Following de novo triglyceride dynamics in ovaries of Aedes aegypti during the previtellogenic stage
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R21 AI153689
NIAID NIH HHS - United States
R01AI04554
National Institute of Allergy and Infectious Diseases
R21AI135469
National Institute of Allergy and Infectious Diseases
R21 AI135469
NIAID NIH HHS - United States
DMR-1644779
National Science Foundation, United States
PubMed
33953286
PubMed Central
PMC8099868
DOI
10.1038/s41598-021-89025-6
PII: 10.1038/s41598-021-89025-6
Knihovny.cz E-zdroje
- MeSH
- Aedes metabolismus MeSH
- chromatografie kapalinová MeSH
- hmotnostní spektrometrie MeSH
- ovarium metabolismus MeSH
- triglyceridy metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- triglyceridy MeSH
Understanding the molecular and biochemical basis of egg development is a central topic in mosquito reproductive biology. Lipids are a major source of energy and building blocks for the developing ovarian follicles. Ultra-High Resolution Mass Spectrometry (UHRMS) combined with in vivo metabolic labeling of follicle lipids with deuterated water (2H2O) can provide unequivocal identification of de novo lipid species during ovarian development. In the present study, we followed de novo triglyceride (TG) dynamics during the ovarian previtellogenic (PVG) stage (2-7 days post-eclosion) of female adult Aedes aegypti. The incorporation of stable isotopes from the diet was evaluated using liquid chromatography (LC) in tandem with the high accuracy (< 0.3 ppm) and high mass resolution (over 1 M) of a 14.5 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (14.5 T FT-ICR MS) equipped with hexapolar detection. LC-UHRMS provides effective lipid class separation and chemical formula identification based on the isotopic fine structure. The monitoring of stable isotope incorporation into de novo incorporated TGs suggests that ovarian lipids are consumed or recycled during the PVG stage, with variable time dynamics. These results provide further evidence of the complexity of the molecular mechanism of follicular lipid dynamics during oogenesis in mosquitoes.
Biomolecular Science Institute Florida International University Miami FL USA
Department of Biology Florida International University Miami FL USA
Institute of Parasitology Biology Centre CAS Ceske Budejovice Czech Republic
Institute of Zoology Slovak Academy of Sciences Dubravska cesta 9 84506 Bratislava Slovakia
National High Magnetic Field Laboratory Florida State University Tallahassee FL USA
Zobrazit více v PubMed
Boggs CL. Resource allocation: Exploring connections between foraging and life-history. Funct. Ecol. 1992;6:508–518. doi: 10.2307/2390047. DOI
Stevens, D. J., Hansell, M. H. & Monaghan, P. Developmental trade-offs and life histories: Strategic allocation of resources in caddis flies. Proc. R. Soc. B Biol. Sci.267, 1511–1515. 10.1098/rspb.2000.1172 (2000). PubMed PMC
Wheeler D. The role of nourishment in oogenesis. Annu. Rev. Entomol. 1996;41:407–431. doi: 10.1146/annurev.en.41.010196.002203. PubMed DOI
Hoc, B. et al. About lipid metabolism in Hermetia illucens (L. 1758): On the origin of fatty acids in prepupae. Sci. Rep.10. 10.1038/s41598-020-68784-8 (2020). PubMed PMC
Caroci AS, Li Y, Noriega FG. Reduced juvenile hormone synthesis in mosquitoes with low teneral reserves reduces ovarian previtellogenic development in Aedes aegypti. J. Exp. Biol. 2004;207:2685–2690. doi: 10.1242/jeb.01093. PubMed DOI
Oliveira GA, et al. Flight-oogenesis syndrome in a blood-sucking bug: Biochemical aspects of lipid metabolism. Arch. Insect Biochem. Physiol. 2006;62:164–175. doi: 10.1002/arch.20132. PubMed DOI
