The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote

. 2021 Aug ; 1866 (8) : 158965. [epub] 20210514

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33992808

Grantová podpora
BB/M027252/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/T014210/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 33992808
PubMed Central PMC8202326
DOI 10.1016/j.bbalip.2021.158965
PII: S1388-1981(21)00093-7
Knihovny.cz E-zdroje

The structural challenges faced by eukaryotic cells through the cell cycle are key for understanding cell viability and proliferation. We tested the hypothesis that the biosynthesis of structural lipids is linked to the cell cycle. If true, this would suggest that the cell's structure is important for progress through and perhaps even control of the cell cycle. Lipidomics (31P NMR and MS), proteomics (Western immunoblotting) and transcriptomics (RT-qPCR) techniques were used to profile the lipid fraction and characterise aspects of its metabolism at seven stages of the cell cycle of the model eukaryote, Desmodesmus quadricauda. We found considerable, transient increases in the abundance of phosphatidylethanolamine during the G1 phase (+35%, ethanolamine phosphate cytidylyltransferase increased 2·5×) and phosphatidylglycerol (+100%, phosphatidylglycerol synthase increased 22×) over the G1/pre-replication phase boundary. The relative abundance of phosphatidylcholine fell by ~35% during the G1. N-Methyl transferases for the conversion of phosphatidylethanolamine into phosphatidylcholine were not found in the de novo transcriptome profile, though a choline phosphate transferase was found, suggesting that the Kennedy pathway is the principal route for the synthesis of PC. The fatty acid profiles of the four most abundant lipids suggested that these lipids were not generally converted between one another. This study shows for the first time that there are considerable changes in the biosynthesis of the three most abundant phospholipid classes in the normal cell cycle of D. quadricauda, by margins large enough to elicit changes to the physical properties of membranes.

Zobrazit více v PubMed

Hartwell L.H. Nobel lecture: yeast and cancer. Biosci. Rep. 2002;22:373–394. PubMed

Hunt T. Nobel lecture: protein synthesis, proteolysis, and cell cycle transitions. Biosci. Rep. 2002;22:465–486. PubMed

Nurse P. Cyclin dependent kinases and cell cycle control (nobel lecture) ChemBioChem. 2002;3:596–603. PubMed

Mironov V., Veylder L. De, Montagu M. Van, Inzé D. Cyclin-dependent kinases and cell division in plants—the Nexus. Plant Cell. 1999;11:509–521. PubMed PMC

Renaudin J.-P., Doonan J.H., Freeman D., Hashimoto J., Hirt H., Inzé D., Jacobs T., Kouchi H., Rouzé P., Sauter M., Savouré A., Sorrell D.A., Sundaresan V., Murray J.A.H. Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Mol. Biol. 1996;32:1003–1018. PubMed

Bišová K., Krylov D.M., Umen J.G. Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. Plant Physiol. 2005;137:475–491. PubMed PMC

Kono K., Al-Zain A., Schroeder L., Nakanishi M., Ikui A.E. Plasma membrane/cell wall perturbation activates a novel cell cycle checkpoint during G1 in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 2016;113:6910–6915. PubMed PMC

E. Scotchman, K. Kume, F.J. Navarro, P. Nurse, Identification of mutants with increased variation in cell size at onset of mitosis in fission yeast, J. Cell Sci., 134 (2021) jcs251769. PubMed PMC

Taheri-Araghi S., Bradde S., Sauls John T., Hill Norbert S., Levin Petra A., Paulsson J., Vergassola M., Jun S. Cell-size control and homeostasis in bacteria. Curr. Biol. 2015;25:385–391. PubMed PMC

Robert L., Hoffmann M., Krell N., Aymerich S., Robert J., Doumic M. Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism. BMC Biol. 2014;12:17. PubMed PMC

Umen J.G. Sizing up the cell cycle: systems and quantitative approaches in Chlamydomonas. Curr. Opin. Plant Biol. 2018;46:96–103. PubMed PMC

Li Y., Liu D., López-Paz C., Olson B.J.S.C., Umen J.G. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division. eLife. 2016;5 PubMed PMC

