Disruption of paternal circadian rhythm affects metabolic health in male offspring via nongerm cell factors
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34039610
PubMed Central
PMC8153725
DOI
10.1126/sciadv.abg6424
PII: 7/22/eabg6424
Knihovny.cz E-zdroje
- MeSH
- cirkadiánní rytmus * genetika MeSH
- fenotyp MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Circadian rhythm synchronizes each body function with the environment and regulates physiology. Disruption of normal circadian rhythm alters organismal physiology and increases disease risk. Recent epidemiological data and studies in model organisms have shown that maternal circadian disruption is important for offspring health and adult phenotypes. Less is known about the role of paternal circadian rhythm for offspring health. Here, we disrupted circadian rhythm in male mice by night-restricted feeding and showed that paternal circadian disruption at conception is important for offspring feeding behavior, metabolic health, and oscillatory transcription. Mechanistically, our data suggest that the effect of paternal circadian disruption is not transferred to the offspring via the germ cells but initiated by corticosterone-based parental communication at conception and programmed during in utero development through a state of fetal growth restriction. These findings indicate paternal circadian health at conception as a newly identified determinant of offspring phenotypes.
Azrieli Faculty of Medicine Bar Ilan University Safed Israel
Department of Gynecology and Obstetrics University Hospital Essen Essen Germany
Zobrazit více v PubMed
Pittendrigh C. S., Temporal organization: Reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55, 17–54 (1993). PubMed
Dibner C., Schibler U., Albrecht U., The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010). PubMed
Golombek D. A., Rosenstein R. E., Physiology of circadian entrainment. Physiol. Rev. 90, 1063–1102 (2010). PubMed
Yoo S.-H., Yamazaki S., Lowrey P. L., Shimomura K., Ko C. H., Buhr E. D., Siepka S. M., Hong H.-K., Oh W. J., Yoo O. J., Menaker M., Takahashi J. S., PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 101, 5339–5346 (2004). PubMed PMC
Takahashi J. S., Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017). PubMed PMC
Vetter C., Circadian disruption: What do we actually mean? Eur. J. Neurosci. 51, 531–550 (2020). PubMed PMC
Bedrosian T. A., Fonken L. K., Nelson R. J., Endocrine effects of circadian disruption. Annu. Rev. Physiol. 78, 109–131 (2016). PubMed
Huang W., Ramsey K. M., Marcheva B., Bass J., Circadian rhythms, sleep, and metabolism. J. Clin. Invest. 121, 2133–2141 (2011). PubMed PMC
Logan R. W., McClung C. A., Rhythms of life: Circadian disruption and brain disorders across the lifespan. Nat. Rev. Neurosci. 20, 49–65 (2019). PubMed PMC
Shafi A. A., Knudsen K. E., Cancer and the Circadian Clock. Cancer Res. 79, 3806–3814 (2019). PubMed PMC
Walker W. H. II, Walton J. C., DeVries A. C., Nelson R. J., Circadian rhythm disruption and mental health. Transl. Psychiatry 10, 28 (2020). PubMed PMC
Bates K., Herzog E. D., Maternal-fetal circadian communication during pregnancy. Front Endocrinol. 11, 198 (2020). PubMed PMC
Canaple L., Gréchez-Cassiau A., Delaunay F., Dkhissi-Benyahya O., Samarut J., Maternal eating behavior is a major synchronizer of fetal and postnatal peripheral clocks in mice. Cell. Mol. Life Sci. 75, 3991–4005 (2018). PubMed PMC
Olejníková L., Polidarova L., Behuliak M., Sladek M., Sumova A., Circadian alignment in a foster mother improves the offspring’s pathological phenotype. J. Physiol. 596, 5757–5775 (2018). PubMed PMC
Smarr B. L., Grant A. D., Perez L., Zucker I., Kriegsfeld L. J., Maternal and early-life circadian disruption have long-lasting negative consequences on offspring development and adult behavior in mice. Sci. Rep. 7, 3326 (2017). PubMed PMC
Varcoe T. J., Gatford K. L., Kennaway D. J., Maternal circadian rhythms and the programming of adult health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R231–R241 (2018). PubMed
Leliavski A., Dumbell R., Ott V., Oster H., Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology. J. Biol. Rhythms 30, 20–34 (2015). PubMed
Leliavski A., Shostak A., Husse J., Oster H., Impaired glucocorticoid production and response to stress in Arntl-deficient male mice. Endocrinology 155, 133–142 (2014). PubMed
Oster H., Challet E., Ott V., Arvat E., de Kloet E. R., Dijk D.-J., Lightman S., Vgontzas A., van Cauter E., The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr. Rev. 38, 3–45 (2017). PubMed PMC
Ikeda Y., Sasaki H., Ohtsu T., Shiraishi T., Tahara Y., Shibata S., Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods. Chronobiol. Int. 32, 195–210 (2015). PubMed
Soták M., Bryndová J., Ergang P., Vagnerová K., Kvapilová P., Vodička M., Pácha J., Sumová A., Peripheral circadian clocks are diversely affected by adrenalectomy. Chronobiol. Int. 33, 520–529 (2016). PubMed
Whirledge S., DeFranco D. B., Glucocorticoid signaling in health and disease: Insights from tissue-specific GR knockout mice. Endocrinology 159, 46–64 (2018). PubMed PMC
Fowden A. L., Forhead A. J., Glucocorticoids as regulatory signals during intrauterine development. Exp. Physiol. 100, 1477–1487 (2015). PubMed
E. Turkay, A. Ozmen, G. Unek, I. Mendilcioglu, in Glucocorticoids - New Recognition of Our Familiar Friend (2012), chap. Chapter 13.