Clifton ME, Noriega FG. Nutrient limitation results in juvenile hormone-mediated resorption of previtellogenic ovarian follicles in mosquitoes. J. Insect Physiol. 2011;57:1274–1281. doi: 10.1016/j.jinsphys.2011.06.002. PubMed DOI PMC
Noriega FG. Juvenile hormone biosynthesis in insects: What is new, what do we know, and what questions remain? Int. Sch. Res. Notices. 2014;2014:967361. doi: 10.1155/2014/967361. PubMed DOI PMC
Zhu J, Noriega FG. The role of juvenile hormone in mosquito development and reproduction. Adv. Insect Physiol. 2016;51:93–113. doi: 10.1016/bs.aiip.2016.04.005. DOI
Ramirez CE, et al. Fast, ultra-trace detection of juvenile hormone III from mosquitoes using mass spectrometry. Talanta. 2016;159:371–378. doi: 10.1016/j.talanta.2016.06.041. PubMed DOI PMC
Noriega FG. Nutritional regulation of JH synthesis: A mechanism to control reproductive maturation in mosquitoes? Insect Biochem. Mol. Biol. 2004;34:687–693. doi: 10.1016/j.ibmb.2004.03.021. PubMed DOI
Briegel H. Mosquito reproduction—Incomplete utilization of the blood meal protein for oogenesis. J. Insect Physiol. 1985;31:15–21. doi: 10.1016/0022-1910(85)90036-8. DOI
Klowden MJ. Endocrine aspects of mosquito reproduction. Arch. Insect Biochem. 1997;35:491–512. doi: 10.1002/(SICI)1520-6327(1997)35:4<491::AID-ARCH10>3.0.CO;2-5. DOI
Clifton ME, Noriega FG. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. J. Insect Physiol. 2012;58:1007–1019. doi: 10.1016/j.jinsphys.2012.05.005. PubMed DOI PMC
Zhou G, Pennington JE, Wells MA. Utilization of pre-existing energy stores of female Aedes aegypti mosquitoes during the first gonotrophic cycle. Insect Biochem. Mol. Biol. 2004;34:919–925. doi: 10.1016/j.ibmb.2004.05.009. PubMed DOI
Wang XL, et al. Hormone and receptor interplay in the regulation of mosquito lipid metabolism. Proc. Natl. Acad. Sci. USA. 2017;114:E2709–E2718. doi: 10.1073/pnas.1619326114. PubMed DOI PMC
Foster WA. Mosquito sugar feeding and reproductive energetics. Annu. Rev. Entomol. 1995;40:443–474. doi: 10.1146/annurev.en.40.010195.002303. PubMed DOI
Gill M, Thornley JH, Black JL, Oldham JD, Beever DE. Simulation of the metabolism of absorbed energy-yielding nutrients in young sheep. Br. J. Nutr. 1984;52:621–649. doi: 10.1079/bjn19840129. PubMed DOI
Louie, K. B. et al. Mass spectrometry imaging for in situ kinetic histochemistry. Sci. Rep.3. 10.1038/srep01656 (2013). PubMed PMC
Chino H, Gilbert LI. Diglyceride release from insect fat body: A possible means of lipid transport. Science. 1964;143:359–361. doi: 10.1126/science.143.3604.359. PubMed DOI
Inagaki S, Yamashita O. Metabolic shift from lipogenesis to glycogenesis in the last instar larval fat-body of the silkworm, Bombyx mori. Insect Biochem. 1986;16:327–331. doi: 10.1016/0020-1790(86)90043-0. DOI
Hill, S., Winning, B., Jenner, H., Knorpp, C. & Leaver, C. Role of NAD(+)-dependent 'malic' enzyme and pyruvate dehydrogenase complex in leaf metabolism. Biochem. Soc. Trans.24, 743–746, 10.1042/bst0240743 (1996). PubMed
Ziegler R, Ibrahim MM. Formation of lipid reserves in fat body and eggs of the yellow fever mosquito, Aedes aegypti. J. Insect Physiol. 2001;47:623–627. doi: 10.1016/s0022-1910(00)00158-x. PubMed DOI
Briegel H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 1990;36:165–172. doi: 10.1016/0022-1910(90)90118-Y. DOI
Hagedorn HH, et al. Postemergence growth of the ovarian follicles of Aedes aegypti. J. Insect Physiol. 1977;23:203–206. doi: 10.1016/0022-1910(77)90030-0. PubMed DOI
Clements AN, Clements AN. The Biology of Mosquitoes. 1. Chapman & Hall; 1992.
