• This record comes from PubMed

Role of hydrogen bond alternation and charge transfer states in photoactivation of the Orange Carotenoid Protein

. 2021 May 10 ; 4 (1) : 539. [epub] 20210510

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 33972665
PubMed Central PMC8110590
DOI 10.1038/s42003-021-02022-3
PII: 10.1038/s42003-021-02022-3
Knihovny.cz E-resources

Here, we propose a possible photoactivation mechanism of a 35-kDa blue light-triggered photoreceptor, the Orange Carotenoid Protein (OCP), suggesting that the reaction involves the transient formation of a protonated ketocarotenoid (oxocarbenium cation) state. Taking advantage of engineering an OCP variant carrying the Y201W mutation, which shows superior spectroscopic and structural properties, it is shown that the presence of Trp201 augments the impact of one critical H-bond between the ketocarotenoid and the protein. This confers an unprecedented homogeneity of the dark-adapted OCP state and substantially increases the yield of the excited photoproduct S*, which is important for the productive photocycle to proceed. A 1.37 Å crystal structure of OCP Y201W combined with femtosecond time-resolved absorption spectroscopy, kinetic analysis, and deconvolution of the spectral intermediates, as well as extensive quantum chemical calculations incorporating the effect of the local electric field, highlighted the role of charge-transfer states during OCP photoconversion.

See more in PubMed

Kay Holt T, Krogmann DW. A carotenoid-protein from cyanobacteria. Biochim. Biophys. Acta. 1981;637:408–414. doi: 10.1016/0005-2728(81)90045-1. DOI

Kerfeld CA, et al. The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure. 2003;11:55–65. doi: 10.1016/S0969-2126(02)00936-X. PubMed DOI

Kirilovsky D. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth Res. 2007;93:7–16. doi: 10.1007/s11120-007-9168-y. PubMed DOI

Kirilovsky D, Kerfeld CA. The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim. Biophys. Acta. 2012;1817:158–166. doi: 10.1016/j.bbabio.2011.04.013. PubMed DOI

Kirilovsky D, Kerfeld CA. The Orange Carotenoid Protein: a blue-green light photoactive protein. Photochem. Photobiol. Sci. 2013;12:1135–1143. doi: 10.1039/c3pp25406b. PubMed DOI

Kirilovsky D, Kerfeld CA. Cyanobacterial photoprotection by the orange carotenoid protein. Nat. Plants. 2016;2:16180. doi: 10.1038/nplants.2016.180. PubMed DOI

Wilson A, et al. A photoactive carotenoid protein acting as light intensity sensor. Proc. Natl Acad. Sci. USA. 2008;105:12075–12080. doi: 10.1073/pnas.0804636105. PubMed DOI PMC

Wu YP, Krogmann DW. The orange carotenoid protein of Synechocystis PCC 6803. Biochim. Biophys. Acta. 1997;1322:1–7. doi: 10.1016/S0005-2728(97)00067-4. PubMed DOI

Konold, P. E. et al. Photoactivation mechanism, timing of protein secondary structure dynamics and carotenoid translocation in the Orange Carotenoid Protein. J. Am. Chem. Soc. 141, 1, 520-530 (2018). PubMed PMC

Maksimov EG, et al. Probing of carotenoid-tryptophan hydrogen bonding dynamics in the single-tryptophan photoactive Orange Carotenoid Protein. Sci. Rep. 2020;10:11729. doi: 10.1038/s41598-020-68463-8. PubMed DOI PMC

Maksimov EG, et al. The signaling state of Orange Carotenoid Protein. Biophys. J. 2015;109:595–607. doi: 10.1016/j.bpj.2015.06.052. PubMed DOI PMC

Maksimov EG, et al. The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components. Sci. Rep. 2017;7:15548. doi: 10.1038/s41598-017-15520-4. PubMed DOI PMC

Leverenz RL, et al. Structural and functional modularity of the orange carotenoid protein: distinct roles for the N- and C-terminal domains in cyanobacterial photoprotection. Plant Cell. 2014;26:426–437. doi: 10.1105/tpc.113.118588. PubMed DOI PMC

Gupta S, et al. Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc. Natl Acad. Sci. USA. 2015;112:E5567–E5574. doi: 10.1073/pnas.1512240112. PubMed DOI PMC

Leverenz RL, et al. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science. 2015;348:3. doi: 10.1126/science.aaa7234. PubMed DOI