Moisiadis V. G., Matthews S. G., Glucocorticoids and fetal programming part 2: Mechanisms. Nat. Rev. Endocrinol. 10, 403–411 (2014). PubMed
Moisiadis V. G., Matthews S. G., Glucocorticoids and fetal programming part 1: Outcomes. Nat. Rev. Endocrinol. 10, 391–402 (2014). PubMed
Quinn M. A., McCalla A., He B., Xu X., Cidlowski J. A., Silencing of maternal hepatic glucocorticoid receptor is essential for normal fetal development in mice. Commun. Biol. 2, 104 (2019). PubMed PMC
Whirledge S. D., Oakley R. H., Myers P. H., Lydon J. P., DeMayo F., Cidlowski J. A., Uterine glucocorticoid receptors are critical for fertility in mice through control of embryo implantation and decidualization. Proc. Natl. Acad. Sci. U.S.A. 112, 15166–15171 (2015). PubMed PMC
Zhu P., Wang W., Zuo R., Sun K., Mechanisms for establishment of the placental glucocorticoid barrier, a guard for life. Cell. Mol. Life Sci. 76, 13–26 (2019). PubMed PMC
Fowden A. L., Forhead A. J., Endocrine mechanisms of intrauterine programming. Reproduction 127, 515–526 (2004). PubMed
Seckl J. R., Cleasby M., Nyirenda M. J., Glucocorticoids, 11beta-hydroxysteroid dehydrogenase, and fetal programming. Kidney Int. 57, 1412–1417 (2000). PubMed
Mukherji A., Kobiita A., Chambon P., Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proc. Natl. Acad. Sci. U.S.A. 112, E6683–E6690 (2015). PubMed PMC
Mukherji A., Kobiita A., Damara M., Misra N., Meziane H., Champy M. F., Chambon P., Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc. Natl. Acad. Sci. U.S.A. 112, E6691–E6698 (2015). PubMed PMC
Meyer-Kovac J., Kolbe I., Ehrhardt L., Leliavski A., Husse J., Salinas G., Lingner T., Tsang A. H., Barclay J. L., Oster H., Hepatic gene therapy rescues high-fat diet responses in circadian Clock mutant mice. Mol. Metab. 6, 512–523 (2017). PubMed PMC
INFRAFRONTIER Consortium , INFRAFRONTIER––providing mutant mouse resources as research tools for the international scientific community. Nucleic Acids Res. 43, D1171–D1175 (2015). PubMed PMC
Raess M., de Castro A. A., Gailus-Durner V., Fessele S., de Angelis M. H.; INFRAFRONTIER Consortium , INFRAFRONTIER: A European resource for studying the functional basis of human disease. Mamm. Genome 27, 445–450 (2016). PubMed PMC
Huypens P., Sass S., Wu M., Dyckhoff D., Tschöp M., Theis F., Marschall S., de Angelis M. H., Beckers J., Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat. Genet. 48, 497–499 (2016). PubMed
Tarazona S., Garcia-Alcalde F., Dopazo J., Ferrer A., Conesa A., Differential expression in RNA-seq: A matter of depth. Genome Res. 21, 2213–2223 (2011). PubMed PMC
Metsalu T., Vilo J., ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43, W566–W570 (2015). PubMed PMC
Huang D. W., Sherman B. T., Lempicki R. A., Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009). PubMed PMC
Huang D. W., Sherman B. T., Lempicki R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009). PubMed
Hughes M. E., Hogenesch J. B., Kornacker K., JTK_CYCLE: An efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms 25, 372–380 (2010). PubMed PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC
Stojanovska V., Dijkstra D. J., Vogtmann R., Gellhaus A., Scherjon S. A., Plösch T., A double-hit pre-eclampsia model results in sex-specific growth restriction patterns. Dis. Model. Mech. 12, dmm035980 (2019). PubMed PMC
Vogtmann R., Kühnel E., Dicke N., Verkaik-Schakel R. N., Plösch T., Schorle H., Stojanovska V., Herse F., Köninger A., Kimmig R., Winterhager E., Gellhaus A., Human sFLT1 Leads to severe changes in placental differentiation and vascularization in a Transgenic hsFLT1/rtTA FGR Mouse Model. Front. Endocrinol. 10, 165 (2019). PubMed PMC
