Bronchoscopically delivered microwave ablation in an in vivo porcine lung model
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 CA218357
NCI NIH HHS - United States
PubMed
33083442
PubMed Central
PMC7553114
DOI
10.1183/23120541.00146-2020
PII: 00146-2020
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Percutaneous microwave ablation is clinically used for inoperable lung tumour treatment. Delivery of microwave ablation applicators to tumour sites within lung parenchyma under virtual bronchoscopy guidance may enable ablation with reduced risk of pneumothorax, providing a minimally invasive treatment of early-stage tumours, which are increasingly detected with computed tomography (CT) screening. The objective of this study was to integrate a custom microwave ablation platform, incorporating a flexible applicator, with a clinically established virtual bronchoscopy guidance system, and to assess technical feasibility for safely creating localised thermal ablations in porcine lungs in vivo. METHODS: Pre-ablation CTs of normal pigs were acquired to create a virtual model of the lungs, including airways and significant blood vessels. Virtual bronchoscopy-guided microwave ablation procedures were performed with 24-32 W power (at the applicator distal tip) delivered for 5-10 mins. A total of eight ablations were performed in three pigs. Post-treatment CT images were acquired to assess the extent of damage and ablation zones were further evaluated with viability stains and histopathologic analysis. RESULTS: The flexible microwave applicators were delivered to ablation sites within lung parenchyma 5-24 mm from the airway wall via a tunnel created under virtual bronchoscopy guidance. No pneumothorax or significant airway bleeding was observed. The ablation short axis observed on gross pathology ranged 16.5-23.5 mm and 14-26 mm on CT imaging. CONCLUSION: We have demonstrated the technical feasibility for safely delivering microwave ablation in the lung parenchyma under virtual bronchoscopic guidance in an in vivo porcine lung model.
Broncus Medical Inc San Jose CA USA
Dept of Circuit Theory Czech Technical University Prague Prague Czech Republic
Dept of Clinical Sciences Kansas State University Manhattan KS USA
Dept of Diagnostic Medicine Pathobiology Kansas State University Manhattan KS USA
Dept of Electrical and Computer Engineering Kansas State University Manhattan Manhattan KS USA
Zobrazit více v PubMed
Gorenstein LA, Sonett JR. The surgical management of stage I and stage II lung cancer. Surg Oncol Clin 2011; 20: 701–720. doi:10.1016/j.soc.2011.07.009 PubMed DOI
Mazzone P. Preoperative evaluation of the lung resection candidate. Cleve Clin J Med 2012; 79: e-Suppl. 1, e-S17–e-S22. doi:10.3949/ccjm.79.s2.04 PubMed DOI
Powell JW, Dexter E, Scalzetti EM, et al. . Treatment advances for medically inoperable non-small-cell lung cancer: emphasis on prospective trials. Lancet Oncol 2009; 10: 885–894. doi:10.1016/S1470-2045(09)70103-2 PubMed DOI
Tandberg DJ, Tong BC, Ackerson BG, et al. . Surgery versus stereotactic body radiation therapy for stage I non–small cell lung cancer: a comprehensive review. Cancer 2018; 124: 667–678. doi:10.1002/cncr.31196 PubMed DOI
Dupuy DE, Fernando HC, Hillman S, et al. . Radiofrequency ablation of stage IA non-small cell lung cancer in medically inoperable patients: results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer 2015; 121: 3491–3498. doi:10.1002/cncr.29507 PubMed DOI PMC
Sidoff L, Dupuy DE. Clinical experiences with microwave thermal ablation of lung malignancies. Int J Hyperthermia 2017; 33: 25–33. doi:10.1080/02656736.2016.1204630 PubMed DOI
de Baere T, Tselikas L, Catena V, et al. . Percutaneous thermal ablation of primary lung cancer. Diagn Interv Imaging 2016; 97: 1019–1024. doi:10.1016/j.diii.2016.08.016 PubMed DOI
Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol 2009; 38: 135–143. doi:10.1067/j.cpradiol.2007.10.001 PubMed DOI PMC
Tsakok MT, Little MW, Hynes G, et al. . Local control, safety, and survival following image-guided percutaneous microwave thermal ablation in primary lung malignancy. Clin Radiol 2019; 74: 80.e19–80.e26. doi:10.1016/j.crad.2018.09.014 PubMed DOI
Izaaryene J, Cohen F, Souteyrand P, et al. . Pathological effects of lung radiofrequency ablation that contribute to pneumothorax, using a porcine model. Int J Hyperth 2017; 33: 713–716. doi:10.1080/02656736.2017.1309577 PubMed DOI
Harris K, Puchalski J, Sterman D. Recent advances in bronchoscopic treatment of peripheral lung cancers. Chest 2017; 151: 674–685. doi:10.1016/j.chest.2016.05.025 PubMed DOI
Sterman DH, Keast T, Rai L, et al. . High yield of bronchoscopic transparenchymal nodule access real-time image-guided sampling in a novel model of small pulmonary nodules in canines. Chest 2015; 147: 700–707. doi:10.1378/chest.14-0724 PubMed DOI
Harzheim D, Sterman D, Shah PL, et al. . Bronchoscopic transparenchymal nodule access: feasibility and safety in an endoscopic unit. Respir Int Rev Thorac Dis 2016; 91: 302–306. doi:10.1159/000445032 PubMed DOI
Pfannenstiel A, Keast T, Kramer S, et al. . Flexible microwave ablation applicator for the treatment of pulmonary malignancies. Ryan TP, ed. In: Energy-based Treatment of Tissue and Assessment IX Proc SPIE 2017; 10066: 100660M. doi: 10.1117/12.2255504. DOI
Silvestri GA, Herth FJ, Keast T, et al. . Feasibility and safety of bronchoscopic transparenchymal nodule access in canines: a new real-time image-guided approach to lung lesions. Chest 2014; 145: 833–838. doi:10.1378/chest.13-1971 PubMed DOI
Rai L, Keast TM, Wibowo H, et al. . Fluoroscopic image-guided intervention system for transbronchial localization. In: Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling. 8316: 831624. 2012, Bellingham, International Society for Optics and Photonics 10.1117/12.911476. DOI
Durick NA, Laeseke PF, Broderick LS, et al. . Microwave ablation with triaxial antennas tuned for lung: results in an in vivo porcine model. Radiology 2008; 247: 80–87. doi:10.1148/radiol.2471062123 PubMed DOI
Ahmed M, Solbiati L, Brace CL, et al. . Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update. Radiology 2014; 273: 241–260. doi:10.1148/radiol.14132958 PubMed DOI PMC
Kodama H, Ueshima E, Gao S, et al. . High-power microwave ablation of normal swine lung: impact of duration of energy delivery on adverse event and heat sink effects. Int J Hyperth 2018; 34: 1186–1193. doi:10.1080/02656736.2018.1447149 PubMed DOI PMC
Brace CL, Hinshaw JL, Laeseke PF, et al. . Pulmonary thermal ablation: comparison of radiofrequency and microwave devices by using gross pathologic and CT findings in a swine model. Radiology 2009; 251: 705–711. doi:10.1148/radiol.2513081564 PubMed DOI PMC
Al-Hakim RA, Abtin FG, Genshaft SJ, et al. . Defining new metrics in microwave ablation of pulmonary tumors: ablation work and ablation resistance score. J Vasc Interv Radiol JVIR 2016; 27: 1380–1386. doi:10.1016/j.jvir.2016.05.026 PubMed DOI
Meram E, Longhurst C, Brace CL, et al. . Comparison of conventional and cone-beam CT for monitoring and assessing pulmonary microwave ablation in a porcine model. J Vasc Interv Radiol JVIR 2018; 29: 1447–1454. doi:10.1016/j.jvir.2018.04.035 PubMed DOI
Coad JE, Bischof JC. Histologic differences between cryothermic and hyperthermic therapies. Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 2003; 4954: 27–36.
Goldberg SN, Gazelle GS, Compton CC, et al. . Radio-frequency tissue ablation of VX2 tumor nodules in the rabbit lung. Acad Radiol 1996; 3: 929–935. doi:10.1016/S1076-6332(96)80303-5 PubMed DOI
Rendon RA, Gertner MR, Sherar MD, et al. . Development of a radiofrequency based thermal therapy technique in an in vivo porcine model for the treatment of small renal masses. J Urol 2001; 166: 292–298. doi:10.1016/S0022-5347(05)66148-4 PubMed DOI
Marcovich R, Aldana JPA, Morgenstern N, et al. . Optimal lesion assessment following acute radio frequency ablation of porcine kidney: cellular viability or histopathology? J Urol 2003; 170: 1370–1374. doi:10.1097/01.ju.0000073846.32015.45 PubMed DOI
Nguyen CL, Scott WJ, Young NA, et al. . Radiofrequency ablation of primary lung cancer: results from an ablate and resect pilot study. Chest 2005; 128: 3507–3511. doi:10.1378/chest.128.5.3507 PubMed DOI
Schneider T, Reuss D, Warth A, et al. . The efficacy of bipolar and multipolar radiofrequency ablation of lung neoplasms - results of an ablate and resect study. Eur J Cardio-Thorac Surg 2011; 39: 968–973. doi:10.1016/j.ejcts.2010.08.055 PubMed DOI
Schneider T, Warth A, Herpel E, et al. . Intraoperative radiofrequency ablation of lung metastases and histologic evaluation. Ann Thorac Surg 2009; 87: 379–384. doi:10.1016/j.athoracsur.2008.10.088 PubMed DOI
Ferguson J, Egressy K, Schefelker R, et al. . Bronchoscopically-guided microwave ablation in the lung. Chest 2013; 144: 87A. doi:10.1378/chest.1705359 PubMed DOI
Howk K, Dickhans W, Rooks K, et al. . Characterization of a Bronchoscopic Thermal Ablation Catheter in Porcine Lung Am J Respir Crit Care Med 2016; 193: A6019.
Safi S, op den Winkel J, Kramer S, et al. . A new bronchoscopic catheter for the transbronchial ablation of pulmonary nodules. Lung Cancer Amst Neth 2018; 124: 125–129. doi:10.1016/j.lungcan.2018.07.038 PubMed DOI
Eberhardt R, Kahn N, Herth FJF. ‘Heat and destroy’: bronchoscopic-guided therapy of peripheral lung lesions. Respir Int Rev Thorac Dis 2010; 79: 265–273. doi:10.1159/000284015 PubMed DOI
Koizumi T, Tsushima K, Tanabe T, et al. . Bronchoscopy-guided cooled radiofrequency ablation as a novel intervention therapy for peripheral lung cancer. Respir Int Rev Thorac Dis 2015; 90: 47–55. doi:10.1159/000430825 PubMed DOI
Casal RF, Walsh G, McArthur M, et al. . Bronchoscopic laser interstitial thermal therapy: an experimental study in normal porcine lung parenchyma. J Bronchol Interv Pulmonol 2018; 25: 322–329. doi:10.1097/LBR.0000000000000501 PubMed DOI
Sabath BF, Casal RF. Bronchoscopic ablation of peripheral lung tumors. J Thorac Dis 2019; 11: 2628–2638. doi:10.21037/jtd.2019.01.65 PubMed DOI PMC
Fahrenholtz SJ, Stafford RJ, Maier F, et al. . Generalised polynomial chaos-based uncertainty quantification for planning MRgLITT procedures. Int J Hyperth 2013; 29: 324–335. doi:10.3109/02656736.2013.798036 PubMed DOI PMC
Andreano A, Huang Y, Meloni MF, et al. . Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue. Med Phys 2010; 37: 2967–2973. doi:10.1118/1.3432569 PubMed DOI PMC
Planché O, Teriitehau C, Boudabous S, et al. . In vivo evaluation of lung microwave ablation in a porcine tumor mimic model. Cardiovasc Intervent Radiol 2013; 36: 221–228. doi:10.1007/s00270-012-0399-8 PubMed DOI
Microwave ablation of lung tumors: A probabilistic approach for simulation-based treatment planning