Role of hydrogen bond alternation and charge transfer states in photoactivation of the Orange Carotenoid Protein
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33972665
PubMed Central
PMC8110590
DOI
10.1038/s42003-021-02022-3
PII: 10.1038/s42003-021-02022-3
Knihovny.cz E-resources
- MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Photochemistry * MeSH
- Carotenoids metabolism MeSH
- Kinetics MeSH
- Protein Conformation MeSH
- Crystallography MeSH
- Models, Molecular MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Carotenoids MeSH
- orange carotenoid protein, Synechocystis MeSH Browser
Here, we propose a possible photoactivation mechanism of a 35-kDa blue light-triggered photoreceptor, the Orange Carotenoid Protein (OCP), suggesting that the reaction involves the transient formation of a protonated ketocarotenoid (oxocarbenium cation) state. Taking advantage of engineering an OCP variant carrying the Y201W mutation, which shows superior spectroscopic and structural properties, it is shown that the presence of Trp201 augments the impact of one critical H-bond between the ketocarotenoid and the protein. This confers an unprecedented homogeneity of the dark-adapted OCP state and substantially increases the yield of the excited photoproduct S*, which is important for the productive photocycle to proceed. A 1.37 Å crystal structure of OCP Y201W combined with femtosecond time-resolved absorption spectroscopy, kinetic analysis, and deconvolution of the spectral intermediates, as well as extensive quantum chemical calculations incorporating the effect of the local electric field, highlighted the role of charge-transfer states during OCP photoconversion.
A N Belozersky Institute of Physical Chemical Biology Moscow State University Moscow Russia
Chemistry department M 5 Lomonosov Moscow State University Moscow Russia
ELI Beamlines Institute of Physics Praha Czech Republic
European XFEL GmbH Schenefeld Germany
Faculty of Biology M 5 Lomonosov Moscow State University Moscow Russia
Institut de Biologie Structurale J P Ebel Université Grenoble Alpes CEA CNRS Grenoble France
Institute of Biological Information Processing Forschungszentrum Jülich Jülich Germany
Institute of Crystallography RWTH Aachen University Aachen Germany
Institute of Physics Faculty of Science University of South Bohemia České Budějovice Czech Republic
JuStruct Jülich Center for Structural Biology Forschungszentrum Jülich Jülich Germany
N N Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences Moscow Russia
Technische Universität Berlin Institute of Chemistry PC14 Berlin Germany
See more in PubMed
Kay Holt T, Krogmann DW. A carotenoid-protein from cyanobacteria. Biochim. Biophys. Acta. 1981;637:408–414. doi: 10.1016/0005-2728(81)90045-1. DOI
Kerfeld CA, et al. The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure. 2003;11:55–65. doi: 10.1016/S0969-2126(02)00936-X. PubMed DOI
Kirilovsky D. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth Res. 2007;93:7–16. doi: 10.1007/s11120-007-9168-y. PubMed DOI
Kirilovsky D, Kerfeld CA. The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim. Biophys. Acta. 2012;1817:158–166. doi: 10.1016/j.bbabio.2011.04.013. PubMed DOI
Kirilovsky D, Kerfeld CA. The Orange Carotenoid Protein: a blue-green light photoactive protein. Photochem. Photobiol. Sci. 2013;12:1135–1143. doi: 10.1039/c3pp25406b. PubMed DOI
Kirilovsky D, Kerfeld CA. Cyanobacterial photoprotection by the orange carotenoid protein. Nat. Plants. 2016;2:16180. doi: 10.1038/nplants.2016.180. PubMed DOI
Wilson A, et al. A photoactive carotenoid protein acting as light intensity sensor. Proc. Natl Acad. Sci. USA. 2008;105:12075–12080. doi: 10.1073/pnas.0804636105. PubMed DOI PMC
Wu YP, Krogmann DW. The orange carotenoid protein of Synechocystis PCC 6803. Biochim. Biophys. Acta. 1997;1322:1–7. doi: 10.1016/S0005-2728(97)00067-4. PubMed DOI
Konold, P. E. et al. Photoactivation mechanism, timing of protein secondary structure dynamics and carotenoid translocation in the Orange Carotenoid Protein. J. Am. Chem. Soc. 141, 1, 520-530 (2018). PubMed PMC
Maksimov EG, et al. Probing of carotenoid-tryptophan hydrogen bonding dynamics in the single-tryptophan photoactive Orange Carotenoid Protein. Sci. Rep. 2020;10:11729. doi: 10.1038/s41598-020-68463-8. PubMed DOI PMC
