The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
BB/M027252/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/T014210/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
33992808
PubMed Central
PMC8202326
DOI
10.1016/j.bbalip.2021.158965
PII: S1388-1981(21)00093-7
Knihovny.cz E-zdroje
- Klíčová slova
- Cell cycle, Cell division, Cell structure, Desmodesmus quadricauda, Green algae, Lipid composition, Lipid metabolism,
- MeSH
- buněčný cyklus * MeSH
- fosfatidylcholiny metabolismus biosyntéza MeSH
- fosfatidylethanolaminy metabolismus biosyntéza MeSH
- fosfolipidy * metabolismus biosyntéza MeSH
- lipidomika metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfatidylcholiny MeSH
- fosfatidylethanolaminy MeSH
- fosfolipidy * MeSH
- phosphatidylethanolamine MeSH Prohlížeč
The structural challenges faced by eukaryotic cells through the cell cycle are key for understanding cell viability and proliferation. We tested the hypothesis that the biosynthesis of structural lipids is linked to the cell cycle. If true, this would suggest that the cell's structure is important for progress through and perhaps even control of the cell cycle. Lipidomics (31P NMR and MS), proteomics (Western immunoblotting) and transcriptomics (RT-qPCR) techniques were used to profile the lipid fraction and characterise aspects of its metabolism at seven stages of the cell cycle of the model eukaryote, Desmodesmus quadricauda. We found considerable, transient increases in the abundance of phosphatidylethanolamine during the G1 phase (+35%, ethanolamine phosphate cytidylyltransferase increased 2·5×) and phosphatidylglycerol (+100%, phosphatidylglycerol synthase increased 22×) over the G1/pre-replication phase boundary. The relative abundance of phosphatidylcholine fell by ~35% during the G1. N-Methyl transferases for the conversion of phosphatidylethanolamine into phosphatidylcholine were not found in the de novo transcriptome profile, though a choline phosphate transferase was found, suggesting that the Kennedy pathway is the principal route for the synthesis of PC. The fatty acid profiles of the four most abundant lipids suggested that these lipids were not generally converted between one another. This study shows for the first time that there are considerable changes in the biosynthesis of the three most abundant phospholipid classes in the normal cell cycle of D. quadricauda, by margins large enough to elicit changes to the physical properties of membranes.
Department of Chemistry Universitetet i Oslo P O Box 1033 Blindern NO 0315 Oslo Norway
Department of Molecular Biology University of Bergen Thormøhlens gate 55 NO 5008 Bergen Norway
Zobrazit více v PubMed
Hartwell L.H. Nobel lecture: yeast and cancer. Biosci. Rep. 2002;22:373–394. PubMed
Hunt T. Nobel lecture: protein synthesis, proteolysis, and cell cycle transitions. Biosci. Rep. 2002;22:465–486. PubMed
Nurse P. Cyclin dependent kinases and cell cycle control (nobel lecture) ChemBioChem. 2002;3:596–603. PubMed
Mironov V., Veylder L. De, Montagu M. Van, Inzé D. Cyclin-dependent kinases and cell division in plants—the Nexus. Plant Cell. 1999;11:509–521. PubMed PMC
Renaudin J.-P., Doonan J.H., Freeman D., Hashimoto J., Hirt H., Inzé D., Jacobs T., Kouchi H., Rouzé P., Sauter M., Savouré A., Sorrell D.A., Sundaresan V., Murray J.A.H. Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Mol. Biol. 1996;32:1003–1018. PubMed
Bišová K., Krylov D.M., Umen J.G. Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. Plant Physiol. 2005;137:475–491. PubMed PMC
Kono K., Al-Zain A., Schroeder L., Nakanishi M., Ikui A.E. Plasma membrane/cell wall perturbation activates a novel cell cycle checkpoint during G1 in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 2016;113:6910–6915. PubMed PMC
