Microwave ablation of lung tumors: A probabilistic approach for simulation-based treatment planning
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 CA218357
NCI NIH HHS - United States
CZ.02.1.01/0.0/0.0/16_019/0000765
Czech Ministry of Education, Youth and Sports OP VVV
R01CA218357
NIH HHS - United States
PubMed
33964020
PubMed Central
PMC8319071
DOI
10.1002/mp.14923
Knihovny.cz E-zdroje
- Klíčová slova
- ablation minimum margin, ablation treatment planning, lung ablation, microwave ablation,
- MeSH
- ablace * MeSH
- katetrizační ablace * MeSH
- lidé MeSH
- mikrovlny terapeutické užití MeSH
- nádory plic * diagnostické zobrazování chirurgie MeSH
- počítačová simulace MeSH
- radiofrekvenční ablace * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Microwave ablation (MWA) is a clinically established modality for treatment of lung tumors. A challenge with existing application of MWA, however, is local tumor progression, potentially due to failure to establish an adequate treatment margin. This study presents a robust simulation-based treatment planning methodology to assist operators in comparatively assessing thermal profiles and likelihood of achieving a specified minimum margin as a function of candidate applied energy parameters. METHODS: We employed a biophysical simulation-based probabilistic treatment planning methodology to evaluate the likelihood of achieving a specified minimum margin for candidate treatment parameters (i.e., applied power and ablation duration for a given applicator position within a tumor). A set of simulations with varying tissue properties was evaluated for each considered combination of power and ablation duration, and for four different scenarios of contrast in tissue biophysical properties between tumor and normal lung. A treatment planning graph was then assembled, where distributions of achieved minimum ablation zone margins and collateral damage volumes can be assessed for candidate applied power and treatment duration combinations. For each chosen power and time combination, the operator can also visualize the histogram of ablation zone boundaries overlaid on the tumor and target volumes. We assembled treatment planning graphs for generic 1, 2, and 2.5 cm diameter spherically shaped tumors and also illustrated the impact of tissue heterogeneity on delivered treatment plans and resulting ablation histograms. Finally, we illustrated the treatment planning methodology on two example patient-specific cases of tumors with irregular shapes. RESULTS: The assembled treatment planning graphs indicate that 30 W, 6 min ablations achieve a 5-mm minimum margin across all simulated cases for 1-cm diameter spherical tumors, and 70 W, 10 min ablations achieve a 3-mm minimum margin across 90% of simulations for a 2.5-cm diameter spherical tumor. Different scenarios of tissue heterogeneity between tumor and lung tissue revealed 2 min overall difference in ablation duration, in order to reliably achieve a 4-mm minimum margin or larger each time for 2-cm diameter spherical tumor. CONCLUSIONS: An approach for simulation-based treatment planning for microwave ablation of lung tumors is illustrated to account for the impact of specific geometry of the treatment site, tissue property uncertainty, and heterogeneity between the tumor and normal lung.
Department of Circuit Theory Czech Technical University Prague Prague Czech Republic
Department of Clinical Sciences Kansas State University Manhattan KS 66506 USA
Department of Computing Faculty of Science Silpakorn University Thailand
Department of Electrical and Computer Engineering Kansas State University Manhattan KS 66506 USA
Zobrazit více v PubMed
de Baere T, Tselikas L, Catena V, Buy X, Deschamps F, Palussière J. Percutaneous thermal ablation of primary lung cancer. Diagn Interv Imaging. 2016;97(10):1019–1024. PubMed
Wolf FJ, Grand DJ, Machan JT, DiPetrillo TA, Mayo-Smith WW, Dupuy DE. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology. 2008;247(3):871–879. 10.1148/radiol.2473070996 PubMed DOI