Zhou G, et al. Metabolic fate of [14C]-labeled meal protein amino acids in Aedes aegypti mosquitoes. J. Insect Physiol. 2004;50:337–349. doi: 10.1016/j.jinsphys.2004.02.003. PubMed DOI
Castellanos A, et al. Three dimensional secondary ion mass spectrometry imaging (3D-SIMS) of Aedes aegypti ovarian follicles. J. Anal. At. Spectrom. 2019;34:874–883. doi: 10.1039/C8JA00425K. PubMed DOI PMC
Guo ZK, Cella LK, Baum C, Ravussin E, De Schoeller DA. novo lipogenesis in adipose tissue of lean and obese women: Application of deuterated water and isotope ratio mass spectrometry. Int. J. Obes. 2000;24:932–937. doi: 10.1038/sj.ijo.0801256. PubMed DOI
McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JS, Speake BK. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J. Reprod. Fertil. 2000;118:163–170. doi: 10.1530/reprod/118.1.163. PubMed DOI
Ziegler R. Lipid synthesis by ovaries and fat body of Aedes aegypti (Diptera: Culicidae) Eur. J. Entomol. 1997;94:385–391.
Brunelle A, Touboul D, Laprevote O. Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources. J. Mass Spec. 2005;40:985–999. doi: 10.1002/jms.902. PubMed DOI
Wang Q, Sun QY. Evaluation of oocyte quality: Morphological, cellular and molecular predictors. Reprod. Fertil. Dev. 2007;19:1–12. doi: 10.1071/RD06103. PubMed DOI
Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: The role of fatty acids and beta-oxidation. Reproduction (Cambridge, England) 2014;148:R15–27. doi: 10.1530/REP-13-0251. PubMed DOI
Adams KJ, Montero D, Aga D, Fernandez-Lima F. Isomer separation of polybrominated diphenyl ether metabolites using nanoESI-TIMS-MS. Int. J. Ion. Mobil. Spec. 2016;19:69–76. doi: 10.1007/s12127-016-0198-z. PubMed DOI PMC
Armbrecht L, Dittrich PS. Recent advances in the analysis of single cells. Anal. Chem. 2017;89:2–21. doi: 10.1021/acs.analchem.6b04255. PubMed DOI PMC
Benigni P, Thompson CJ, Ridgeway ME, Park MA, Fernandez-Lima F. Targeted high-resolution ion mobility separation coupled to ultrahigh-resolution mass spectrometry of endocrine disruptors in complex mixtures. Anal. Chem. 2015;87:4321–4325. doi: 10.1021/ac504866v. PubMed DOI PMC
Khalil SM, Rompp A, Pretzel J, Becker K, Spengler B. Phospholipid topography of whole-body sections of the Anopheles stephensi mosquito, characterized by high-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal. Chem. 2015;87:11309–11316. doi: 10.1021/acs.analchem.5b02781. PubMed DOI
Tsugawa, H. et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol.38, 1159–+. 10.1038/s41587-020-0531-2 (2020). PubMed
Tsugawa H, et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods. 2015;12:523–526. doi: 10.1038/nmeth.3393. PubMed DOI PMC
Onjiko, R. M., Moody, S. A. & Nemes, P. Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo. Proc. Natl. Acad. Sci. USA112, 6545–6550. 10.1073/pnas.1423682112 (2015). PubMed PMC
