The Role of Antibodies Against the Crude Capsular Extract in the Immune Response of Porcine Alveolar Macrophages to In Vitro Infection of Various Serovars of Glaesserella (Haemophilus) parasuis

. 2021 ; 12 () : 635097. [epub] 20210422

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33968026

In Glässer's disease outbreaks, Glaesserella (Haemophilus) parasuis has to overcome the non-specific immune system in the lower respiratory tract, the alveolar macrophages. Here we showed that porcine alveolar macrophages (PAMs) were able to recognize and phagocyte G. parasuis with strain-to-strain variability despite the presence of the capsule in virulent (serovar 1, 5, 12) as well in avirulent strains (serovar 6 and 9). The capsule, outer membrane proteins, virulence-associated autotransporters, cytolethal distending toxins and many other proteins have been identified as virulence factors of this bacterium. Therefore, we immunized pigs with the crude capsular extract (cCE) from the virulent G. parasuis CAPM 6475 strain (serovar 5) and evaluated the role of the anti-cCE/post-vaccinal IgG in the immune response of PAMs to in vitro infection with various G. parasuis strains. We demonstrated the specific binding of the antibodies to the cCE by Western-blotting assay and immunoprecipitation as well as the specific binding to the strain CAPM 6475 in transmission electron microscopy. In the cCE, we identified several virulence-associated proteins that were immunoreactive with IgG isolated from sera of immunized pigs. Opsonization of G. parasuis strains by post-vaccinal IgG led to enhanced phagocytosis of G. parasuis by PAMs at the first two hours of infection. Moreover, opsonization increased the oxidative burst and expression/production of both pro- and anti-inflammatory cytokines. The neutralizing effects of these antibodies on the antioxidant mechanisms of G. parasuis may lead to attenuation of its virulence and pathogenicity in vivo. Together with opsonization of bacteria by these antibodies, the host may eliminate G. parasuis in the infection site more efficiently. Based on these results, the crude capsular extract is a vaccine candidate with immunogenic properties.

Zobrazit více v PubMed

Dickerman A, Bandara AB, Inzana TJ. Phylogenomic Analysis of Haemophilus Parasuis and Proposed Reclassification to Glaesserella Parasuis, Gen. Nov., Comb. Nov. Int J Syst Evol Microbiol (2019) 70:180–6.  10.1099/ijsem.0.003730 PubMed DOI

Amano H, Shibata M, Kajio N, Morozumi T. Pathologic Observations of Pigs Intranasally Inoculated With Serovar 1, 4 and 5 of Haemophilus Parasuis Using Immunoperoxidase Method. J Vet Sci (1994) 56:639–44.  10.1292/jvms.56.639 PubMed DOI

Kielstein P, Rapp-Gabrielson VJ. Designation of 15 Serovars of Haemophilus Parasuis on the Basis of Immunodiffusion Using Heat-Stable Antigen Extractst. J Clin Microbiol (1992) 30:862–5.  10.1128/JCM.30.4.862-865.1992 PubMed DOI PMC

Zhang B, Tang C, Liao M, Yue H. Update on the Pathogenesis of Haemophilus Parasuis Infection and Virulence Factors. Vet Microbiol (2014) 168:1–7.  10.1016/j.vetmic.2013.07.027 PubMed DOI

Sibille Y, Reynolds HY. Macrophages and Polymorphonuclear Neutrophils in Lung Defense and Injury. Am Rev Respir Dis (1990) 141:471–501.  10.1164/ajrccm/141.2.471 PubMed DOI

Rosenberger CM, Finlay BB. Phagocyte Sabotage: Disruption of Macrophage Signalling by Bacterial Pathogens. Nat Rev Mol Cell Biol (2003) 4:385–96.  10.1038/nrm1104 PubMed DOI

Olvera A, Ballester M, Nofrarias M, Sibila M, Aragon V. Differences in Phagocytosis Susceptibility in Haemophilus Parasuis Strains. Vet Res (2009) 40:24.  10.1051/vetres/2009007 PubMed DOI PMC

Perry MB, MacLean LL, Gottschalk M, Aragon V, Vinogradov E. Structure of the Capsular Polysaccharides and Lipopolysaccharides From Haemophilus Parasuis Strains ER-6P (Serovar 15) and Nagasaki (Serovar 5). Carbohydr Res (2013) 378:91–7.  10.1016/j.carres.2013.04.023 PubMed DOI