Rakhimberdieva MG, Stadnichuk IN, Elanskaya IV, Karapetyan NV. Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett. 2004;574:85–88. doi: 10.1016/j.febslet.2004.07.087. PubMed DOI

Wilson A, et al. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in Cyanobacteria. Plant Cell. 2006;18:992–1007. doi: 10.1105/tpc.105.040121. PubMed DOI PMC

Gwizdala M, Wilson A, Kirilovsky D. In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the Orange Carotenoid Protein in Synechocystis PCC 6803. Plant Cell. 2011;23:2631–2643. doi: 10.1105/tpc.111.086884. PubMed DOI PMC

Squires AH, et al. Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein. Nat. Commun. 2019;10:1172. doi: 10.1038/s41467-019-09084-2. PubMed DOI PMC

Maksimov EG, et al. A genetically encoded fluorescent temperature sensor derived from the photoactive Orange Carotenoid Protein. Sci. Rep. 2019;9:8937. doi: 10.1038/s41598-019-45421-7. PubMed DOI PMC

Sluchanko NN, et al. The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP. Biochim. Biophys. Acta. 2017;1858:1–11. doi: 10.1016/j.bbabio.2016.10.005. PubMed DOI

Sluchanko NN, Slonimskiy YB, Moldenhauer M, Friedrich T, Maksimov EG. Deletion of the short N-terminal extension in OCP reveals the main site for FRP binding. FEBS Lett. 2017;591:1667–1676. doi: 10.1002/1873-3468.12680. PubMed DOI

Sluchanko NN, et al. OCP–FRP protein complex topologies suggest a mechanism for controlling high light tolerance in cyanobacteria. Nat. Commun. 2018;9:3869. doi: 10.1038/s41467-018-06195-0. PubMed DOI PMC

Sluchanko NN, Slonimskiy YB, Maksimov EG. Features of protein-protein interactions in the Cyanobacterial photoprotection mechanism. Biochemistry. 2017;82:1592–1614. PubMed

Slonimskiy, Y. B., Maksimov, E. G. & Sluchanko, N. N. Fluorescence recovery protein: a powerful yet underexplored regulator of photoprotection in cyanobacteria. Photochem. Photobiol. Sci. 19, 763–775 (2020). PubMed

Maoka T. Carotenoids as natural functional pigments. J. Nat. Med. 2020;74:1–16. doi: 10.1007/s11418-019-01364-x. PubMed DOI PMC

Pascal AA, et al. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature. 2005;436:134–137. doi: 10.1038/nature03795. PubMed DOI

Kloz M, et al. Carotenoid photoprotection in artificial photosynthetic antennas. J. Am. Chem. Soc. 2011;133:7007–7015. doi: 10.1021/ja1103553. PubMed DOI

Ruban AV, et al. Characterisation of LHC II in the aggregated state by linear and circular dichroism spectroscopy. Biochim. Biophys. Acta. 1997;1321:61–70. doi: 10.1016/S0005-2728(97)00047-9. DOI

King JD, Liu H, He G, Orf GS, Blankenship RE. Chemical activation of the cyanobacterial orange carotenoid protein. FEBS Lett. 2014;588:4561–4565. doi: 10.1016/j.febslet.2014.10.024. PubMed DOI

Berera R, van Grondelle R, Kennis JTM. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynthesis Res. 2009;101:105–118. doi: 10.1007/s11120-009-9454-y. PubMed DOI PMC

Polívka T, Kerfeld CA, Pascher T, Sundström V. Spectroscopic properties of the Carotenoid 3‘-hydroxyechinenone in the Orange Carotenoid Protein from the Cyanobacterium Arthrospira maxima. Biochemistry. 2005;44:3994–4003. doi: 10.1021/bi047473t. PubMed DOI

Chabera P, Durchan M, Shih PM, Kerfeld CA, Polivka T. Excited-state properties of the 16kDa red carotenoid protein from Arthrospira maxima. Biochim. Biophys. Acta. 2011;1807:30–35. doi: 10.1016/j.bbabio.2010.08.013. PubMed DOI

Polívka T, Chábera P, Kerfeld CA. Carotenoid–protein interaction alters the S1 energy of hydroxyechinenone in the Orange Carotenoid Protein. Biochim. Biophys. Acta. 2013;1827:248–254. doi: 10.1016/j.bbabio.2012.10.005. PubMed DOI

Niedzwiedzki DM, Liu H, Blankenship RE. Excited state properties of 3′-hydroxyechinenone in solvents and in the Orange Carotenoid Protein from Synechocystis sp. PCC 6803. J. Phys. Chem. B. 2014;118:6141–6149. doi: 10.1021/jp5041794. PubMed DOI