Maksimov EG, et al. The signaling state of Orange Carotenoid Protein. Biophys. J. 2015;109:595–607. doi: 10.1016/j.bpj.2015.06.052. PubMed DOI PMC
Maksimov EG, et al. The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components. Sci. Rep. 2017;7:15548. doi: 10.1038/s41598-017-15520-4. PubMed DOI PMC
Leverenz RL, et al. Structural and functional modularity of the orange carotenoid protein: distinct roles for the N- and C-terminal domains in cyanobacterial photoprotection. Plant Cell. 2014;26:426–437. doi: 10.1105/tpc.113.118588. PubMed DOI PMC
Gupta S, et al. Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc. Natl Acad. Sci. USA. 2015;112:E5567–E5574. doi: 10.1073/pnas.1512240112. PubMed DOI PMC
Leverenz RL, et al. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science. 2015;348:3. doi: 10.1126/science.aaa7234. PubMed DOI
Rakhimberdieva MG, Stadnichuk IN, Elanskaya IV, Karapetyan NV. Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett. 2004;574:85–88. doi: 10.1016/j.febslet.2004.07.087. PubMed DOI
Wilson A, et al. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in Cyanobacteria. Plant Cell. 2006;18:992–1007. doi: 10.1105/tpc.105.040121. PubMed DOI PMC
Gwizdala M, Wilson A, Kirilovsky D. In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the Orange Carotenoid Protein in Synechocystis PCC 6803. Plant Cell. 2011;23:2631–2643. doi: 10.1105/tpc.111.086884. PubMed DOI PMC
Squires AH, et al. Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein. Nat. Commun. 2019;10:1172. doi: 10.1038/s41467-019-09084-2. PubMed DOI PMC
Maksimov EG, et al. A genetically encoded fluorescent temperature sensor derived from the photoactive Orange Carotenoid Protein. Sci. Rep. 2019;9:8937. doi: 10.1038/s41598-019-45421-7. PubMed DOI PMC
Sluchanko NN, et al. The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP. Biochim. Biophys. Acta. 2017;1858:1–11. doi: 10.1016/j.bbabio.2016.10.005. PubMed DOI
Sluchanko NN, Slonimskiy YB, Moldenhauer M, Friedrich T, Maksimov EG. Deletion of the short N-terminal extension in OCP reveals the main site for FRP binding. FEBS Lett. 2017;591:1667–1676. doi: 10.1002/1873-3468.12680. PubMed DOI
Sluchanko NN, et al. OCP–FRP protein complex topologies suggest a mechanism for controlling high light tolerance in cyanobacteria. Nat. Commun. 2018;9:3869. doi: 10.1038/s41467-018-06195-0. PubMed DOI PMC
Sluchanko NN, Slonimskiy YB, Maksimov EG. Features of protein-protein interactions in the Cyanobacterial photoprotection mechanism. Biochemistry. 2017;82:1592–1614. PubMed
Slonimskiy, Y. B., Maksimov, E. G. & Sluchanko, N. N. Fluorescence recovery protein: a powerful yet underexplored regulator of photoprotection in cyanobacteria. Photochem. Photobiol. Sci. 19, 763–775 (2020). PubMed
Maoka T. Carotenoids as natural functional pigments. J. Nat. Med. 2020;74:1–16. doi: 10.1007/s11418-019-01364-x. PubMed DOI PMC
Pascal AA, et al. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature. 2005;436:134–137. doi: 10.1038/nature03795. PubMed DOI
Kloz M, et al. Carotenoid photoprotection in artificial photosynthetic antennas. J. Am. Chem. Soc. 2011;133:7007–7015. doi: 10.1021/ja1103553. PubMed DOI
Ruban AV, et al. Characterisation of LHC II in the aggregated state by linear and circular dichroism spectroscopy. Biochim. Biophys. Acta. 1997;1321:61–70. doi: 10.1016/S0005-2728(97)00047-9. DOI
King JD, Liu H, He G, Orf GS, Blankenship RE. Chemical activation of the cyanobacterial orange carotenoid protein. FEBS Lett. 2014;588:4561–4565. doi: 10.1016/j.febslet.2014.10.024. PubMed DOI
Berera R, van Grondelle R, Kennis JTM. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynthesis Res. 2009;101:105–118. doi: 10.1007/s11120-009-9454-y. PubMed DOI PMC
Polívka T, Kerfeld CA, Pascher T, Sundström V. Spectroscopic properties of the Carotenoid 3‘-hydroxyechinenone in the Orange Carotenoid Protein from the Cyanobacterium Arthrospira maxima. Biochemistry. 2005;44:3994–4003. doi: 10.1021/bi047473t. PubMed DOI
Chabera P, Durchan M, Shih PM, Kerfeld CA, Polivka T. Excited-state properties of the 16kDa red carotenoid protein from Arthrospira maxima. Biochim. Biophys. Acta. 2011;1807:30–35. doi: 10.1016/j.bbabio.2010.08.013. PubMed DOI