Furse S., Wienk H., Boelens R., de Kroon A.I.P.M., Killian J.A. E. coli MG1655 modulates its phospholipid composition through the cell cycle. FEBS Lett. 2015;589:2726–2730. PubMed

Furse S., Jakubec M., Rise F., Williams H.E., Rees C.E.D., Halskau O. Evidence that Listeria innocua modulates its membrane’s stored curvature elastic stress, but not fluidity, through the cell cycle. Sci. Rep. 2017;7:8012. PubMed PMC

Blank H.M., Papoulas O., Maitra N., Garge R., Kennedy B.K., Schilling B., Marcotte E.M., Polymenis M. Abundances of transcripts, proteins, and metabolites in the cell cycle of budding yeast reveal coordinate control of lipid metabolism. Mol. Biol. Cell. 2020;31:1069–1084. PubMed PMC

S. Furse, G.C. Shearman, Do lipids shape the eukaryotic cell cycle?, Biochim. Biophys. Acta, 1863 (2018) 9–19. PubMed

Koynova R., Caffrey M. Phases and phase transitions of the hydrated phosphatidylethanolamines. Chem. Phys. Lipids. 1994;69:1–34. PubMed

R. Koynova, M. Caffrey, Phases and phase transitions of the phosphatidylcholines, Biochimica et Biophysica Acta 1376 (1998) 91–145. PubMed

Mulet X., Templer R.H., Woscholski R., Ces O. Evidence that phosphatidylinositol promotes curved membrane interfaces. Langmuir. 2008;24:8443–8447. PubMed

Furse S., Brooks N.J., Woscholski R., Gaffney P.R.J., Templer R.H. Pressure-dependent inverse bicontinuous cubic phase formation in a phosphatidylinositol 4-phosphate/phosphatidylcholine system. Chemical Data Collections. 2016;3-4:15–20.

Alley S.H., Ces O., Barahona M., Templer R.H. X-ray diffraction measurement of the monolayer spontaneous curvature of dioleoylphosphatidylglycerol. Chem. Phys. Lipids. 2008;154:64–67. PubMed

Petrache H.I., Tristram-Nagle S., Gawrisch K., Harries D., Parsegian V.A., Nagle J.F. Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys. J. 2004;86:1574–1586. PubMed PMC

Storck E.M., Özbalci C., Eggert U.S. Lipid cell biology: a focus on lipids in cell division. Annu. Rev. Biochem. 2018;87:839–869. PubMed

Zachleder V., Bišová K., Vítová M. The cell cycle of microalgae. In: Borowitzka A.M., Beardall J., Raven A.J., editors. The Physiology of Microalgae. Springer International Publishing; Cham: 2016. pp. 3–46.

Bišová K., Zachleder V. Cell-cycle regulation in green algae dividing by multiple fission. J. Exp. Bot. 2014;65:2585–2602. PubMed

M. Hlavova, M. Vitova, K. Bisova, Synchronization of green algae by light and dark regimes for cell cycle and cell division studies, in: M.C. Caillaud (Ed.) Plant Cell Division: Methods and Protocols, vol. 1370, Humana Press Inc, 999 Riverview Dr, Ste 208, Totowa, Nj 07512–1165 USA, 2016, pp. 3–16. PubMed

Zachleder V., Bišová K., Vítová M., Kubín S., Hendrychová J. Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors. Eur. J. Phycol. 2002;37:361–371.

Furse S. Is phosphatidylglycerol essential for terrestrial life? J. Chem. Biol. 2017;10:1–9. PubMed PMC

Furse S., Kroon A.I.P.M. de. Phosphatidylcholine’s functions beyond that of a membrane brick. Mol. Membr. Biol. 2015;32:117–119. PubMed

Furse S., Fernandez-Twinn D., Jenkins B., Meek C.L., Williams H.E., Smith G.C.S., Charnock-Jones D.S., Ozanne S.E., Koulman A. A high throughput platform for detailed lipidomic analysis of a range of mouse and human tissues. Anal. Bioanal. Chem. 2020;412:2851–2862. PubMed PMC

Furse S., Williams H.E.L., Watkins A.J., Virtue S., Vidal-Puig A., Amarsi R., Charalambous M., Koulman A. A pipeline for making 31P NMR accessible for small- and large-scale lipidomics studies. ChemRxiv. 2021 doi: 10.26434/chemrxiv.14053976.v1. In press. PubMed DOI PMC

Furse S., Liddell S., Ortori C.A., Williams H., Neylon D.C., Scott D.J., Barrett D.A., Gray D.A. The lipidome and proteome of oil bodies from Helianthus annuus (common sunflower) J. Chem. Biol. 2013;6:63–76. PubMed PMC

Felde R., Spiteller G. Search for plasmalogens in plants. Chem. Phys. Lipids. 1994;71:109–113.