Costa-Hurtado M, Ballester M, Galofré-Milà N, Darji A, Aragon V. VtaA8 and VtaA9 From Haemophilus Parasuis Delay Phagocytosis by Alveolar Macrophages. Vet Res (2012) 43:57.  10.1186/1297-9716-43-57 PubMed DOI PMC

Barasuol BM, Guizzo JA, Fegan JE, Martínez-Martínez S, Rodríguez-Ferri EF, Gutiérrez-Martín CB, et al. . New Insights About Functional and Cross-Reactive Properties of Antibodies Generated Against Recombinant TbpBs of Haemophilus Parasuis . Sci Rep (2017) 7:10377.  10.1038/s41598-017-10627-0 PubMed DOI PMC

Cerdà-Cuéllar M, Aragon V. Serum-Resistance in Haemophilus Parasuis is Associated With Systemic Disease in Swine. Vet J (2008) 175:384–9.  10.1016/j.tvjl.2007.01.016 PubMed DOI

Celli J, Finlay BB. Bacterial Avoidance of Phagocytosis. Trends Microbiol (2002) 10:232–7.  10.1016/S0966-842X(02)02343-0 PubMed DOI

Matiaskova K, Nedbalcova K, Tesarik R, Kudlackova H, Gebauer J, Toman M, et al. . A Crude Capsular Polysaccharide Extract as a Potential Novel Subunit Vaccine With Cross-Protection Against the Most Prevalent Serovars of Glaesserella (Haemophilus) Parasuis in the Czech Republic. Vet Med (Praha) (2019) 64:392–9.  10.17221/71/2019-VETMED DOI

Nedbalcova K, Kucerova Z, Krejci J, Tesarik R, Gopfert E, Kummer V, et al. . Passive Immunization of Post-Weaned Piglets Using Hyperimmune Serum Against Experimental Haemophilus Parasuis Infection. Res Vet Sci (2011) 91:225–9.  10.1016/j.rvsc.2010.12.008 PubMed DOI

Macedo N, Rovira A, Torremorell M. Haemophilus Parasuis: Infection, Immunity and Enrofloxacin. Vet Res (2015) 46:128.  10.1186/s13567-015-0263-3 PubMed DOI PMC

Liu H, Xue Q, Zeng Q, Zhao Z. Haemophilus Parasuis Vaccines. Vet Immunol Immunopathol (2016) 180:53–8.  10.1016/j.vetimm.2016.09.002 PubMed DOI

Huebner J, Wang Y, Krueger WA, Madoff LC, Martirosian G, Boisot S, et al. . Isolation and Chemical Characterization of a Capsular Polysaccharide Antigen Shared by Clinical Isolates of Enterococcus Faecalis and Vancomycin-Resistant Enterococcus Faecium . Infect Immun (1999) 67:1213–9.  10.1128/IAI.67.3.1213-1219.1999 PubMed DOI PMC

Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal Sample Preparation Method for Proteome Analysis. Nat Methods (2009) 6:359–62.  10.1038/nmeth.1322 PubMed DOI

Zelnickova P, Matiasovic J, Pavlova B, Kudlackova H, Kovaru F, Faldyna M. Quantitative Nitric Oxide Production by Rat, Bovine and Porcine Macrophages. Nitric Oxide (2008) 19:36–41.  10.1016/j.niox.2008.04.001 PubMed DOI

Kavanová L, Matiašková K, Levá L, Štěpánová H, Nedbalcová K, Matiašovic J, et al. . Concurrent Infection With Porcine Reproductive and Respiratory Syndrome Virus and Haemophilus Parasuis in Two Types of Porcine Macrophages: Apoptosis, Production of ROS and Formation of Multinucleated Giant Cells. Vet Res (2017) 48:28.  10.1186/s13567-017-0433-6 PubMed DOI PMC

Pavlova B, Volf J, Ondrackova P, Matiasovic J, Stepanova H, Crhanova M, et al. . SPI-1-Encoded Type III Secretion System of Salmonella Enterica is Required for the Suppression of Porcine Alveolar Macrophage Cytokine Expression. Vet Res (2011) 42:16.  10.1186/1297-9716-42-16 PubMed DOI PMC