Polívka T, Chábera P, Kerfeld CA. Carotenoid–protein interaction alters the S1 energy of hydroxyechinenone in the Orange Carotenoid Protein. Biochim. Biophys. Acta. 2013;1827:248–254. doi: 10.1016/j.bbabio.2012.10.005. PubMed DOI
Niedzwiedzki DM, Liu H, Blankenship RE. Excited state properties of 3′-hydroxyechinenone in solvents and in the Orange Carotenoid Protein from Synechocystis sp. PCC 6803. J. Phys. Chem. B. 2014;118:6141–6149. doi: 10.1021/jp5041794. PubMed DOI
Slouf V, et al. Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria. Photosynth Res. 2017;131:105–117. doi: 10.1007/s11120-016-0302-6. PubMed DOI
Kuznetsova V, et al. Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from tolypothrix. Biochim. Biophys. Acta. 2020;1861:148120. doi: 10.1016/j.bbabio.2019.148120. PubMed DOI PMC
Balevičius V, Jr, et al. The full dynamics of energy relaxation in large organic molecules: from photo-excitation to solvent heating. Chem. Sci. 2019;10:4792–4804. doi: 10.1039/C9SC00410F. PubMed DOI PMC
Wei T, Balevicius V, Polivka T, Ruban AV, Duffy CDP. How carotenoid distortions may determine optical properties: lessons from the Orange Carotenoid Protein. Phys. Chem. Chem. Phys. 2019;21:23187–23197. doi: 10.1039/C9CP03574E. PubMed DOI
Englman R, Jortner J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 1970;18:145–164. doi: 10.1080/00268977000100171. DOI
Pishchalnikov RY, et al. Structural peculiarities of keto-carotenoids in water-soluble proteins revealed by simulation of linear absorption. Phys. Chem. Chem. Phys. 2019;21:25707–25719. doi: 10.1039/C9CP04508B. PubMed DOI
Zigmantas D, et al. Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys. Chem. Chem. Phys. 2004;6:3009–3016. doi: 10.1039/B315786E. DOI
Chábera P, Fuciman M, Hříbek P, Polívka T. Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids. Phys. Chem. Chem. Phys. 2009;11:8795–8803. doi: 10.1039/b909924g. PubMed DOI
Wilson A, Punginelli C, Couturier M, Perreau F, Kirilovsky D. Essential role of two tyrosines and two tryptophans on the photoprotection activity of the Orange Carotenoid Protein. Biochim. Biophys. Acta. 2011;1807:293–301. doi: 10.1016/j.bbabio.2010.12.009. PubMed DOI
Maksimov, E. G. et al. The unique protein-to-protein carotenoid transfer mechanism. Biophys. J.113(2), 402–414 (2017). PubMed PMC
Slonimskiy, Y. B. et al. Engineering the photoactive orange carotenoid protein with redox-controllable structural dynamics and photoprotective function. Biochim. Biophys. Acta 1861(5), 148174 (2020). PubMed
Bandara, S. et al. Photoactivation mechanism of a carotenoid-based photoreceptor. Proc. Natl Acad. Sci. USA114(24), 6286–6291 (2017). PubMed PMC
Kish E, Pinto MM, Kirilovsky D, Spezia R, Robert B. Echinenone vibrational properties: from solvents to the orange carotenoid protein. Biochim. Biophys. Acta. 2015;1847:1044–1054. doi: 10.1016/j.bbabio.2015.05.010. PubMed DOI
Balevičius V, Abramavicius D, Polívka T, Galestian Pour A, Hauer J. A Unified Picture of S* in Carotenoids. J. Phys. Chem. Lett. 2016;7:3347–3352. doi: 10.1021/acs.jpclett.6b01455. PubMed DOI PMC
Polívka T, Sundström V. Dark excited states of carotenoids: consensus and controversy. Chem. Phys. Lett. 2009;477:1–11. doi: 10.1016/j.cplett.2009.06.011. DOI
Maksimov EG, et al. A comparative study of three signaling forms of the orange carotenoid protein. Photosynth Res. 2016;130:389–401. doi: 10.1007/s11120-016-0272-8. PubMed DOI
Bao H, et al. Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria. Nat. Plants. 2017;3:17089. doi: 10.1038/nplants.2017.89. PubMed DOI
Berera R, et al. The photophysics of the orange carotenoid protein, a light-powered molecular switch. J. Phys. Chem. B. 2012;116:2568–2574. doi: 10.1021/jp2108329. PubMed DOI
Berera R, Gwizdala M, van Stokkum IH, Kirilovsky D, van Grondelle R. Excited states of the inactive and active forms of the orange carotenoid protein. J. Phys. Chem. B. 2013;117:9121–9128. doi: 10.1021/jp307420p. PubMed DOI
Slouf, V. et al. Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria. Photosynth. Res.131, 105–117 (2016). PubMed