Sidoff L, Dupuy DE. Clinical experiences with microwave thermal ablation of lung malignancies. Int J Hyperthermia. 2017;33(1):25–33. PubMed
Boskovic T, Stanic J, Pena-Karan S, et al. Pneumothorax after transthoracic needle biopsy of lung lesions under CT guidance. J Thorac Dis. 2014;6:S99. PubMed PMC
Izaaryene J, Cohen F, Souteyrand P, et al. Pathological effects of lung radiofrequency ablation that contribute to pneumothorax, using a porcine model. Int J Hyperthermia. 2017;1–4. PubMed
Chaddha U, Hogarth DK, Murgu S. Bronchoscopic ablative therapies for malignant central airway obstruction and peripheral lung tumors. Ann Am Thorac Soc. Published online June 13, 2019;16:1220–1229. PubMed
Sebek J, Kramer S, Rocha R, et al. Bronchoscopically delivered microwave ablation in an in vivo porcine lung model. ERJ Open Res. 2020;6. 10.1183/23120541.00146-2020 PubMed DOI PMC
Yuan H-B, Wang X-Y, Sun J-Y, et al. Flexible bronchoscopy-guided microwave ablation in peripheral porcine lung: a new minimally-invasive ablation. Transl Lung Cancer Res. 2019;8(6):787–796. PubMed PMC
Dupuy DE. Image-guided thermal ablation of lung malignancies. Radiology. 2011;260(3):633–655. PubMed
Alexander ES, Xiong L, Baird GL, Fernando H, Dupuy DE. CT densitometry and morphology of radiofrequency-ablated stage IA non-small cell lung cancer: results from the American College of Surgeons Oncology Group Z4033 (Alliance) Trial. J Vasc Interv Radiol. 2020;31(2):286–293. PubMed PMC
Koethe Y, Xu S, Velusamy G, Wood BJ, Venkatesan AM. Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: a phantom study. Eur Radiol. 2014;24:723–730. PubMed PMC
Liang L, Cool D, Kakani N, Wang G, Ding H, Fenster A. Development of a Multi-objective Optimized Planning Method for Microwave Liver Tumor Ablation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2019:110–118.
Liang L, Cool D, Kakani N, Wang G, Ding H, Fenster A. Automatic radiofrequency ablation planning for liver tumors with multiple constraints based on set covering. IEEE Trans Med Imaging. 2020;39 (5):1459–1471. PubMed
Liang L, Cool D, Kakani N, Wang G, Ding H, Fenster A. Multiple objective planning for thermal ablation of liver tumors. Int J Comput Assist Radiol Surg. 2020;15(11):1775–1786. PubMed
Lyons GR, Pua BB. Ablation planning software for optimizing treatment: challenges, techniques, and applications. Tech Vasc Interv Radiol. 2019;22:21–25. PubMed
Marcelin C, Leiner J, Nasri S, et al. In vivo percutaneous microwave ablation in kidneys: correlation with ex vivo data and ablation work. Diagn Interv Imaging. 2018;99(1):3–8. PubMed
Berber E The first clinical application of planning software for laparoscopic microwave thermosphere ablation of malignant liver tumours. HPB. 2015;17:632–636. PubMed PMC
Deshazer G, Merck D, Hagmann M, Dupuy DE, Prakash P. Physical modeling of microwave ablation zone clinical margin variance. Med Phys. 2016;43:1764–1776. PubMed
Huang S, Cai W, Han S, et al. Differences in the dielectric properties of various benign and malignant thyroid nodules. Med Phys. Published online October 29, 2021;48(2):760–769. PubMed
Zhang R, Wu S, Wu W, et al. Computer-assisted needle trajectory planning and mathematical modeling for liver tumor thermal ablation: A review. Math Biosci Eng. 2019;16(5):4846–4872. PubMed
van Oostenbrugge TJ, Heidkamp J, Moche M, et al. Validation of a web-based planning tool for percutaneous cryoablation of renal tumors. Cardiovasc Intervent Radiol. 2020;43:1661–1670. PubMed PMC
Yeniaras E, Fuentes DT, Fahrenholtz SJ, et al. Design and initial evaluation of a treatment planning software system for MRI-guided laser ablation in the brain. Int J Comput Assist Radiol Surg. 2014;9(4):659–667. PubMed
Fuentes D, Cardan R, Stafford RJ, Yung J, Dodd GD, Feng Y. High-fidelity computer models for prospective treatment planning of radiofrequency ablation with in vitro experimental correlation. J Vasc Interv Radiol JVIR. 2010;21(11):1725–1732. PubMed PMC
