Image Processing in Cryo-Electron Microscopy of Single Particles: The Power of Combining Methods
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- Cryo-electron microscopy, Image processing, Scipion, Single particle,
- MeSH
- Algorithms * MeSH
- Cryoelectron Microscopy methods MeSH
- Macromolecular Substances ultrastructure MeSH
- Molecular Biology methods MeSH
- Image Processing, Computer-Assisted methods MeSH
- Workflow MeSH
- Computational Biology MeSH
- Single Molecule Imaging methods MeSH
- Imaging, Three-Dimensional methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Macromolecular Substances MeSH
Cryo-electron microscopy has established as a mature structural biology technique to elucidate the three-dimensional structure of biological macromolecules. The Coulomb potential of the sample is imaged by an electron beam, and fast semi-conductor detectors produce movies of the sample under study. These movies have to be further processed by a whole pipeline of image-processing algorithms that produce the final structure of the macromolecule. In this chapter, we illustrate this whole processing pipeline putting in value the strength of "meta algorithms," which are the combination of several algorithms, each one with different mathematical rationale, in order to distinguish correctly from incorrectly estimated parameters. We show how this strategy leads to superior performance of the whole pipeline as well as more confident assessments about the reconstructed structures. The "meta algorithms" strategy is common to many fields and, in particular, it has provided excellent results in bioinformatics. We illustrate this combination using the workflow engine, Scipion.
See more in PubMed
Benjin X, Ling L (2020) Developments, applications, and prospects of cryo-electron microscopy. Protein Sci 29:872–882 PubMed DOI
Lyumkis D (2019) Challenges and opportunities in cryo-em single-particle analysis. J Biol Chem 294:5181–5197 PubMed DOI PMC
Eisenstein M (2018) Drug designers embrace cryo-EM. Nat Biotechnol 36:557–558 PubMed DOI
Scapin G, Potter CS, Carragher B (2018) Cryo-em for small molecules discovery, design, understanding, and application. Cell Chem Biol 25:1318–1325 PubMed DOI PMC
Saur M, Hartshorn MJ, Dong J, Reeks J et al (2019) Fragment-based drug discovery using cryo-em Drug discovery today. doi: https://doi.org/10.1016/j.drudis.2019.12.006
Jonic S (2017) Computational methods for analyzing conformational variability of macromolecular complexes from cryo-electron microscopy images. Curr Opin Struct Biol 43:114–121 PubMed DOI
Sorzano COS, Jiménez A, Mota J, Vilas JL et al (2019) Survey of the analysis of continuous conformational variability of biological macromolecules by electron microscopy. Acta Crystallogr Sect F, Struct Biol Commun 75:19–32 DOI
Arnold SA, Müller SA, Schmidli C et al (2018) Miniaturizing EM sample preparation: opportunities, challenges, and “visual proteomics”. Proteomics 18:e1700176 PubMed DOI
Faruqi AR, McMullan G (2018) Direct imaging detectors for electron microscopy. Nucl Instrum Methods Phys Res, Sect A 878:180–190 DOI
Vilas JL, Gómez-Blanco J, Conesa P et al (2018) MonoRes: automatic and unbiased estimation of local resolution for electron microscopy maps. Structure 26:337–344 PubMed DOI
de la Rosa-Trevín JM, Quintana A, Del Cano L et al (2016) Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy. J Struct Biol 195:93–99 PubMed DOI
Wang Z, Hryc CF, Bammes B et al (2014) An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nat Commun 5:4808 PubMed DOI PMC
Heymann JB, Marabini R, Kazemi M et al (2018) The first single particle analysis map challenge: a summary of the assessments. J Struct Biol 204:291–300 PubMed DOI PMC
Sorzano COS, Vargas J, Oton J et al (2017) A review of resolution measures and related aspects in 3D electron microscopy. Prog Biophys Mol Biol 124:1–30 PubMed DOI
Vilas JL, Tagare HD, Vargas J et al (2020) Measuring local-directional resolution and local anisotropy in cryo-EM maps. Nat Commun 11:55 PubMed DOI PMC
