• This record comes from PubMed

Barriers in systemic delivery and preclinical testing of synthetic microRNAs in animal models: an experimental study on miR-215-5p mimic

. 2021 Jul 12 ; 70 (3) : 481-487. [epub] 20210512

Language English Country Czech Republic Media print-electronic

Document type Journal Article

Mus musculus is the most commonly used animal model in microRNA research; however, little is known about the endogenous miRNome of the animals used in the miRNA-targeting preclinical studies with the human xenografts. In the presented study, we evaluated the NOD/SCID gamma mouse model for the preclinical study of systemic miR-215-5p substitution with a semitelechelic poly[N-(2-hydroxypropyl)-methacrylamide]-based carrier conjugated with miR-215-5p-mimic via a reductively degradable disulfide bond. Murine mmu-miR-215-5p and human hsa-miR-215-5p have a high homology of mature sequences with only one nucleotide substitution. Due to the high homology of hsa-miR-215-5p and mmu-hsa-miR-215-5p, a similar expression in human and NOD/SCID gamma mice was expected. Expression of mmu-miR-215 in murine organs did not indicate tissue-specific expression and was highly expressed in all examined tissues. All animals included in the study showed a significantly higher concentration of miR-215-5p in the blood plasma compared to human blood plasma, where miR-215-5p is on the verge of a reliable detection limit. However, circulating mmu-miR-215-5p did not enter the human xenograft tumors generated with colorectal cancer cell lines since the levels of miR-215-5p in control tumors remained notably lower compared to those originally transfected with miR-215-5p. Finally, the systemic administration of polymer-miR-215-5p-mimic conjugate to the tail vein did not increase miR-215-5p in NOD/SCID gamma mouse blood plasma, organs, and subcutaneous tumors. It was impossible to distinguish hsa-miR-215-5p and mmu-miR-215-5p in the murine blood and organs due to the high expression of endogenous mmu-miR-215-5p. In conclusion, the examination of endogenous tissue and circulating miRNome of an experimental animal model of choice might be necessary for future miRNA studies focused on the systemic delivery of miRNA-based drugs conducted in the animal models.

See more in PubMed

ALI SYEDA Z, SARATU’ LANGDEN SS, MUNKHZUL C, LEE M, SONG SJ. Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci. 2020;21:1723. doi: 10.3390/ijms21051723. PubMed DOI PMC

CHEN Z, LIU K, LI L, CHEN Y, SHOUQIN D. mir-215 promotes cell migration and invasion of gastric cancer by targeting retinoblastoma tumor suppressor gene 1. Pathol Res Pract. 2017;213:889–894. doi: 10.1016/j.prp.2017.06.006. PubMed DOI

GAO JB, ZHU MN, ZHU XL. miRNA-215-5p suppresses the aggressiveness of breast cancer cells by targeting Sox9. FEBS Open Bio. 2019;9:1957–1967. doi: 10.1002/2211-5463.12733. PubMed DOI PMC

GOLOMBEK SK, MAY J-N, THEEK B, APPOLD L, DRUDE N, KIESSLING F, LAMMERS T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Revs. 2018;130:17–38. doi: 10.1016/j.addr.2018.07.007. PubMed DOI PMC

GRIFFITHS-JONES S, SAINI HK, Van DONGEN S, ENRIGHT AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(Database issue):D154–D158. doi: 10.1093/nar/gkm952. PubMed DOI PMC

HAN J, ZHANG M, NIE C, JIA J, WANG F, YU J, BI W, LIU B, SHENG R, HE G, KONG L, ZHENG K, PANG R, DING Z, CEN L, ET AL. mir-215 suppresses papillary thyroid cancer proliferation, migration, and invasion through the AKT/GSK-3β/Snail signaling by targeting ARFGEF1. Cell Death Dis. 2019;10:195. doi: 10.1038/s41419-019-1444-1. PubMed DOI PMC

HANNA J, HOSSAIN GS, KOCERHA J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019;10:478. doi: 10.3389/fgene.2019.00478. PubMed DOI PMC

HOU Y, ZHEN J, XU X, ZHEN K, ZHU B, PAN R, ZHAO C. miR-215 functions as a tumor suppressor and directly targets ZEB2 in human non-small cell lung cancer. Oncol Lett. 2015;10:1985–1992. doi: 10.3892/ol.2015.3587. PubMed DOI PMC

JEYASEELAN K, LIM KY, ARMUGAM A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008;39:959–966. doi: 10.1161/STROKEAHA.107.500736. PubMed DOI

KARAAYVAZ M, PAL T, SONG B, ZHANG C, GEORGAKOPOULOS P, MEHMOOD S, BURKE S, SHROYER K, JU J. Prognostic significance of miR-215 in colon cancer. Clin Colorectal Cancer. 2011;10:340–347. doi: 10.1016/j.clcc.2011.06.002. PubMed DOI PMC