Zhou Y., Peisker H., Dörmann P. Molecular species composition of plant cardiolipin determined by liquid chromatography mass spectrometry. J. Lipid Res. 2016;57:1308–1321. PubMed PMC

Atilla-Gokcumen G.E., Muro E., Relat-Goberna J., Sasse S., Bedigian A., Coughlin Margaret L., Garcia-Manyes S., Eggert Ulrike S. Dividing cells regulate their lipid composition and localization. Cell. 2014;156:428–439. PubMed PMC

Blouin A., Lavezzi T., Moore T.S. Membrane lipid biosynthesis in Chlamydomonas reinhardtii. Partial characterization of CDP-diacylglycerol: myo-inositol 3-phosphatidyltransferase. Plant Physiol. Biochem. 2003;41:11–16.

Tyler A.I.I., Barriga H.M.G., Parsons E.S., McCarthy N.L.C., Ces O., Law R.V., Seddon J.M., Brooks N.J. Electrostatic swelling of bicontinuous cubic lipid phases. Soft Matter. 2015;11:3279–3286. PubMed

Dawaliby R., Trubbia C., Delporte C., Noyon C., Ruysschaert J.-M., Antwerpen P. Van, Govaerts C. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J. Biol. Chem. 2016;291:3658–3667. PubMed PMC

Emoto K., Umeda M. An essential role for a membrane lipid in cytokinesis: regulation of contractile ring disassembly by redistribution of phosphatidylethanolamine. J. Cell Biol. 2000;149:1215–1224. PubMed PMC

J.M. Seddon, R.H. Templer, Polymorphism of lipid-water systems, in: R. Lipowsky, E. Sackman (Eds.) The Handbook of Biological Physics, vol. vol. I, Elsevier Science, 1995.

Peng A., Pisal D.S., Doty A., Balu-Iyer S.V. Phosphatidylinositol induces fluid phase formation and packing defects in phosphatidylcholine model membranes. Chem. Phys. Lipids. 2012;165:15–22. PubMed PMC

Furse S. The physical influence of inositides-a disproportionate effect? J. Chem. Biol. 2015;8:1–3. PubMed PMC

Emoto K., Inadome H., Kanaho Y., Narumiya S., Umeda M. Local change in phospholipid composition at the cleavage furrow is essential for completion of cytokinesis. J. Biol. Chem. 2005;280:37901–37907. PubMed

Emoto K., Kobayashi T., Yamaji A., Aizawa H., Yahara I., Inoue K., Umeda M. Redistribution of phosphatidylethanolamine at the cleavage furrow of dividing cells during cytokinesis. Proc. Natl. Acad. Sci. 1996;93:12867–12872. PubMed PMC

Kobayashi K. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. J. Plant Res. 2016;129:565–580. PubMed PMC

Schleiff E., Tien R., Salomon M., Soll J. Lipid composition of outer leaflet of chloroplast outer envelope determines topology of OEP7. Mol. Biol. Cell. 2001;12:4090–4102. PubMed PMC

Hung C.-H., Endo K., Kobayashi K., Nakamura Y., Wada H. Characterization of Chlamydomonas reinhardtii phosphatidylglycerophosphate synthase in Synechocystis sp. PCC 6803. Front. Microbiol. 2015;6 PubMed PMC

Kobayashi K., Endo K., Wada H. Multiple impacts of loss of plastidic phosphatidylglycerol biosynthesis on photosynthesis during seedling growth of Arabidopsis. Front. Plant Sci. 2016;7 PubMed PMC

Tanoue R., Kobayashi M., Katayama K., Nagata N., Wada H. Phosphatidylglycerol biosynthesis is required for the development of embryos and normal membrane structures of chloroplasts and mitochondria in Arabidopsis. FEBS Lett. 2014;588:1680–1685. PubMed

Cremonini M.A., Laghi L., Placucci G. Investigation of commercial lecithin by P-31 NMR in a ternary CUBO solvent. J. Sci. Food Agric. 2004;84:786–790.