E. Scotchman, K. Kume, F.J. Navarro, P. Nurse, Identification of mutants with increased variation in cell size at onset of mitosis in fission yeast, J. Cell Sci., 134 (2021) jcs251769. PubMed PMC
Taheri-Araghi S., Bradde S., Sauls John T., Hill Norbert S., Levin Petra A., Paulsson J., Vergassola M., Jun S. Cell-size control and homeostasis in bacteria. Curr. Biol. 2015;25:385–391. PubMed PMC
Robert L., Hoffmann M., Krell N., Aymerich S., Robert J., Doumic M. Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism. BMC Biol. 2014;12:17. PubMed PMC
Umen J.G. Sizing up the cell cycle: systems and quantitative approaches in Chlamydomonas. Curr. Opin. Plant Biol. 2018;46:96–103. PubMed PMC
Li Y., Liu D., López-Paz C., Olson B.J.S.C., Umen J.G. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division. eLife. 2016;5 PubMed PMC
Furse S., Wienk H., Boelens R., de Kroon A.I.P.M., Killian J.A. E. coli MG1655 modulates its phospholipid composition through the cell cycle. FEBS Lett. 2015;589:2726–2730. PubMed
Furse S., Jakubec M., Rise F., Williams H.E., Rees C.E.D., Halskau O. Evidence that Listeria innocua modulates its membrane’s stored curvature elastic stress, but not fluidity, through the cell cycle. Sci. Rep. 2017;7:8012. PubMed PMC
Blank H.M., Papoulas O., Maitra N., Garge R., Kennedy B.K., Schilling B., Marcotte E.M., Polymenis M. Abundances of transcripts, proteins, and metabolites in the cell cycle of budding yeast reveal coordinate control of lipid metabolism. Mol. Biol. Cell. 2020;31:1069–1084. PubMed PMC
S. Furse, G.C. Shearman, Do lipids shape the eukaryotic cell cycle?, Biochim. Biophys. Acta, 1863 (2018) 9–19. PubMed
Koynova R., Caffrey M. Phases and phase transitions of the hydrated phosphatidylethanolamines. Chem. Phys. Lipids. 1994;69:1–34. PubMed
R. Koynova, M. Caffrey, Phases and phase transitions of the phosphatidylcholines, Biochimica et Biophysica Acta 1376 (1998) 91–145. PubMed
Mulet X., Templer R.H., Woscholski R., Ces O. Evidence that phosphatidylinositol promotes curved membrane interfaces. Langmuir. 2008;24:8443–8447. PubMed
Furse S., Brooks N.J., Woscholski R., Gaffney P.R.J., Templer R.H. Pressure-dependent inverse bicontinuous cubic phase formation in a phosphatidylinositol 4-phosphate/phosphatidylcholine system. Chemical Data Collections. 2016;3-4:15–20.
Alley S.H., Ces O., Barahona M., Templer R.H. X-ray diffraction measurement of the monolayer spontaneous curvature of dioleoylphosphatidylglycerol. Chem. Phys. Lipids. 2008;154:64–67. PubMed
Petrache H.I., Tristram-Nagle S., Gawrisch K., Harries D., Parsegian V.A., Nagle J.F. Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys. J. 2004;86:1574–1586. PubMed PMC
Storck E.M., Özbalci C., Eggert U.S. Lipid cell biology: a focus on lipids in cell division. Annu. Rev. Biochem. 2018;87:839–869. PubMed
Zachleder V., Bišová K., Vítová M. The cell cycle of microalgae. In: Borowitzka A.M., Beardall J., Raven A.J., editors. The Physiology of Microalgae. Springer International Publishing; Cham: 2016. pp. 3–46.
Bišová K., Zachleder V. Cell-cycle regulation in green algae dividing by multiple fission. J. Exp. Bot. 2014;65:2585–2602. PubMed
M. Hlavova, M. Vitova, K. Bisova, Synchronization of green algae by light and dark regimes for cell cycle and cell division studies, in: M.C. Caillaud (Ed.) Plant Cell Division: Methods and Protocols, vol. 1370, Humana Press Inc, 999 Riverview Dr, Ste 208, Totowa, Nj 07512–1165 USA, 2016, pp. 3–16. PubMed
Zachleder V., Bišová K., Vítová M., Kubín S., Hendrychová J. Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors. Eur. J. Phycol. 2002;37:361–371.
