doi: 10.1016/0584-8539(72)80196-X. DOI
Finch A., Hyams I., Steele D. The vibrational spectra of compounds containing the dimethylamino grouping. J. Mol. Spectrosc. 1965;16:103–114. doi: 10.1016/0022-2852(65)90089-5. DOI