Hashimoto H, Uragami C, Yukihira N, Gardiner AT, Cogdell RJ. Understanding/unravelling carotenoid excited singlet states. J. R. Soc., Interface. 2018;15:20180026. doi: 10.1098/rsif.2018.0026. PubMed DOI PMC
Bondanza M, Cupellini L, Lipparini F, Mennucci B. The multiple roles of the protein in the photoactivation of Orange Carotenoid Protein. Chem. 2020;6:187–203. doi: 10.1016/j.chempr.2019.10.014. DOI
Muzzopappa F, Kirilovsky D. Changing color for photoprotection: the Orange Carotenoid Protein. Trends Plant Sci. 2020;25:92–104. doi: 10.1016/j.tplants.2019.09.013. PubMed DOI
Champagne B, et al. Assessment of conventional density functional schemes for computing the dipole moment and (Hyper)polarizabilities of Push−Pull π-conjugated systems. J. Phys. Chem. A. 2000;104:4755–4763. doi: 10.1021/jp993839d. DOI
Bulat FA, Toro-Labbé A, Champagne B, Kirtman B, Yang W. Density-functional theory (hyper)polarizabilities of push-pull π-conjugated systems: treatment of exact exchange and role of correlation. J. Chem. Phys. 2005;123:014319. doi: 10.1063/1.1926275. PubMed DOI
Otsuka M, Mori Y, Takano K. Theoretical study on photophysical properties of 3′-hydroxyechinenone and the effects of interactions with orange carotenoid protein. Chem. Phys. Lett. 2016;647:95–102. doi: 10.1016/j.cplett.2016.01.028. DOI
Kerfeld CA. Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth Res. 2004;81:215–225. doi: 10.1023/B:PRES.0000036886.60187.c8. PubMed DOI
Enriquez MM, et al. The intramolecular charge transfer state in carbonyl-containing polyenes and carotenoids. J. Phys. Chem. B. 2010;114:12416–12426. doi: 10.1021/jp106113h. PubMed DOI PMC
Kildahl-Andersen G, Lutnaes BF, Liaaen-Jensen S. Protonated canthaxanthins as models for blue carotenoproteins. Org. Biomol. Chem. 2004;2:489–498. doi: 10.1039/B313639F. PubMed DOI
Kabsch W. XDS. Acta Crystallogr. Sect. D. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr. Sect. D. 2010;66:22–25. doi: 10.1107/S0907444909042589. PubMed DOI
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Murshudov GN, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D., Biol. Crystallogr. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC
Moldenhauer, M. et al. Assembly of photoactive orange carotenoid protein from its domains unravels a carotenoid shuttle mechanism. Photosynthesis Res. 133, 327–341 (2017). PubMed
Dobryakov AL, Pérez Lustres JL, Kovalenko SA, Ernsting NP. Femtosecond transient absorption with chirped pump and supercontinuum probe: Perturbative calculation of transient spectra with general lineshape functions, and simplifications. Chem. Phys. 2008;347:127–138. doi: 10.1016/j.chemphys.2007.11.003. DOI
Shelaev IV, et al. Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. Biochim. Biophys. Acta. 2010;1797:1410–1420. doi: 10.1016/j.bbabio.2010.02.026. PubMed DOI
Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI
Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI
Ditchfield R, Hehre WJ, Pople JA. Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 1971;54:724–728. doi: 10.1063/1.1674902. DOI
Hehre WJ, Ditchfield R, Pople JA. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972;56:2257–2261. doi: 10.1063/1.1677527. DOI
Kendall RA, Jr., Dunning TH, Harrison RJ. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI
Gutowski M, Chal/asiński G. Critical evaluation of some computational approaches to the problem of basis set superposition error. J. Chem. Phys. 1993;98:5540–5554. doi: 10.1063/1.464901. DOI
Su NQ, Xu X. Insights into direct methods for predictions of ionization potential and electron affinity in density functional theory. J. Phys. Chem. Lett. 2019;10:2692–2699. doi: 10.1021/acs.jpclett.9b01052. PubMed DOI
Lin Y-S, Li G-D, Mao S-P, Chai J-D. Long-range corrected hybrid density functionals with improved dispersion corrections. J. Chem. Theory Comput. 2013;9:263–272. doi: 10.1021/ct300715s. PubMed DOI
Casanova-Páez M, Dardis MB, Goerigk L. ωB2PLYP and ωB2GPPLYP: the first two double-hybrid density functionals with long-range correction optimized for excitation energies. J. Chem. Theory Comput. 2019;15:4735–4744. doi: 10.1021/acs.jctc.9b00013. PubMed DOI
Schmidt MW, et al. General atomic and molecular electronic structure system. J. Computational Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112. DOI