Furse S. Is phosphatidylglycerol essential for terrestrial life? J. Chem. Biol. 2017;10:1–9. PubMed PMC
Furse S., Kroon A.I.P.M. de. Phosphatidylcholine’s functions beyond that of a membrane brick. Mol. Membr. Biol. 2015;32:117–119. PubMed
Furse S., Fernandez-Twinn D., Jenkins B., Meek C.L., Williams H.E., Smith G.C.S., Charnock-Jones D.S., Ozanne S.E., Koulman A. A high throughput platform for detailed lipidomic analysis of a range of mouse and human tissues. Anal. Bioanal. Chem. 2020;412:2851–2862. PubMed PMC
Furse S., Williams H.E.L., Watkins A.J., Virtue S., Vidal-Puig A., Amarsi R., Charalambous M., Koulman A. A pipeline for making 31P NMR accessible for small- and large-scale lipidomics studies. ChemRxiv. 2021 doi: 10.26434/chemrxiv.14053976.v1. In press. PubMed DOI PMC
Furse S., Liddell S., Ortori C.A., Williams H., Neylon D.C., Scott D.J., Barrett D.A., Gray D.A. The lipidome and proteome of oil bodies from Helianthus annuus (common sunflower) J. Chem. Biol. 2013;6:63–76. PubMed PMC
Felde R., Spiteller G. Search for plasmalogens in plants. Chem. Phys. Lipids. 1994;71:109–113.
Zhou Y., Peisker H., Dörmann P. Molecular species composition of plant cardiolipin determined by liquid chromatography mass spectrometry. J. Lipid Res. 2016;57:1308–1321. PubMed PMC
Atilla-Gokcumen G.E., Muro E., Relat-Goberna J., Sasse S., Bedigian A., Coughlin Margaret L., Garcia-Manyes S., Eggert Ulrike S. Dividing cells regulate their lipid composition and localization. Cell. 2014;156:428–439. PubMed PMC
Blouin A., Lavezzi T., Moore T.S. Membrane lipid biosynthesis in Chlamydomonas reinhardtii. Partial characterization of CDP-diacylglycerol: myo-inositol 3-phosphatidyltransferase. Plant Physiol. Biochem. 2003;41:11–16.
Tyler A.I.I., Barriga H.M.G., Parsons E.S., McCarthy N.L.C., Ces O., Law R.V., Seddon J.M., Brooks N.J. Electrostatic swelling of bicontinuous cubic lipid phases. Soft Matter. 2015;11:3279–3286. PubMed
Dawaliby R., Trubbia C., Delporte C., Noyon C., Ruysschaert J.-M., Antwerpen P. Van, Govaerts C. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J. Biol. Chem. 2016;291:3658–3667. PubMed PMC
Emoto K., Umeda M. An essential role for a membrane lipid in cytokinesis: regulation of contractile ring disassembly by redistribution of phosphatidylethanolamine. J. Cell Biol. 2000;149:1215–1224. PubMed PMC
J.M. Seddon, R.H. Templer, Polymorphism of lipid-water systems, in: R. Lipowsky, E. Sackman (Eds.) The Handbook of Biological Physics, vol. vol. I, Elsevier Science, 1995.
Peng A., Pisal D.S., Doty A., Balu-Iyer S.V. Phosphatidylinositol induces fluid phase formation and packing defects in phosphatidylcholine model membranes. Chem. Phys. Lipids. 2012;165:15–22. PubMed PMC
Furse S. The physical influence of inositides-a disproportionate effect? J. Chem. Biol. 2015;8:1–3. PubMed PMC
Emoto K., Inadome H., Kanaho Y., Narumiya S., Umeda M. Local change in phospholipid composition at the cleavage furrow is essential for completion of cytokinesis. J. Biol. Chem. 2005;280:37901–37907. PubMed
Emoto K., Kobayashi T., Yamaji A., Aizawa H., Yahara I., Inoue K., Umeda M. Redistribution of phosphatidylethanolamine at the cleavage furrow of dividing cells during cytokinesis. Proc. Natl. Acad. Sci. 1996;93:12867–12872. PubMed PMC
Kobayashi K. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. J. Plant Res. 2016;129:565–580. PubMed PMC
Schleiff E., Tien R., Salomon M., Soll J. Lipid composition of outer leaflet of chloroplast outer envelope determines topology of OEP7. Mol. Biol. Cell. 2001;12:4090–4102. PubMed PMC
Hung C.-H., Endo K., Kobayashi K., Nakamura Y., Wada H. Characterization of Chlamydomonas reinhardtii phosphatidylglycerophosphate synthase in Synechocystis sp. PCC 6803. Front. Microbiol. 2015;6 PubMed PMC
Kobayashi K., Endo K., Wada H. Multiple impacts of loss of plastidic phosphatidylglycerol biosynthesis on photosynthesis during seedling growth of Arabidopsis. Front. Plant Sci. 2016;7 PubMed PMC
Tanoue R., Kobayashi M., Katayama K., Nagata N., Wada H. Phosphatidylglycerol biosynthesis is required for the development of embryos and normal membrane structures of chloroplasts and mitochondria in Arabidopsis. FEBS Lett. 2014;588:1680–1685. PubMed
Cremonini M.A., Laghi L., Placucci G. Investigation of commercial lecithin by P-31 NMR in a ternary CUBO solvent. J. Sci. Food Agric. 2004;84:786–790.