Ramírez-Aportela E, Mota J, Conesa P et al (2019) Deep-res: a new deep-learning- and aspect-based local resolution method for electron-microscopy maps. IUCRj 6:1054–1063 PubMed DOI PMC
Sorzano COS, Fernández-Giménez E, Peredo-Robinson V et al (2018) Blind estimation of DED camera gain in electron microscopy. J Struct Biol 203:90–93 PubMed DOI
Li X, Mooney P, Zheng S, Booth CR et al (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590 PubMed DOI PMC
Zheng SQ, Palovcak E, Armache JP et al (2017) Motion- cor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332 PubMed DOI PMC
Abrishami V, Vargas J, Li X, Cheng Y et al (2015) Alignment of direct detection device micrographs using a robust optical flow approach. J Struct Biol 189:163–176 PubMed DOI
Tegunov D, Cramer P (2019) Real-time cryo-electron microscopy data preprocessing with warp. Nat Methods 16:1146–1152 PubMed DOI PMC
de la Rosa-Trevín JM, Otón J, Marabini R et al (2013) Xmipp 3.0: an improved software suite for image processing in electron microscopy. J Struct Biol 184(2):321–328 PubMed DOI
Sorzano COS, Jonic S, Núñez Ramírez R et al (2007) Fast, robust and accurate determination of transmission electron microscopy contrast transfer function. J Struct Biol 160:249–262 PubMed DOI
Zhang K (2016) Gctf: real-time ctf determination and correction. J Struct Biol 193:1–12 PubMed DOI PMC
Rohou A, Grigorieff N (2015) Ctffind4: fast and accurate defocus estimation from electron micrographs. J Struct Biol 192:216–221 PubMed DOI PMC
Maluenda D, Majtner T, Horvath P et al (2019) Flexible workflows for on-the-fly electron-microscopy single-particle image processing using scipion. Acta Crystallogr Sect D, Struct Biol 75:882–894 DOI
Marabini R, Carragher B, Chen S et al (2015) Ctf challenge: result summary. J Struct Biol 190:348–359 PubMed DOI PMC
Voss NR, Yoshioka CK, Radermacher M et al (2009) Dog picker and tiltpicker: software tools to facilitate particle selection in single particle electron microscopy. J Struct Biol 166(2):205–213 PubMed DOI PMC
Scheres SHW (2015) Semi-automated selection of cryo-em particles in relion-1.3. J Struct Biol 189:114–122 PubMed DOI PMC
Abrishami V, Zaldívar-Peraza A, de la Rosa-Trevín JM et al (2013) A pattern matching approach to the automatic selection of particles from low-contrast electron micrographs. Bioinformatics 29:2460–2468 PubMed DOI
Bepler T, Morin A, Rapp M, Brasch J et al (2019) Topaz: a positive-unlabeled convolutional neural network cryoem particle picker that can pick any size and shape particle. Microsc Microanal 25:986–987 DOI
Wagner T, Merino F, Stabrin M et al (2019) Sphire-cryolo is a fast and accurate fully automated particle picker for cryo-EM. Commun Biol 2:218 PubMed DOI PMC
Sanchez-Garcia R, Segura J, Maluenda D et al (2018) Deep consensus, a deep learning-based approach for particle pruning in cryo-electron microscopy. IUCrJ 5:854–865 PubMed DOI PMC
Sánchez-García R, Segura J, Maluenda D et al (2020) Micrograph cleaner: a python package for cryo-EM micrograph cleaning using deep learning. bioRxiv. https://doi.org/10.1101/677542
Vargas J, Abrishami V, Marabini R et al (2013) Particle quality assessment and sorting for automatic and semiautomatic particle-picking techniques. J Struct Biol 183:342–353 PubMed DOI
Punjani A, Brubaker MA, Fleet DJ (2017) Building proteins in a day: efficient 3D molecular structure estimation with electron cryomicroscopy. IEEE Trans Pattern Anal Mach Intell 39:706–718 PubMed DOI
Sorzano COS, Bilbao-Castro JR, Shkolnisky Y et al (2010) A clustering approach to multireference alignment of single-particle projections in electron microscopy. J Struct Biol 171:197–206 PubMed DOI PMC
Sorzano COS, Vargas J, de la Rosa-Trevín JM et al (2014) Outlier detection for single particle analysis in electron microscopy. In: Proc. Intl. Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO, p 950
Vargas J, Álvarez-Cabrera AL, Marabini R et al (2014) Efficient initial volume determination from electron microscopy images of single particles. Bioinformatics 30:2891–2898 PubMed DOI