Volf J, Boyen F, Faldyna M, Pavlova B, Navratilova J, Rychlik I. Cytokine Response of Porcine Cell Lines to Salmonella Enterica Serovar Typhimurium and Its Hila and Ssra Mutants. Zoonoses Public Health (2007) 54:286–93.  10.1111/j.1863-2378.2007.01064.x PubMed DOI

Kyrova K, Stepanova H, Rychlik I, Faldyna M, Volf J. SPI-1 Encoded Genes of Salmonella Typhimurium Influence Differential Polarization of Porcine Alveolar Macrophages in Vitro . BMC Vet Res (2012) 8:115.  10.1186/1746-6148-8-115 PubMed DOI PMC

Hau SJ, Mou KT, Bayles DO, Brockmeier SL. Transcriptomic Differences Noted in Glaesserella Parasuis Between Growth in Broth and on Agar. PloS One (2019) 14:e0220365.  10.1371/journal.pone.0220365 PubMed DOI PMC

Howell KJ, Weinert LA, Luan S-L, Peters SE, Chaudhuri RR, Harris D, et al. . Gene Content and Diversity of the Loci Encoding Biosynthesis of Capsular Polysaccharides of the 15 Serovar Reference Strains of Haemophilus Parasuis . J Bacteriol (2013) 195:4264–73.  10.1128/JB.00471-13 PubMed DOI PMC

Olvera A, Pina S, Pérez-Simó M, Oliveira S, Bensaid A. Virulence-Associated Trimeric Autotransporters of Haemophilus Parasuis are Antigenic Proteins Expressed in Vivo . Vet Res (2010) 41:26.  10.1051/vetres/2009074 PubMed DOI PMC

Ezraty B, Gennaris A, Barras F, Collet J-F. Oxidative Stress, Protein Damage and Repair in Bacteria. Nat Rev Microbiol (2017) 15:385–96.  10.1038/nrmicro.2017.26 PubMed DOI

Bedouhène S, Moulti-Mati F, Hurtado-Nedelec M, Dang PM-C, El-Benna J. Luminol-Amplified Chemiluminescence Detects Mainly Superoxide Anion Produced by Human Neutrophils. Am J Blood Res (2017) 7:41–8. PubMed PMC

Wen Y, Wen Y, Wen X, Cao S, Huang X, Wu R, et al. . Oxyr of Haemophilus Parasuis is a Global Transcriptional Regulator Important in Oxidative Stress Resistance and Growth. Gene (2018) 643:107–16.  10.1016/j.gene.2017.12.010 PubMed DOI

Kavanová L, Prodělalová J, Nedbalcová K, Matiašovic J, Volf J, Faldyna M, et al. . Immune Response of Porcine Alveolar Macrophages to a Concurrent Infection With Porcine Reproductive and Respiratory Syndrome Virus and Haemophilus Parasuis in Vitro . Vet Microbiol (2015) 180:28–35.  10.1016/j.vetmic.2015.08.026 PubMed DOI

Li G, Xie F, Li J, Liu J, Li D, Zhang Y, et al. . Identification of Novel Haemophilus Parasuis Serovar 5 Vaccine Candidates Using an Immunoproteomic Approach. J Proteomics (2017) 163:111–7.  10.1016/j.jprot.2017.05.014 PubMed DOI

Guo L, Xu L, Wu T, Fu S, Qiu Y, Hu C-AA, et al. . Evaluation of Recombinant Protein Superoxide Dismutase of Haemophilus Parasuis Strain SH0165 as Vaccine Candidate in a Mouse Model. Can J Microbiol (2017) 63:312–20.  10.1139/cjm-2016-0671 PubMed DOI

Brockmeier SL, Register KB, Kuehn JS, Nicholson TL, Loving CL, Bayles DO, et al. . Virulence and Draft Genome Sequence Overview of Multiple Strains of the Swine Pathogen Haemophilus Parasuis . PloS One (2014) 9(8):e103787.  10.1371/journal.pone.0103787 PubMed DOI PMC

Segal BH, Grimm MJ, Khan ANH, Han W, Blackwell TS. Regulation of Innate Immunity by NADPH Oxidase. Free Radic Biol Med (2012) 53:72–80.  10.1016/j.freeradbiomed.2012.04.022 PubMed DOI PMC