Furse S., Brooks N.J., Seddon A.M., Woscholski R., Templer R.H., Tate E.W., Gaffney P.R.J., Ces O. Lipid membrane curvature induced by distearoyl phosphatidylinositol 4-phosphate. Soft Matter. 2012;8:3090–3093.

Barriga H.M.G., Tyler A.I.I., McCarthy N.L.C., Parsons E.S., Ces O., Law R.V., Seddon J.M., Brooks N.J. Temperature and pressure tuneable swollen bicontinuous cubic phases approaching nature's length scales. Soft Matter. 2015;11:600–607. PubMed

J.M. Seddon, Structure of the inverted hexagonal (Hii) phase, and non-lamellar phase-transitions of lipids, Biochim. Biophys. Acta, 1031 (1990) 1–69. PubMed

Seddon J.M., Templer R.H. Cubic phases of self-assembled amphiphilic aggregates. Philos Tr R Soc S - A. 1993;344:377–401.

Shearman G.C., Tyler A.I.I., Brooks N.J., Templer R.H., Ces O., Law R.V., Seddon J.M. Ordered micellar and inverse micellar lyotropic phases. Liq. Cryst. 2010;37:679–694.

Tang T.Y.D., Brooks N.J., Ces O., Seddon J.M., Templer R.H. Structural studies of the lamellar to bicontinuous gyroid cubic (QGII) phase transitions under limited hydration conditions. Soft Matter. 2015;11:1991–1997. PubMed

Burr R., Stewart E.V., Shao W., Zhao S., Hannibal-Bach H.K., Ejsing C.S., Espenshade P.J. Mga2 transcription factor regulates an oxygen-responsive lipid homeostasis pathway in fission yeast*. J. Biol. Chem. 2016;291:12171–12183. PubMed PMC

Burr R., Stewart E.V., Espenshade P.J. Coordinate regulation of yeast sterol regulatory element-binding protein (SREBP) and Mga2 transcription factors *. J. Biol. Chem. 2017;292:5311–5324. PubMed PMC

Jüppner J., Mubeen U., Leisse A., Caldana C., Brust H., Steup M., Herrmann M., Steinhauser D., Giavalisco P. Dynamics of lipids and metabolites during the cell cycle of Chlamydomonas reinhardtii. Plant J. 2017;92:331–343. PubMed

Giroud C., Gerber A., Eichenberger W. Lipids of Chlamydomonas reinhardtii. Analysis of molecular species and intracellular site(s) of biosynthesis. Plant Cell Physiol. 1988;29:587–595.

Liu G.-J., Xiao G.-H., Liu N.-J., Liu D., Chen P.-S., Qin Y.-M., Zhu Y.-X. Targeted lipidomics studies reveal that linolenic acid promotes cotton fiber elongation by activating phosphatidylinositol and phosphatidylinositol monophosphate biosynthesis. Mol. Plant. 2015;8:911–921. PubMed

Kurat C.F., Wolinski H., Petschnigg J., Kaluarachchi S., Andrews B., Natter K., Kohlwein S.D. Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol. Cell. 2009;33:53–63. PubMed

Scaglia N., Tyekucheva S., Zadra G., Photopoulos C., Loda M. De novo fatty acid synthesis at the mitotic exit is required to complete cellular division. Cell Cycle. 2014;13:859–868. PubMed PMC

Blank H.M., Perez R., He C., Maitra N., Metz R., Hill J., Lin Y., Johnson C.D., Bankaitis V.A., Kennedy B.K., Aramayo R., Polymenis M. Translational control of lipogenic enzymes in the cell cycle of synchronous, growing yeast cells. EMBO J. 2017;36:487–502. PubMed PMC