Furse S., Brooks N.J., Seddon A.M., Woscholski R., Templer R.H., Tate E.W., Gaffney P.R.J., Ces O. Lipid membrane curvature induced by distearoyl phosphatidylinositol 4-phosphate. Soft Matter. 2012;8:3090–3093.
Barriga H.M.G., Tyler A.I.I., McCarthy N.L.C., Parsons E.S., Ces O., Law R.V., Seddon J.M., Brooks N.J. Temperature and pressure tuneable swollen bicontinuous cubic phases approaching nature's length scales. Soft Matter. 2015;11:600–607. PubMed
J.M. Seddon, Structure of the inverted hexagonal (Hii) phase, and non-lamellar phase-transitions of lipids, Biochim. Biophys. Acta, 1031 (1990) 1–69. PubMed
Seddon J.M., Templer R.H. Cubic phases of self-assembled amphiphilic aggregates. Philos Tr R Soc S - A. 1993;344:377–401.
Shearman G.C., Tyler A.I.I., Brooks N.J., Templer R.H., Ces O., Law R.V., Seddon J.M. Ordered micellar and inverse micellar lyotropic phases. Liq. Cryst. 2010;37:679–694.
Tang T.Y.D., Brooks N.J., Ces O., Seddon J.M., Templer R.H. Structural studies of the lamellar to bicontinuous gyroid cubic (QGII) phase transitions under limited hydration conditions. Soft Matter. 2015;11:1991–1997. PubMed
Burr R., Stewart E.V., Shao W., Zhao S., Hannibal-Bach H.K., Ejsing C.S., Espenshade P.J. Mga2 transcription factor regulates an oxygen-responsive lipid homeostasis pathway in fission yeast*. J. Biol. Chem. 2016;291:12171–12183. PubMed PMC
Burr R., Stewart E.V., Espenshade P.J. Coordinate regulation of yeast sterol regulatory element-binding protein (SREBP) and Mga2 transcription factors *. J. Biol. Chem. 2017;292:5311–5324. PubMed PMC
Jüppner J., Mubeen U., Leisse A., Caldana C., Brust H., Steup M., Herrmann M., Steinhauser D., Giavalisco P. Dynamics of lipids and metabolites during the cell cycle of Chlamydomonas reinhardtii. Plant J. 2017;92:331–343. PubMed
Giroud C., Gerber A., Eichenberger W. Lipids of Chlamydomonas reinhardtii. Analysis of molecular species and intracellular site(s) of biosynthesis. Plant Cell Physiol. 1988;29:587–595.