LAGOS-QUINTANA M, RAUHUT R, MEYER J, BORKHARDT A, TUSCHL T. New microRNAs from mouse and human. RNA. 2003;9:175–179. doi: 10.1261/rna.2146903. PubMed DOI PMC

LAI EC. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002;30:363–364. doi: 10.1038/ng865. PubMed DOI

LI N, ZHANG Q-Y, ZOU JL, LI Z-W, TIAN T-T, DONG B, LIU X-J, GE S, ZHU Y, GAO J, SHEN L. MiR-215 promotes malignant progression of gastric cancer by targeting RUNX1. Oncotarget. 2016;7:4817–4828. doi: 10.18632/oncotarget.6736. PubMed DOI PMC

PAL AS, KASINSKI AL. Animal models to study microRNA function. Adv Cancer Res. 2017;135:53–118. doi: 10.1016/bs.acr.2017.06.006. PubMed DOI PMC

REN Y, SHANG J, LI J, LIU W, ZHANG Z, YUAN J, YANG M. The long noncoding RNA PCAT-1 links the microRNA MiR-215 to oncogene CRKL-mediated signaling in hepatocellular carcinoma. J Biol Chem. 2017;292:17939–17949. doi: 10.1074/jbc.M116.773978. PubMed DOI PMC

SINGH A, BHATTACHARYYA N, SRIVASTAVA A, PRUETT N, TAYLOR RIPLEY R, SCHRUMP DS, HOANG CD. MicroRNA-215-5p treatment suppresses mesothelioma progression via the MDM2-P53-signaling axis. Mol Ther. 2019;27:1665–1680. doi: 10.1016/j.ymthe.2019.05.020. PubMed DOI PMC

SMITH A, CALLEY J, MATHUR S, QIAN H-R, WU H, FARMEN M, CAIMENT F, BUSHEL PR, LI J, FISHER C, KIRBY P, KOENIG E, HALL DG, WATSON DE. The rat microRNA body atlas; Evaluation of the microRNA content of rat organs through deep sequencing and characterization of pancreas enriched miRNAs as biomarkers of pancreatic toxicity in the rat and dog. BMC Genomics. 2016;17:694. doi: 10.1186/s12864-016-2956-z. PubMed DOI PMC

TAKADA S, BEREZIKOV E, YAMASHITA Y, LAGOS-QUINTANA M, KLOOSTERMAN WP, ENOMOTO M, HATANAKA H, FUJIWARA S, WATANABE H, SODA M, CHOI YL, PLASTERK RHA, CUPPEN E, MANO H. Mouse microRNA profiles determined with a new and sensitive cloning method. Nucleic Acids Res. 2006;34:e115. doi: 10.1093/nar/gkl653. PubMed DOI PMC

VACCHI-SUZZI C, BAUER Y, BERRIDGE BR, BONGIOVANNI S, GERRISH K, HAMADEH HK, LETZKUS M, LYON J, MOGGS J, PAULES RS, POGNAN F, STAEDTLER F, VIDGEON-HART MP, GRENET O, COUTTET P. Perturbation of microRNAs in rat heart during chronic doxorubicin treatment. PLoS One. 2012;7:e40395. doi: 10.1371/journal.pone.0040395. PubMed DOI PMC

VYCHYTILOVA-FALTEJSKOVA P, MERHAUTOVA J, MACHACKOVA T, GUTIERREZ-GARCIA I, GARCIA-SOLANO J, RADOVA L, BRCHNELOVA D, SLABA K, SVOBODA M, HALAMKOVA J, DEMLOVA R, KISS I, VYZULA R, CONESA-ZAMORA P, SLABY O. MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis. 2017;6:399. doi: 10.1038/s41389-017-0006-6. PubMed DOI PMC

WEI Y, SUN J, LI X. MicroRNA-215 enhances invasion and migration by targeting retinoblastoma tumor suppressor gene 1 in high-grade glioma. Biotechnol Lett. 2017;39:197–205. doi: 10.1007/s10529-016-2251-8. PubMed DOI

YAO J, ZHANG P, LI J, XU W. MicroRNA-215 acts as a tumor suppressor in breast cancer by targeting AKT serine/threonine kinase 1. Oncol Lett. 2017;14:1097–1104. doi: 10.3892/ol.2017.6200. PubMed DOI PMC

YAO Y, SHEN H, ZHOU Y, YANG Z, HU T. MicroRNA-215 suppresses the proliferation, migration and invasion of non-small cell lung carcinoma cells through the downregulation of matrix metalloproteinase-16 expression. Exp Ther Med. 2018;15:3239–3246. doi: 10.3892/etm.2018.5869. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...