Luo M, Larson PS, Martin AJ, Miga MI. Accounting for deformation in deep brain stimulation surgery with models: comparison to interventional magnetic resonance imaging. IEEE Trans Biomed Eng Published online; 2020;67:2934–2944. PubMed PMC
Rossmann C, Rattay F, Haemmerich D. Platform for patient-specific finite-element modeling and application for radiofrequency ablation. Vis Image Process Comput Biomed. 2012;1. 10.1615/visualizimageproccomputatbiomed.2012004898 DOI
Voglreiter P, Mariappan P, Pollari M, et al. RFA guardian: comprehensive simulation of radiofrequency ablation treatment of liver tumors. Sci Rep. 2018;8:787. PubMed PMC
Schumann C, Rieder C, Haase S, et al. Interactive multi-criteria planning for radiofrequency ablation. Int J Comput Assist Radiol Surg. 2015;10 (6):879–889. PubMed
Sebek J, Albin N, Bortel R, Natarajan B, Prakash P. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning. Med Phys. 2016;43 (5):2649–2661. PubMed
Joines WT, Zhang Y, Li C, Jirtle RL. The measured electrical propertiesof normal and malignant human tissues from 50 to 900 MHz. Med Phys. 1994;21(4):547–550. PubMed
Yu X, Sun Y, Cai K, et al. Dielectric properties of normal and metastatic lymph nodes ex vivo from lung cancer surgeries. Bioelectromagnetics. 2020;41:148–155. PubMed
Pearce JA. Models for thermal damage in tissues: processes and applications. Crit Rev Biomed Eng. 2010;38:1–20. PubMed
Kaye EA, Cornelis FH, Petre EN, et al. Volumetric 3D assessment of ablation zones after thermal ablation of colorectal liver metastases to improve prediction of local tumor progression. Eur Radiol. 2019;29:2698–2705. PubMed PMC
Sebek J, Curto S, Bortel R, Prakash P. Analysis of minimally invasive directional antennas for microwave tissue ablation. Int J Hyperthermia. 2017;33(1):51–60. PubMed
Faridi P, Keselman P, Fallahi H, Prakash P. Experimental assessment of microwave ablation computational modeling with MR thermometry. Med Phys 2020;47:3777–3788. PubMed PMC
Jarrard J, Wizeman B, Brown RH, Mitzner W. A theoretical model of the application of RF energy to the airway wall and its experimental validation. Biomed Eng OnLine. 2010;9(1):81. 10.1186/1475-925x-9-81 PubMed DOI PMC
Hasgall PA, Neufeld E, Gosselin MC, et al. IT’IS Database for thermal and electromagnetic parameters of biological tissues. Published online. 2012.
Sebek J, Bortel R, Prakash P. Broadband lung dielectric properties over the ablative temperature range: experimental measurements and parametric models. Med Phys. 2019;46(10):4291–4303. PubMed PMC
Hall SK, Ooi EH, Payne SJ. Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. Int J Hyperthermia. 2015;31(5):538–550. PubMed PMC
Kawai T, Kaminou T, Sugiura K, et al. Creation of a tumor-mimic model using a muscle paste for radiofrequency ablation of the lung. Cardiovasc Intervent Radiol. 2009;32:296–302. PubMed
Lambrechts D, Wauters E, Boeckx B, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018;24:1277–1289. PubMed
Ma S-H, Le H-B, Jia B-H, et al. Peripheral pulmonary nodules: Relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and VEGF expression. BMC Cancer. 2008;8(1):186. 10.1186/1471-2407-8-186 PubMed DOI PMC
Chu LL, Knebel RJ, Shay AD, et al. CT perfusion imaging of lung cancer: benefit of motion correction for blood flow estimates. Eur Radiol. 2018;28:5069–5075. PubMed
Armato SG, McLennan G, Bidaut L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38:915–931. PubMed PMC
Liu Z, Ahmed M, Weinstein Y, Yi M, Mahajan RL, Goldberg SN. Characterization of the RF ablation-induced ‘oven effect’: the importance of background tissue thermal conductivity on tissue heating. Int J Hyperthermia. 2006;22(4):327–342. PubMed
Liu D, Brace CL. Evaluation of tissue deformation during radiofrequency and microwave ablation procedures: influence of output energy delivery. Med Phys. 2019;46(9):4127–4134. PubMed PMC