Quagliarini F., Mir A. A., Balazs K., Wierer M., Dyar K. A., Jouffe C., Makris K., Hawe J., Heinig M., Filipp F. V., Barish G. D., Uhlenhaut N. H., Cistromic reprogramming of the diurnal glucocorticoid hormone response by high-fat diet. Mol. Cell 76, 531–545.e5 (2019). PubMed PMC
Karp N. A., Mason J., Beaudet A. L., Benjamini Y., Bower L., Braun R. E., Brown S. D. M., Chesler E. J., Dickinson M. E., Flenniken A. M., Fuchs H., de Angelis M. H., Gao X., Guo S., Greenaway S., Heller R., Herault Y., Justice M. J., Kurbatova N., Lelliott C. J., Lloyd K. C. K., Mallon A.-M., Mank J. E., Masuya H., Kerlie C. M., Meehan T. F., Mott R. F., Murray S. A., Parkinson H., Ramirez-Solis R., Santos L., Seavitt J. R., Smedley D., Sorg T., Speak A. O., Steel K. P., Svenson K. L.; International Mouse Phenotyping Consortium, Wakana S., West D., Wells S., Westerberg H., Yaacoby S., White J. K., Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat. Commun. 8, 15475 (2017). PubMed PMC
Aiken C. E., Ozanne S. E., Sex differences in developmental programming models. Reproduction 145, R1–R13 (2013). PubMed
Pembrey M. E., Bygren L. O., Kaati G., Edvinsson S., Northstone K., Sjöström M., Golding J.; ALSPAC Study Team , Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166 (2006). PubMed
Wever R. A., Sex differences in human circadian rhythms: Intrinsic periods and sleep fractions. Experientia 40, 1226–1234 (1984). PubMed
Lacagnina S., The Developmental Origins of Health and Disease (DOHaD). Am. J. Lifestyle Med. 14, 47–50 (2020). PubMed PMC
Dearden L., Ozanne S. E., Early life origins of metabolic disease: Developmental programming of hypothalamic pathways controlling energy homeostasis. Front. Neuroendocrinol. 39, 3–16 (2015). PubMed
Fukami T., Sun X., Li T., Desai M., Ross M. G., Mechanism of programmed obesity in intrauterine fetal growth restricted offspring: Paradoxically enhanced appetite stimulation in fed and fasting states. Reprod. Sci. 19, 423–430 (2012). PubMed PMC
Hart B., Morgan E., Alejandro E. U., Nutrient sensor signaling pathways and cellular stress in fetal growth restriction. J. Mol. Endocrinol. 62, R155–R165 (2019). PubMed PMC
Yung H. w., Hemberger M., Watson E. D., Senner C. E., Jones C. P., Kaufman R. J., Charnock-Jones D. S., Burton G. J., Endoplasmic reticulum stress disrupts placental morphogenesis: Implications for human intrauterine growth restriction. J. Pathol. 228, 554–564 (2012). PubMed PMC
Horseman N. D., Ehret C. F., Glucocorticosteroid injection is a circadian zeitgeber in the laboratory rat. Am. J. Physiol. 243, R373–R378 (1982). PubMed
Le Minh N., Damiola F., Tronche F., Schütz G., Schibler U., Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 20, 7128–7136 (2001). PubMed PMC
Schjenken J. E., Robertson S. A., Seminal fluid signalling in the female reproductive tract: Implications for reproductive success and offspring health. Adv. Exp. Med. Biol. 868, 127–158 (2015). PubMed
Bromfield J. J., Schjenken J. E., Chin P. Y., Care A. S., Jasper M. J., Robertson S. A., Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc. Natl. Acad. Sci. U.S.A. 111, 2200–2205 (2014). PubMed PMC
Chan J. C., Morgan C. P., Leu N. A., Shetty A., Cisse Y. M., Nugent B. M., Morrison K. E., Jašarević E., Huang W., Kanyuch N., Rodgers A. B., Bhanu N. V., Berger D. S., Garcia B. A., Ament S., Kane M., Epperson C. N., Bale T. L., Reproductive tract extracellular vesicles are sufficient to transmit intergenerational stress and program neurodevelopment. Nat. Commun. 11, 1499 (2020). PubMed PMC
Lane M., Robker R. L., Robertson S. A., Parenting from before conception. Science 345, 756–760 (2014). PubMed
