Climate change affected the spatio-temporal occurrence of disasters in China over the past five centuries
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
33972839
PubMed Central
PMC8074577
DOI
10.1098/rsos.200731
PII: rsos200731
Knihovny.cz E-zdroje
- Klíčová slova
- climate change, disasters, heterogeneous response, monsoon, westerlies,
- Publikační typ
- časopisecké články MeSH
Climate change may contribute to the spatio-temporal occurrence of disasters. Long-term studies of either homogeneous or heterogeneous responses of historical disasters to climate change are, however, limited by the quality and quantity of the available proxy data. Here we reconstruct spatio-temporal patterns of five types of disasters in China during the period AD 1368-1911. Our analyses of these time series reveal that warmer temperatures decreased the occurrence of disasters in the monsoon-affected parts of central-east China, but it increased the frequency and intensity of disasters along the boundary of arid and humid conditions in parts of southwest and northeast China, probably driven by the interplay among monsoon, westerlies, polar vortex and variation of temperature. Moreover, we show that drought and flood events had cascading effects on the occurrences of locust outbreaks, famine and human epidemics. Our findings suggest that climate can contribute to the spatio-temporal occurrence of disasters, and therefore may contribute to an improvement of China's regional to national risk management of future climate and environmental change.
Department of Geography University of Cambridge CB2 3EN Cambridge UK
Swiss Federal Research Institute WSL Zürcherstrasse 111 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Morens DM, Fauci AS. 2013. Emerging infectious diseases: threats to human health and global stability. PLoS Path. 9, e1003467. (10.1371/journal.ppat.1003467) PubMed DOI PMC
Jonkman SN. 2005. Global perspectives on loss of human life caused by floods. Nat. Hazards 34, 151-175. (10.1007/s11069-004-8891-3) DOI
Tilman D, El Haddi A. 1992. Drought and biodiversity in grasslands. Oecologia 89, 257-264. (10.1007/BF00317226) PubMed DOI
Johnson SL, Swanson FJ, Grant GE, Wondzell SM. 2000. Riparian forest disturbances by a mountain flood—the influence of floated wood. Hydrol. Processes 14, 3031-3050. (10.1002/1099-1085(200011/12)14:16/17<3031::AID-HYP133>3.0.CO;2-6) DOI
Schleussner C-F, Donges JF, Donner RV, Schellnhuber HJ. 2016. Armed-conflict risks enhanced by climate-related disasters in ethnically fractionalized countries. Proc. Natl Acad. Sci. USA 113, 9216-9221. (10.1073/pnas.1601611113) PubMed DOI PMC
Van Aalst MK. 2006. The impacts of climate change on the risk of natural disasters. Disasters 30, 5-18. (10.1111/j.1467-9523.2006.00303.x) PubMed DOI
Altizer S, Ostfeld RS, Johnson PT, Kutz S, Harvell CD. 2013. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514-519. (10.1126/science.1239401) PubMed DOI
Tian H, Yan C, Xu L, Büntgen U, Stenseth NC, Zhang Z. 2017. Scale-dependent climatic drivers of human epidemics in ancient China. Proc. Natl Acad. Sci. USA 114, 12 970-12 975. (10.1073/pnas.1706470114) PubMed DOI PMC
Zhang Z, Tian H, Cazelles B, Kausrud KL, Bräuning A, Guo F, Stenseth NC. 2010. Periodic climate cooling enhanced natural disasters and wars in China during AD 10–1900. Proc. R. Soc. B 277, 3745-3753. (10.1098/rspb20100890) PubMed DOI PMC
Schiermeier Q. 2011. Increased flood risk linked to global warming. Nature 476, 316. (10.1038/470316a) PubMed DOI
Dai A. 2013. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52-58. (10.1038/nclimate1633) DOI
Tian H, Stige LC, Cazelles B, Kausrud KL, Svarverud R, Stenseth NC, Zhang Z. 2011. Reconstruction of a 1,910-y-long locust series reveals consistent associations with climate fluctuations in China. Proc. Natl Acad. Sci. USA 108, 14 521-14 526. (10.1073/pnas.1100189108) PubMed DOI PMC
Xu L, Schmid BV, Liu J, Si X, Stenseth NC, Zhang Z. 2015. The trophic responses of two different rodent–vector–plague systems to climate change. Proc. R. Soc. B 282, 20141846. (10.1098/rspb.2014.1846) PubMed DOI PMC
Abeku TA, van Oortmarssen GJ, Borsboom G, de Vlas SJ, Habbema JDF. 2003. Spatial and temporal variations of malaria epidemic risk in Ethiopia: factors involved and implications. Acta Trop. 87, 331-340. (10.1016/S0001-706X(03)00123-2) PubMed DOI
Morgan WH, Thébault E, Seymour CL, van Veen FJF. 2017. Density dependence and environmental factors affect population stability of an agricultural pest and its specialist parasitoid. BioControl. 62, 175-184. (10.1007/s10526-016-9777-5) DOI
IPCC. 2014. Climate change 2014: synthesis report. In Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (eds Core Writing Team, Pachauri RK, Meyer LA). Geneva, Switzerland: IPCC.
Cutter SL. 2018. Compound, cascading, or complex disasters: what's in a name? Environment 60, 16-25.
