Water-Soluble Copper Ink for the Inkjet Fabrication of Flexible Electronic Components

. 2021 Apr 26 ; 14 (9) : . [epub] 20210426

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33925841

Grantová podpora
19-17457S Grantová Agentura České Republiky
ID LM2015041 Central European Institute of Technology

The aim of this work is preparation and investigation of copper conductive paths by printing with a different type of functional ink. The solutions based on copper-containing complex compounds were used as inks instead of dispersions of metal nanoparticles. Thermal characteristics of synthesized precursors were studied by thermogravimetry in an argon atmosphere. Based on the comparison of decomposition temperature, the dimethylamine complex of copper formate was found to be more suitable precursor for the formation of copper layers. Structure and performance of this compound was studied in detail by X-ray diffraction, test of wettability, printing on flexible substrate, and electrical measurements.

Zobrazit více v PubMed

Suganuma K. Introduction to Printed Electronics. Springer Science and Business Media LLC; Berlin, Germany: 2014.

Berggren M., Nilsson D., Robinson N.D. Organic materials for printed electronics. Nat. Mater. 2007;6:3–5. doi: 10.1038/nmat1817. PubMed DOI

Perelaer J., Smith P.J., Mager D., Soltman D., Volkman S.K., Subramanian V., Korvink J.G., Schubert U.S. Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 2010;20:8446–8453. doi: 10.1039/c0jm00264j. DOI

Kamyshny A., Magdassi S. Conductive Nanomaterials for Printed Electronics. Small. 2014;10:3515–3535. doi: 10.1002/smll.201303000. PubMed DOI

Chen C.-W., Kang H.-W., Hsiao S.-Y., Yang P.-F., Chiang K.-M., Lin H.-W. Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition. Adv. Mater. 2014;26:6647–6652. doi: 10.1002/adma.201402461. PubMed DOI

Faraji S., Ani F.N. The development supercapacitor from activated carbon by electroless plating—A review. Renew. Sustain. Energy Rev. 2015;42:823–834. doi: 10.1016/j.rser.2014.10.068. DOI

Lee H.-B., Bae C.-W., Duy L.T., Sohn I.-Y., Kim D.-I., Song Y.-J., Kim Y.-J., Lee N.-E. Mogul-Patterned Elastomeric Substrate for Stretchable Electronics. Adv. Mater. 2016;28:3069–3077. doi: 10.1002/adma.201505218. PubMed DOI

Russo A., Ahn B.Y., Adams J.J., Duoss E.B., Bernhard J.T., Lewis J.A. Pen-on-Paper Flexible Electronics. Adv. Mater. 2011;23:3426–3430. doi: 10.1002/adma.201101328. PubMed DOI

Fukuda K., Sekine T., Kumaki D., Tokito S. Profile Control of Inkjet Printed Silver Electrodes and Their Application to Organic Transistors. ACS Appl. Mater. Interfaces. 2013;5:3916–3920. doi: 10.1021/am400632s. PubMed DOI

Minari T., Kanehara Y., Liu C., Sakamoto K., Yasuda T., Yaguchi A., Tsukada S., Kashizaki K., Kanehara M. Room-Temperature Printing of Organic Thin-Film Transistors with π-Junction Gold Nanoparticles. Adv. Funct. Mater. 2014;24:4886–4892. doi: 10.1002/adfm.201400169. DOI

Fukuda K., Someya T. Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv. Mater. 2017;29:1602736. doi: 10.1002/adma.201602736. PubMed DOI

Cui Z. Printed Electronics: Materials, Technologies and Applications. John Wiley & Sons; Singapore: 2016.