Samarah LZ, et al. Single-cell metabolic profiling: metabolite formulas from isotopic fine structures in heterogeneous plant cell populations. Anal. Chem. 2020;92:7289–7298. doi: 10.1021/acs.analchem.0c00936. PubMed DOI
Trotzmuller M, et al. Determination of the isotopic enrichment of (13)C- and (2)H-labeled tracers of glucose using high-resolution mass spectrometry: Application to dual- and triple-tracer studies. Anal. Chem. 2017;89:12252–12260. doi: 10.1021/acs.analchem.7b03134. PubMed DOI
Leaptrot KL, May JC, Dodds JN, McLean JA. Ion mobility conformational lipid atlas for high confidence lipidomics. Nat. Commun. 2019;10:985. doi: 10.1038/s41467-019-08897-5. PubMed DOI PMC
Shi, L. Y. et al. Optical imaging of metabolic dynamics in animals. Nat. Commun.9. 10.1038/s41467-018-05401-3 (2018). PubMed PMC
Tejedor ML, Mizuno H, Tsuyama N, Harada T, Masujima T. In situ molecular analysis of plant tissues by live single-cell mass spectrometry. Anal. Chem. 2012;84:5221–5228. doi: 10.1021/ac202447t. PubMed DOI
Ruddy BM, Blakney GT, Rodgers RP, Hendrickson CL, Marshall AG. Elemental composition validation from stored waveform inverse Fourier transform (SWIFT) isolation FT-ICR MS isotopic fine structure. J. Am. Soc. Mass Spectrom. 2013;24:1608–1611. doi: 10.1007/s13361-013-0695-9. PubMed DOI
Schaub, T. M. et al. High-performance mass spectrometry: Fourier transform ion cyclotron resonance at 14.5 Tesla. Anal. Chem.80, 3985–3990. 10.1021/ac800386h (2008). PubMed
Benigni P, Fernandez-Lima F. Oversampling selective accumulation trapped ion mobility spectrometry coupled to FT-ICR MS: Fundamentals and applications. Anal. Chem. 2016;88:7404–7412. doi: 10.1021/acs.analchem.6b01946. PubMed DOI
Lanni EJ, Dunham SJ, Nemes P, Rubakhin SS, Sweedler JV. Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: Instrumentation, matrix enhancement, and single cell analysis. J. Am. Soc. Mass Spectrom. 2014;25:1897–1907. doi: 10.1007/s13361-014-0978-9. PubMed DOI
Pan N, Rao W, Standke SJ, Yang ZB. Using dicationic ion-pairing compounds to enhance the single cell mass spectrometry analysis using the single-probe: A microscale sampling and ionization device. Anal. Chem. 2016;88:6812–6819. doi: 10.1021/acs.analchem.6b01284. PubMed DOI PMC
Piwowar AM, et al. C60-ToF SIMS imaging of frozen hydrated HeLa cells. Surf. Interface Anal. 2013;45:302–304. doi: 10.1002/sia.4882. PubMed DOI PMC
Rao W, Pan N, Yang ZB. High resolution tissue imaging using the single-probe mass spectrometry under ambient conditions. J. Am. Soc. Mass Spectrom. 2015;26:986–993. doi: 10.1007/s13361-015-1091-4. PubMed DOI
Rao W, Pan N, Yang ZB. Applications of the single-probe: Mass spectrometry imaging and single cell analysis under ambient conditions. J. Vis. Exp. 2016;112:53911. doi: 10.3791/53911. PubMed DOI PMC
Cho E, Witt M, Hur M, Jung MJ, Kim S. Application of FT-ICR MS equipped with quadrupole detection for analysis of crude oil. Anal. Chem. 2017;89:12101–12107. doi: 10.1021/acs.analchem.7b02644. PubMed DOI