Radakovits R., Jinkerson R.E., Darzins A., Posewitz M.C. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell. 2010;9:486–501. PubMed PMC

Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–639. PubMed

Vítová M., Bišová K., Hlavová M., Zachleder V., Rucki M., Čížková M. Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat. Toxicol. 2011;102:87–94. PubMed

S. Furse, A. Koulman, The lipid and glyceride profiles of infant formula differ by manufacturer, region and date sold, Nutrients, 11 (2019) 1122. PubMed PMC

Furse S., Watkins A.J., Koulman A. Extraction of lipids from liquid biological samples for high-throughput lipidomics. Molecules. 2020;25:3192. PubMed PMC

Furse S., Koulman A. Lipid extraction from dried blood spots and dried milk spots for untargeted high throughput lipidomics. Mol. Omics. 2020;16:563–572. doi: 10.1039/D0MO00102C. PubMed DOI

Kochen M.A., Chambers M.C., Holman J.D., Nesvizhskii A.I., Weintraub S.T., Belisle J.T., Islam M.N., Griss J., Tabb D.L. Greazy: open-source software for automated phospholipid tandem mass spectrometry identification. Anal. Chem. 2016;88:5733–5741. PubMed PMC

Harshfield E.L., Koulman A., Ziemek D., Marney L., Fauman E.B., Paul D.S., Stacey D., Rasheed A., Lee J.-J., Shah N., Jabeen S., Imran A., Abbas S., Hina Z., Qamar N., Mallick N.H., Yaqoob Z., Saghir T., Rizvi S.N.H., Memon A., Rasheed S.Z., Memon F.-U.-R., Qureshi I.H., Ishaq M., Frossard P., Danesh J., Saleheen D., Butterworth A.S., Wood A.M., Griffin J.L. An unbiased lipid phenotyping approach to study the genetic determinants of lipids and their association with coronary heart disease risk factors. J. Proteome Res. 2019;18:2397–2410. PubMed PMC

Hlavová M., Cížková M., Vítová M., Bišová K.I., Zachleder V. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda. PLoS One. 2011;6 PubMed PMC

Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680. PubMed

Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. 1979;76:4350–4354. PubMed PMC

Vítová M., Hendrychová J., Čížková M., Cepák V., Umen J.G., Zachleder V., Bišová K. Accumulation, activity and localization of cell cycle regulatory proteins and the chloroplast division protein FtsZ in the alga Scenedesmus quadricauda under inhibition of nuclear DNA replication. Plant Cell Physiol. 2008;49:1805–1817. PubMed

Langan T.A., Gautier J., Lohka M., Hollingsworth R., Moreno S., Nurse P., Maller J., Sclafani R.A. Mammalian growth-associated H1 histone kinase: a homolog of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells, Mol. Cell. Biol. 1989;9:3860–3868. PubMed PMC

Bisova K., Krylov D.M., Umen J.G. Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. Plant Physiology. 2005;137:1–17. PubMed PMC

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed

Fan J., Ning K., Zeng X., Luo Y., Wang D., Hu J., Li J., Xu H., Huang J., Wan M., Wang W., Zhang D., Shen G., Run C., Liao J., Fang L., Huang S., Jing X., Su X., Wang A., Bai L., Hu Z., Xu J., Li Y. Genomic foundation of starch-to-lipid switch in oleaginous Chlorella spp. Plant Physiol. 2015;169:2444–2461. PubMed PMC

Lu S., Wang J., Ma Q., Yang J., Li X., Yuan Y.-J. Phospholipid metabolism in an industry microalga Chlorella sorokiniana: the impact of inoculum sizes. PLoS One. 2013;8 PubMed PMC

Khozin-Goldberg I. Lipid metabolism in microalgae. In: Borowitzka M.A., Beardall J., Raven J.A., editors. The Physiology of Microalgae. Springer International Publishing; Cham: 2016. pp. 413–484.

Ledesma-Amaro R., Dulermo R., Niehus X., Nicaud J.-M. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab. Eng. 2016;38:38–46. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Systemic analysis of lipid metabolism from individuals to multi-organism systems

. 2024 Oct 28 ; 20 (9) : 570-583. [epub] 20241028

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...