Slouf V, et al. Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria. Photosynth Res. 2017;131:105–117. doi: 10.1007/s11120-016-0302-6. PubMed DOI

Kuznetsova V, et al. Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from tolypothrix. Biochim. Biophys. Acta. 2020;1861:148120. doi: 10.1016/j.bbabio.2019.148120. PubMed DOI PMC

Balevičius V, Jr, et al. The full dynamics of energy relaxation in large organic molecules: from photo-excitation to solvent heating. Chem. Sci. 2019;10:4792–4804. doi: 10.1039/C9SC00410F. PubMed DOI PMC

Wei T, Balevicius V, Polivka T, Ruban AV, Duffy CDP. How carotenoid distortions may determine optical properties: lessons from the Orange Carotenoid Protein. Phys. Chem. Chem. Phys. 2019;21:23187–23197. doi: 10.1039/C9CP03574E. PubMed DOI

Englman R, Jortner J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 1970;18:145–164. doi: 10.1080/00268977000100171. DOI

Pishchalnikov RY, et al. Structural peculiarities of keto-carotenoids in water-soluble proteins revealed by simulation of linear absorption. Phys. Chem. Chem. Phys. 2019;21:25707–25719. doi: 10.1039/C9CP04508B. PubMed DOI

Zigmantas D, et al. Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys. Chem. Chem. Phys. 2004;6:3009–3016. doi: 10.1039/B315786E. DOI

Chábera P, Fuciman M, Hříbek P, Polívka T. Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids. Phys. Chem. Chem. Phys. 2009;11:8795–8803. doi: 10.1039/b909924g. PubMed DOI

Wilson A, Punginelli C, Couturier M, Perreau F, Kirilovsky D. Essential role of two tyrosines and two tryptophans on the photoprotection activity of the Orange Carotenoid Protein. Biochim. Biophys. Acta. 2011;1807:293–301. doi: 10.1016/j.bbabio.2010.12.009. PubMed DOI

Maksimov, E. G. et al. The unique protein-to-protein carotenoid transfer mechanism. Biophys. J.113(2), 402–414 (2017). PubMed PMC

Slonimskiy, Y. B. et al. Engineering the photoactive orange carotenoid protein with redox-controllable structural dynamics and photoprotective function. Biochim. Biophys. Acta 1861(5), 148174 (2020). PubMed

Bandara, S. et al. Photoactivation mechanism of a carotenoid-based photoreceptor. Proc. Natl Acad. Sci. USA114(24), 6286–6291 (2017). PubMed PMC

Kish E, Pinto MM, Kirilovsky D, Spezia R, Robert B. Echinenone vibrational properties: from solvents to the orange carotenoid protein. Biochim. Biophys. Acta. 2015;1847:1044–1054. doi: 10.1016/j.bbabio.2015.05.010. PubMed DOI

Balevičius V, Abramavicius D, Polívka T, Galestian Pour A, Hauer J. A Unified Picture of S* in Carotenoids. J. Phys. Chem. Lett. 2016;7:3347–3352. doi: 10.1021/acs.jpclett.6b01455. PubMed DOI PMC

Polívka T, Sundström V. Dark excited states of carotenoids: consensus and controversy. Chem. Phys. Lett. 2009;477:1–11. doi: 10.1016/j.cplett.2009.06.011. DOI

Maksimov EG, et al. A comparative study of three signaling forms of the orange carotenoid protein. Photosynth Res. 2016;130:389–401. doi: 10.1007/s11120-016-0272-8. PubMed DOI

Bao H, et al. Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria. Nat. Plants. 2017;3:17089. doi: 10.1038/nplants.2017.89. PubMed DOI

Berera R, et al. The photophysics of the orange carotenoid protein, a light-powered molecular switch. J. Phys. Chem. B. 2012;116:2568–2574. doi: 10.1021/jp2108329. PubMed DOI

Berera R, Gwizdala M, van Stokkum IH, Kirilovsky D, van Grondelle R. Excited states of the inactive and active forms of the orange carotenoid protein. J. Phys. Chem. B. 2013;117:9121–9128. doi: 10.1021/jp307420p. PubMed DOI

Slouf, V. et al. Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria. Photosynth. Res.131, 105–117 (2016). PubMed