Sorzano COS, Vargas J, de la Rosa-Trevín JM et al (2015) A statistical approach to the initial volume problem in single particle analysis by electron microscopy. J Struct Biol 189:213–219 PubMed DOI
Scheres SHW (2012) Relion: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530 PubMed DOI PMC
Tang G, Peng L, Baldwin PR, Mann DS et al (2007) Eman2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46 PubMed DOI PMC
Reboul CF, Eager M, Elmlund D, Elmlund H (2018) Single-particle cryo-EM- improved ab initio 3D reconstruction with simple/prime. Protein Sci 27:51–61 PubMed DOI
Sorzano COS, Vargas J, Vilas JL et al (2018) Swarm optimization as a consensus technique for electron microscopy initial volume. Appl Anal Optim 2:299–313
Gomez-Blanco J, Kaur S, Ortega J, Vargas J (2019) A robust approach to ab initio cryo-electron microscopy initial volume determination. J Struct Biol 208:107397 PubMed DOI
Jimenez A, Jonic S, Majtner T et al (2019) Validation of electron microscopy initial models via small angle x-ray scattering curves. Bioinformatics 35:2427–2433 PubMed DOI
Kimanius D, Forsberg BO, Scheres SH, Lindahl E (2016) Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. elife 5:e18722 PubMed DOI PMC
Sorzano COS, Marabini R, Vargas J et al (2014) Computational Methods for Three-Dimensional Microscopy Reconstruction, Springer, chap Interchanging geometry information in electron microscopy single particle analysis: mathematical context for the development of a standard, pp 7–42
Cardone G, Heymann JB, Steven AC (2013) One number does not fit all: mapping local variations in resolution in cryo-em reconstructions. J Struct Biol 184:226–236 PubMed DOI
Kucukelbir A, Sigworth FJ, Tagare HD (2014) Quantifying the local resolution of cryo-EM density maps. Nat Methods 11:63–65 PubMed DOI
Ramírez-Aportela E, Vilas JL, Glukhova A et al (2019) Automatic local resolution-based sharpening of cryo-EM maps. Bioinformatics 36:765–772
Fernández JJ, Luque D, Castón JR, Carrascosa JL (2008) Sharpening high resolution information in single particle electron cryomicroscopy. J Struct Biol 164(1):170–175 PubMed DOI
Vilas JL, Vargas J, Martínez M et al (2020b) Re-examining the spectra of macromolecules: current practice of spectral quasi b-factor flattening. J Struct Biol 209:107447 PubMed DOI
Jakobi AJ, Wilmanns M, Sachse C (2017) Model-based local density sharpening of cryo-EM maps. elife 6:e27131 PubMed DOI PMC
Naydenova K, Russo CJ (2017) Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nat Commun 8:629 PubMed DOI PMC
Vargas J, Otón J, Marabini R et al (2016) Particle alignment reliability in single particle electron cryomicroscopy: a general approach. Sci Rep 6:21626 PubMed DOI PMC
Vargas J, Melero R, Gómez-Blanco J et al (2017) Quantitative analysis of 3D alignment quality: its impact on soft-validation, particle pruning and homogeneity analysis. Sci Rep 7:6307 PubMed DOI PMC
Stagg SM, Noble AJ, Spilman M, Chapman MS (2014) Reslog plots as an empirical metric of the quality of cryo-em reconstructions. J Struct Biol 185:418–426 PubMed DOI
Heymann B (2015) Validation of 3dem reconstructions: the phantom in the noise. AIMS Biophys 2:21–35 PubMed DOI PMC
Beckers M, Jakobi AJ, Sachse C (2019) Thresholding of cryo-em density maps by false discovery rate control. IUCrJ 6(1):18–33 PubMed DOI PMC
Martínez M, Jiménez-Moreno A, Maluenda D et al (2020) Integration of cryo-EM model building software in Scipion. J Chem Inf Model 26:2533–2540 DOI
Afonine PV, Klaholz BP, Moriarty NW et al (2018) New tools for the analysis and validation of cryo-em maps and atomic models. Acta Crystallogr Sect D, Struct Biol 74:814–840 DOI
Patwardhan A (2017) Trends in the electron microscopy data bank (emdb). Acta Crystallogr Sect D: Struct Biol 73:503–508 DOI
Iudin A, Korir PK, Salavert-Torres J et al (2016) Empiar: a public archive for raw electron microscopy image data. Nat Methods 13:387–388 PubMed DOI