Mellor JW, Gavian S. 1987. Famine: causes, prevention, and relief. Science 235, 539-545. (10.1126/science.235.4788.539) PubMed DOI
Zhang Z, Cazelles B, Tian H, Stige LC, Bräuning A, Stenseth NC. 2009. Periodic temperature-associated drought/flood drives locust plagues in China. Proc. R. Soc. B 276, 823-831. (10.1098/rspb.2008.1284) PubMed DOI PMC
Qu W-J, Zhang X-Y, Wang D, Shen Z-X, Mei F-M, Cheng Y, Yan L-W. 2004. The important significance of westerly wind study. Mar. Geol. Quat. Geol. 24, 125-132.
Chen F, Chen J, Huang W. 2009. A discussion on the westerly-dominated climate model in mid-latitude Asia during the modern interglacial period. Earth Sci. Front. 16, 23-32. (10.1016/S1872-5791(08)60120-7) DOI
Zhang D. 2004. A compendium of Chinese meteorological records of the last 3000 years. Jiangsu, Nanjing: Jiangsu Education Publishing House.
Donges JF, Schleussner C-F, Siegmund JF, Donner RV. 2016. Event coincidence analysis for quantifying statistical interrelationships between event time series. Eur. Phys. J. Spec. Top. 225, 471-487. (10.1140/epjst/e2015-50233-y) DOI
Siegmund JF, Siegmund N, Donner RV. 2017. CoinCalc—A new R package for quantifying simultaneities of event series. Comput. Geosci. 98, 64-72. (10.1016/j.cageo.2016.10.004) DOI
Pyper BJ, Peterman RM. 1998. Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can. J. Fish. Aquat. Sci. 55, 2127-2140. (10.1139/f98-104) DOI
He J, Yan C, Holyoak M, Wan X, Ren G, Hou Y, Xie Y, Zhang Z. 2018. Quantifying the effects of climate and anthropogenic change on regional species loss in China. PLoS ONE 13, e0199735. (10.1371/journal.pone.0199735) PubMed DOI PMC
Cook BI, Smerdon JE, Seager R, Coats S. 2014. Global warming and 21st century drying. Clim. Dyn. 43, 2607-2627. (10.1007/s00382-014-2075-y) DOI
Sun S, Sun B. 1995. The relationship between the anomalous winter monsoon circulation over East Asia and summer drought/flooding in the Yangtze and Huaihe River valley. Acta Meteorol. Sin. 53, 440-450.
Ding Y, Chan JC. 2005. The East Asian summer monsoon: an overview. Meteorol. Atmos. Phys. 89, 117-142. (10.1007/s00703-005-0125-z) DOI
Ding Y, Sun Y, Wang Z, Zhu Y, Song Y. 2009. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon. Part II: Possible causes. Int. J. Climatol. 29, 1926-1944. (10.1002/joc.1759) DOI
Zhang Q, Chen J, Becker S. 2007. Flood/drought change of last millennium in the Yangtze Delta and its possible connections with Tibetan climatic changes. Global Planet. Change 57, 213-221. (10.1016/j.gloplacha.2006.11.010) DOI
Chang EKM, Ma C-G, Zheng C, Yau AMW. 2016. Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys. Res. Lett. 43, 2200-2208. (10.1002/2016gl068172) DOI
Serreze MC, Barry RG. 2011. Processes and impacts of Arctic amplification: a research synthesis. Global Planet. Change 77, 85-96. (10.1016/j.gloplacha.2011.03.004) DOI
Harvey BJ, Shaffrey LC, Woollings TJ. 2014. Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim. Dyn. 43, 1171-1182. (10.1007/s00382-013-1883-9) DOI
Dai A. 2011. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45-65. (10.1002/wcc.81) DOI
Ueda H, Iwai A, Kuwako K, Hori ME. 2006. Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophys. Res. Lett. 33, L06703. (10.1029/2005gl025336) DOI
Lai S, et al. 2015. The changing epidemiology of dengue in China, 1990–2014: a descriptive analysis of 25 years of nationwide surveillance data. BMC Med. 13, 100. (10.1186/s12916-015-0336-1) PubMed DOI PMC
Kug J-S, Jeong J-H, Jang Y-S, Kim B-M, Folland CK, Min S-K, Son S-W. 2015. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 8, 759-762. (10.1038/ngeo2517) DOI
Fei J, Zhang DD, Lee HF. 2016. 1600 AD Huaynaputina eruption (Peru), abrupt cooling, and epidemics in China and Korea. Adv. Meteorol. 2016, 3217038. (10.1155/2016/3217038) DOI
Watson JT, Gayer M, Connolly MA. 2007. Epidemics after natural disasters. Emerging Infect. Dis. 13, 1. (10.3201/eid1301.060779) PubMed DOI PMC
Devereux S. 1994. Theories of famine. London, UK: Harvester Wheatsheaf.
Kennedy JS. 1956. Phase transformation in locust biology. Biol. Rev. 31, 349-370. (10.1111/j.1469-185X.1956.tb01595.x) DOI
Wright D. 1986. Damage and loss in yield of wheat crops caused by the Australian plague locust, Chortoicetes terminifera (Walker). Aust. J. Exp. Agric. 26, 613-618. (10.1071/EA9860613) DOI
figshare
10.6084/m9.figshare.c.5303073