Liu G.-J., Xiao G.-H., Liu N.-J., Liu D., Chen P.-S., Qin Y.-M., Zhu Y.-X. Targeted lipidomics studies reveal that linolenic acid promotes cotton fiber elongation by activating phosphatidylinositol and phosphatidylinositol monophosphate biosynthesis. Mol. Plant. 2015;8:911–921. PubMed
Kurat C.F., Wolinski H., Petschnigg J., Kaluarachchi S., Andrews B., Natter K., Kohlwein S.D. Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol. Cell. 2009;33:53–63. PubMed
Scaglia N., Tyekucheva S., Zadra G., Photopoulos C., Loda M. De novo fatty acid synthesis at the mitotic exit is required to complete cellular division. Cell Cycle. 2014;13:859–868. PubMed PMC
Blank H.M., Perez R., He C., Maitra N., Metz R., Hill J., Lin Y., Johnson C.D., Bankaitis V.A., Kennedy B.K., Aramayo R., Polymenis M. Translational control of lipogenic enzymes in the cell cycle of synchronous, growing yeast cells. EMBO J. 2017;36:487–502. PubMed PMC
Radakovits R., Jinkerson R.E., Darzins A., Posewitz M.C. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell. 2010;9:486–501. PubMed PMC
Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–639. PubMed
Vítová M., Bišová K., Hlavová M., Zachleder V., Rucki M., Čížková M. Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat. Toxicol. 2011;102:87–94. PubMed
S. Furse, A. Koulman, The lipid and glyceride profiles of infant formula differ by manufacturer, region and date sold, Nutrients, 11 (2019) 1122. PubMed PMC
Furse S., Watkins A.J., Koulman A. Extraction of lipids from liquid biological samples for high-throughput lipidomics. Molecules. 2020;25:3192. PubMed PMC
Furse S., Koulman A. Lipid extraction from dried blood spots and dried milk spots for untargeted high throughput lipidomics. Mol. Omics. 2020;16:563–572. doi: 10.1039/D0MO00102C. PubMed DOI
Kochen M.A., Chambers M.C., Holman J.D., Nesvizhskii A.I., Weintraub S.T., Belisle J.T., Islam M.N., Griss J., Tabb D.L. Greazy: open-source software for automated phospholipid tandem mass spectrometry identification. Anal. Chem. 2016;88:5733–5741. PubMed PMC
Harshfield E.L., Koulman A., Ziemek D., Marney L., Fauman E.B., Paul D.S., Stacey D., Rasheed A., Lee J.-J., Shah N., Jabeen S., Imran A., Abbas S., Hina Z., Qamar N., Mallick N.H., Yaqoob Z., Saghir T., Rizvi S.N.H., Memon A., Rasheed S.Z., Memon F.-U.-R., Qureshi I.H., Ishaq M., Frossard P., Danesh J., Saleheen D., Butterworth A.S., Wood A.M., Griffin J.L. An unbiased lipid phenotyping approach to study the genetic determinants of lipids and their association with coronary heart disease risk factors. J. Proteome Res. 2019;18:2397–2410. PubMed PMC
Hlavová M., Cížková M., Vítová M., Bišová K.I., Zachleder V. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda. PLoS One. 2011;6 PubMed PMC
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680. PubMed
Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. 1979;76:4350–4354. PubMed PMC
Vítová M., Hendrychová J., Čížková M., Cepák V., Umen J.G., Zachleder V., Bišová K. Accumulation, activity and localization of cell cycle regulatory proteins and the chloroplast division protein FtsZ in the alga Scenedesmus quadricauda under inhibition of nuclear DNA replication. Plant Cell Physiol. 2008;49:1805–1817. PubMed
Langan T.A., Gautier J., Lohka M., Hollingsworth R., Moreno S., Nurse P., Maller J., Sclafani R.A. Mammalian growth-associated H1 histone kinase: a homolog of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells, Mol. Cell. Biol. 1989;9:3860–3868. PubMed PMC
Bisova K., Krylov D.M., Umen J.G. Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. Plant Physiology. 2005;137:1–17. PubMed PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed
Fan J., Ning K., Zeng X., Luo Y., Wang D., Hu J., Li J., Xu H., Huang J., Wan M., Wang W., Zhang D., Shen G., Run C., Liao J., Fang L., Huang S., Jing X., Su X., Wang A., Bai L., Hu Z., Xu J., Li Y. Genomic foundation of starch-to-lipid switch in oleaginous Chlorella spp. Plant Physiol. 2015;169:2444–2461. PubMed PMC
Lu S., Wang J., Ma Q., Yang J., Li X., Yuan Y.-J. Phospholipid metabolism in an industry microalga Chlorella sorokiniana: the impact of inoculum sizes. PLoS One. 2013;8 PubMed PMC
Khozin-Goldberg I. Lipid metabolism in microalgae. In: Borowitzka M.A., Beardall J., Raven J.A., editors. The Physiology of Microalgae. Springer International Publishing; Cham: 2016. pp. 413–484.
Ledesma-Amaro R., Dulermo R., Niehus X., Nicaud J.-M. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab. Eng. 2016;38:38–46. PubMed