Kamyshny A., Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem. Soc. Rev. 2018;48:1712–1740. doi: 10.1039/C8CS00738A. PubMed DOI

Grouchko M., Kamyshny A., Mihailescu C.F., Anghel D.F., Magdassi S. Conductive inks with a Built-In mechanism that enables sintering at room temperature. ACS Nano. 2011;5:3354–3359. doi: 10.1021/nn2005848. PubMed DOI

Li W., Zhang H., Gao Y., Jiu J., Li C.-F., Chen C., Hu D., Goya Y., Wang Y., Koga H., et al. Highly reliable and highly conductive submicron Cu particle patterns fabricated by low temperature heat-welding and subsequent flash light sinter-reinforcement. J. Mater. Chem. C. 2017;5:1155–1164. doi: 10.1039/C6TC04892G. DOI

Pischiutta M., Fondriest M., Demurtas M., Magnoni F., Di Toron G., Rovelli A. Structural control on the directional amplification of seismic noise (campo imperatore, central Italy) Earth Planet Sci. Lett. 2017;471:10–18. doi: 10.1016/j.epsl.2017.04.017. DOI

Kim S.-G., Terashi Y., Purwanto A., Okuyama K. Synthesis and film deposition of Ni nanoparticles for base metal electrode applications. Colloids Surf. A Phys. Eng. Asp. 2009;337:96–101. doi: 10.1016/j.colsurfa.2008.12.022. DOI

Park B.K., Kim D., Jeong S., Moon J., Kim J.S. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Film. 2007;515:7706–7711. doi: 10.1016/j.tsf.2006.11.142. DOI

Magdassi S., Grouchko M., Kamyshny A. Copper Nanoparticles for Printed Electronics: Routes towards Achieving Oxidation Stability. Materials. 2010;3:4626–4638. doi: 10.3390/ma3094626. PubMed DOI PMC

Hokita Y., Kanzaki M., Sugiyama T., Arakawa R., Kawasaki H. High-Concentration Synthesis of Sub-10-nm Copper Nanoparticles for Application to Conductive Nanoinks. ACS Appl. Mater. Interfaces. 2015;7:19382–19389. doi: 10.1021/acsami.5b05542. PubMed DOI

Li W., Sun Q., Li L., Jiu J., Liu X.-Y., Kanehara M., Minari T., Suganuma K. The rise of conductive copper inks: Challenges and perspectives. Appl. Mater. Today. 2020;18:100451. doi: 10.1016/j.apmt.2019.100451. DOI

Jeong S., Woo K., Kim D., Lim S., Kim J.S., Shin H., Xia Y., Moon J. Controlling the Thickness of the Surface Oxide Layer on Cu Nanoparticles for the Fabrication of Conductive Structures by Ink-Jet Printing. Adv. Funct. Mater. 2008;18:679–686. doi: 10.1002/adfm.200700902. DOI

Gawande M.B., Goswami A., Felpin F.-X., Asefa T., Huang X., Silva R., Zou X., Zboril R., Varma R.S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016;116:3722–3811. doi: 10.1021/acs.chemrev.5b00482. PubMed DOI

Venkata A.K., Rao V.K.R., Karthik P., Singh S.P. Copper conductive inks: Synthesis and utilization in flexible electronics. RSC Adv. 2015;5:63985–64030. doi: 10.1039/c5ra08205f. DOI

Shabanov N.S., Asvarov A.S., Chiolerio A., Rabadanov K. Peroxy-Titanium Complex-based inks for low temperature compliant anatase thin films. J. Colloid Interface Sci. 2017;498:306. doi: 10.1016/j.jcis.2017.03.075. PubMed DOI

Raghavachari K., Trucks G.W. Highly correlated systems. Excitation energies of first row transition metals Sc–Cu. J. Chem. Phys. 1989;91:1062–1065. doi: 10.1063/1.457230. DOI

Wiberg K.B. Basis set effects on calculated geometries: 6-311++G** vs. aug-cc-pVDZ. J. Comput. Chem. 2004;25:1342–1346. doi: 10.1002/jcc.20058. PubMed DOI

Ganesan A., Dreyer J., Wang F., Akola J., Larrucea J. Density functional study of Cu2+-phenylalanine complex under micro-solvation environment. J. Mol. Graph. Model. 2013;45:180–191. doi: 10.1016/j.jmgm.2013.08.015. PubMed DOI

Krishnan B., Ramanujam P. Raman and infrared spectra of copper formate tetrahydrate. Spectrochim. Acta Part A Mol. Spectrosc. 1972;28:2227–2231. doi: 10.1016/0584-8539(72)80196-X. DOI

Finch A., Hyams I., Steele D. The vibrational spectra of compounds containing the dimethylamino grouping. J. Mol. Spectrosc. 1965;16:103–114. doi: 10.1016/0022-2852(65)90089-5. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...