Watkins A. J., Dias I., Tsuro H., Allen D., Emes R. D., Moreton J., Wilson R., Ingram R. J. M., Sinclair K. D., Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc. Natl. Acad. Sci. U.S.A. 115, 10064–10069 (2018). PubMed PMC
Qian J., Scheer F. A. J. L., Circadian system and glucose metabolism: Implications for physiology and disease. Trends Endocrinol. Metab. 27, 282–293 (2016). PubMed PMC
Skvortsova K., Iovino N., Bogdanović O., Functions and mechanisms of epigenetic inheritance in animals. Nat. Rev. Mol. Cell Biol. 19, 774–790 (2018). PubMed
Caminos J. E., Bravo S. B., González C. R., Garcés M. F., Cepeda L. A., González A. C., Cordido F., López M., Diéguez C., Food-intake-regulating-neuropeptides are expressed and regulated through pregnancy and following food restriction in rat placenta. Reprod. Biol. Endocrinol. 6, 14 (2008). PubMed PMC
Li C., McDonald T. J., Wu G., Nijland M. J., Nathanielsz P. W., Intrauterine growth restriction alters term fetal baboon hypothalamic appetitive peptide balance. J. Endocrinol. 217, 275–282 (2013). PubMed PMC
Matthews S. G., McGowan P. O., Developmental programming of the HPA axis and related behaviours: Epigenetic mechanisms. J. Endocrinol. 242, T69–T79 (2019). PubMed
Schmidt M., Rauh M., Schmid M. C., Huebner H., Ruebner M., Wachtveitl R., Cordasic N., Rascher W., Menendez-Castro C., Hartner A., Fahlbusch F. B., Influence of low protein diet-induced fetal growth restriction on the neuroplacental corticosterone axis in the rat. Front. Endocrinol. 10, 124 (2019). PubMed PMC
Son G. H., Chung S., Choe H. K., Kim H.-D., Baik S.-M., Lee H., Lee H.-W., Choi S., Sun W., Kim H., Cho S., Lee K. H., Kim K., Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc. Natl. Acad. Sci. U.S.A. 105, 20970–20975 (2008). PubMed PMC
Claydon A. J., Ramm S. A., Pennington A., Hurst J. L., Stockley P., Beynon R., Heterogenous turnover of sperm and seminal vesicle proteins in the mouse revealed by dynamic metabolic labeling. Mol. Cell. Proteomics 11, M111.014993 (2012). PubMed PMC
Binder N. K., Sheedy J. R., Hannan N. J., Gardner D. K., Male obesity is associated with changed spermatozoa Cox4i1 mRNA level and altered seminal vesicle fluid composition in a mouse model. Mol. Hum. Reprod. 21, 424–434 (2015). PubMed
Eisenberg M. L., Kim S., Chen Z., Sundaram R., Schisterman E. F., Buck Louis G. M., The relationship between male BMI and waist circumference on semen quality: Data from the LIFE study. Hum. Reprod. 29, 193–200 (2014). PubMed PMC
Hampl R., Kubátová J., Sobotka V., Heráček J., Steroids in semen, their role in spermatogenesis, and the possible impact of endocrine disruptors. Horm. Mol. Biol. Clin. Investig. 13, 1–5 (2013). PubMed
Olesti E., Garcia A., Rahban R., Rossier M. F., Boccard J., Nef S., González-Ruiz V., Rudaz S., Steroid profile analysis by LC-HRMS in human seminal fluid. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1136, 121929 (2020). PubMed
Kieffer T. E. C., Chin P. Y., Green E. S., Moldenhauer L. M., Prins J. R., Robertson S. A., Prednisolone in early pregnancy inhibits regulatory T cell generation and alters fetal and placental development in mice. Mol. Hum. Reprod. 26, 340–352 (2020). PubMed
Whirledge S., Cidlowski J. A., Glucocorticoids and reproduction: Traffic control on the road to reproduction. Trends Endocrinol. Metab. 28, 399–415 (2017). PubMed PMC
Cuffe J. S., O’Sullivan L., Simmons D. G., Anderson S. T., Moritz K. M., Maternal corticosterone exposure in the mouse has sex-specific effects on placental growth and mRNA expression. Endocrinology 153, 5500–5511 (2012). PubMed
Vaughan O. R., Sferruzzi-Perri A. N., Fowden A. L., Maternal corticosterone regulates nutrient allocation to fetal growth in mice. J. Physiol. 590, 5529–5540 (2012). PubMed PMC