Hashimoto H, Uragami C, Yukihira N, Gardiner AT, Cogdell RJ. Understanding/unravelling carotenoid excited singlet states. J. R. Soc., Interface. 2018;15:20180026. doi: 10.1098/rsif.2018.0026. PubMed DOI PMC

Bondanza M, Cupellini L, Lipparini F, Mennucci B. The multiple roles of the protein in the photoactivation of Orange Carotenoid Protein. Chem. 2020;6:187–203. doi: 10.1016/j.chempr.2019.10.014. DOI

Muzzopappa F, Kirilovsky D. Changing color for photoprotection: the Orange Carotenoid Protein. Trends Plant Sci. 2020;25:92–104. doi: 10.1016/j.tplants.2019.09.013. PubMed DOI

Champagne B, et al. Assessment of conventional density functional schemes for computing the dipole moment and (Hyper)polarizabilities of Push−Pull π-conjugated systems. J. Phys. Chem. A. 2000;104:4755–4763. doi: 10.1021/jp993839d. DOI

Bulat FA, Toro-Labbé A, Champagne B, Kirtman B, Yang W. Density-functional theory (hyper)polarizabilities of push-pull π-conjugated systems: treatment of exact exchange and role of correlation. J. Chem. Phys. 2005;123:014319. doi: 10.1063/1.1926275. PubMed DOI

Otsuka M, Mori Y, Takano K. Theoretical study on photophysical properties of 3′-hydroxyechinenone and the effects of interactions with orange carotenoid protein. Chem. Phys. Lett. 2016;647:95–102. doi: 10.1016/j.cplett.2016.01.028. DOI

Kerfeld CA. Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth Res. 2004;81:215–225. doi: 10.1023/B:PRES.0000036886.60187.c8. PubMed DOI

Enriquez MM, et al. The intramolecular charge transfer state in carbonyl-containing polyenes and carotenoids. J. Phys. Chem. B. 2010;114:12416–12426. doi: 10.1021/jp106113h. PubMed DOI PMC

Kildahl-Andersen G, Lutnaes BF, Liaaen-Jensen S. Protonated canthaxanthins as models for blue carotenoproteins. Org. Biomol. Chem. 2004;2:489–498. doi: 10.1039/B313639F. PubMed DOI

Kabsch W. XDS. Acta Crystallogr. Sect. D. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC

Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr. Sect. D. 2010;66:22–25. doi: 10.1107/S0907444909042589. PubMed DOI

Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI

Murshudov GN, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D., Biol. Crystallogr. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC

Moldenhauer, M. et al. Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism. Photosynthesis Res. 133, 327–341 (2017). PubMed

Dobryakov AL, Pérez Lustres JL, Kovalenko SA, Ernsting NP. Femtosecond transient absorption with chirped pump and supercontinuum probe: Perturbative calculation of transient spectra with general lineshape functions, and simplifications. Chem. Phys. 2008;347:127–138. doi: 10.1016/j.chemphys.2007.11.003. DOI

Shelaev IV, et al. Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. Biochim. Biophys. Acta. 2010;1797:1410–1420. doi: 10.1016/j.bbabio.2010.02.026. PubMed DOI

Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI

Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI

Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI

Ditchfield R, Hehre WJ, Pople JA. Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 1971;54:724–728. doi: 10.1063/1.1674902. DOI

Hehre WJ, Ditchfield R, Pople JA. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972;56:2257–2261. doi: 10.1063/1.1677527. DOI

Kendall RA, Jr., Dunning TH, Harrison RJ. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI

Gutowski M, Chal/asiński G. Critical evaluation of some computational approaches to the problem of basis set superposition error. J. Chem. Phys. 1993;98:5540–5554. doi: 10.1063/1.464901. DOI

Su NQ, Xu X. Insights into direct methods for predictions of ionization potential and electron affinity in density functional theory. J. Phys. Chem. Lett. 2019;10:2692–2699. doi: 10.1021/acs.jpclett.9b01052. PubMed DOI

Lin Y-S, Li G-D, Mao S-P, Chai J-D. Long-range corrected hybrid density functionals with improved dispersion corrections. J. Chem. Theory Comput. 2013;9:263–272. doi: 10.1021/ct300715s. PubMed DOI

Casanova-Páez M, Dardis MB, Goerigk L. ωB2PLYP and ωB2GPPLYP: the first two double-hybrid density functionals with long-range correction optimized for excitation energies. J. Chem. Theory Comput. 2019;15:4735–4744. doi: 10.1021/acs.jctc.9b00013. PubMed DOI

Schmidt MW, et al. General atomic and molecular electronic structure system. J. Computational Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...