Zeng Z, Zhang B, He H, Chen X, Ren Y, Yue H, et al. . Lgtf Effects of Haemophilus Parasuis LOS Induced Inflammation Through Regulation of NF-κb and MAPKs Signaling Pathways. Microb Pathog (2017) 110:380–4.  10.1016/j.micpath.2017.06.035 PubMed DOI

Chen Y, Jin H, Chen P, Li Z, Meng X, Liu M, et al. . Haemophilus Parasuis Infection Activates the NF-κb Pathway in PK-15 Cells Through Iκb Degradation. Vet Microbiol (2012) 160:259–63.  10.1016/j.vetmic.2012.05.021 PubMed DOI

Fu S, Liu H, Chen X, Qiu Y, Ye C, Liu Y, et al. . Baicalin Inhibits Haemophilus Parasuis-Induced High-Mobility Group Box 1 Release During Inflammation. Int J Mol Sci (2018) 19:1307.  10.3390/ijms19051307 PubMed DOI PMC

Ulich TR, Guo K, Yin S, del Castillo J, Yi ES, Thompson RC, et al. . Endotoxin-Induced Cytokine Gene Expression in Vivo. IV. Expression of Interleukin-1 Alpha/Beta and Interleukin-1 Receptor Antagonist MRNA During Endotoxemia and During Endotoxin-Initiated Local Acute Inflammation. Am J Pathol (1992) 141:61–8. PubMed PMC

Vannier E, Miller LC, Dinarello CA. Coordinated Antiinflammatory Effects of Interleukin 4: Interleukin 4 Suppresses Interleukin 1 Production But Up-Regulates Gene Expression and Synthesis of Interleukin 1 Receptor Antagonist. Proc Natl Acad Sci USA (1992) 89:4076–80.  10.1073/pnas.89.9.4076 PubMed DOI PMC

Jenkins JK, Malyak M, Arend WP. The Effects of interleukin-10 on Interleukin-1 Receptor Antagonist and Interleukin-1 Beta Production in Human Monocytes and Neutrophils. Lymphokine Cytokine Res (1994) 13:47–54. 10.1007/BF01541172 PubMed DOI

Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin-10. Annu Rev Immunol (1993) 11:165–90.  10.1146/annurev.iy.11.040193.001121 PubMed DOI

Foey AD, Parry SL, Williams LM, Feldmann M, Foxwell BM, Brennan FM. Regulation of Monocyte IL-10 Synthesis by Endogenous IL-1 and TNF-alpha: Role of the p38 and p42/44 Mitogen-Activated Protein Kinases. J Immunol (1998) 160:920–8. PubMed

Aggarwal BB, Samanta A, Feldmann M. Tnf-α. In: Oppenheim JJ, Feldmann M, Durum SK, Hirano T, Vilcek J, Nicola NA, editors. Cytokine Reference. A Compendium of Cytokines and Other Mediators of Host Defense, vol. 1. New York: Academic Press; (2001). p. 413–34.

Fuente AJM de la, Ferri EFR, Tejerina F, Frandoloso R, Martínez SM, Martín CBG. Cytokine Expression in Colostrum-Deprived Pigs Immunized and Challenged With Haemophilus Parasuis . Res Vet Sci (2009) 87:47–52.  10.1016/j.rvsc.2008.12.012 PubMed DOI

Reddy NR, Borgs P, Wilkie BN. Cytokine MRNA Expression in Leukocytes of Efferent Lymph From Stimulated Lymph Nodes in Pigs. Vet Immunol Immunopathol (2000) 74:31–46. 10.1016/S0165-2427(00)00164-1 PubMed DOI

Baggiolini M, Loetscher P, Moser B. Interleukin-8 and the Chemokine Family. Int J Immunopharmacol (1995) 17:103–8. 10.1016/0192-0561(94)00088-6 PubMed DOI

Zhang H, Li L, Liu L. Fcγri (CD64) Contributes to the Severity of Immune Inflammation Through Regulating NF-κb/NLRP3 Inflammasome Pathway. Life Sci (2018) 207:296–303.  10.1016/j.lfs.2018.06.015 PubMed DOI

Aderem A. Phagocytosis and the Inflammatory Response. J Infect Dis (2003) 187:S340–5.  10.1086/374747 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace