A comprehensive phenotypic characterization of a whole-body Wdr45 knock-out mouse
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34043061
PubMed Central
PMC8458197
DOI
10.1007/s00335-021-09875-3
PII: 10.1007/s00335-021-09875-3
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- myši knockoutované MeSH
- myši MeSH
- transportní proteiny genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transportní proteiny MeSH
- Wdr45 protein, mouse MeSH Prohlížeč
Pathogenic variants in the WDR45 (OMIM: 300,526) gene on chromosome Xp11 are the genetic cause of a rare neurological disorder characterized by increased iron deposition in the basal ganglia. As WDR45 encodes a beta-propeller scaffold protein with a putative role in autophagy, the disease has been named Beta-Propeller Protein-Associated Neurodegeneration (BPAN). BPAN represents one of the four most common forms of Neurodegeneration with Brain Iron Accumulation (NBIA). In the current study, we generated and characterized a whole-body Wdr45 knock-out (KO) mouse model. The model, developed using TALENs, presents a 20-bp deletion in exon 2 of Wdr45. Homozygous females and hemizygous males are viable, proving that systemic depletion of Wdr45 does not impair viability and male fertility in mice. The in-depth phenotypic characterization of the mouse model revealed neuropathology signs at four months of age, neurodegeneration progressing with ageing, hearing and visual impairment, specific haematological alterations, but no brain iron accumulation. Biochemically, Wdr45 KO mice presented with decreased complex I (CI) activity in the brain, suggesting that mitochondrial dysfunction accompanies Wdr45 deficiency. Overall, the systemic Wdr45 KO described here complements the two mouse models previously reported in the literature (PMIDs: 26,000,824, 31,204,559) and represents an additional robust model to investigate the pathophysiology of BPAN and to test therapeutic strategies for the disease.
Department of Neurology Friedrich Baur Institute Ludwig Maximilians University 80336 Munich Germany
Deutsches Zentrum Für Neurodegenerative Erkrankungen Site Munich 81377 Munich Germany
German Center for Diabetes Research 85764 Neuherberg Germany
Institute of Developmental Genetics Helmholtz Zentrum München 85764 Neuherberg Germany
Institute of Human Genetics Technische Universität München 81675 Munich Germany
Institute of Neurogenomics Helmholtz Zentrum München 85764 Neuherberg Germany
Zobrazit více v PubMed
Abidi A, Mignon-Ravix C, Cacciagli P, Girard N, Milh M, Villard L. Early-onset epileptic encephalopathy as the initial clinical presentation of WDR45 deletion in a male patient. Eur J Hum Genet. 2016;24(4):615–618. doi: 10.1038/ejhg.2015.159. PubMed DOI PMC
André V, Gau C, Scheideler A, Aguilar-Pimentel JA, Amarie OV, Becker L, Garrett L, Hans W, Hölter SM, Janik D, Moreth K, Neff F, Östereicher M, Racz I, Rathkolb B, Rozman J, Bekeredjian R, Graw J, Klingenspor M, Klopstock T, Ollert M, Schmidt-Weber C, Wolf E, Wurst W, Gailus-Durner V, Brielmeier M, Fuchs H, Hrabé de Angelis M. Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLoS Biol. 2018;16(4):e2005019. doi: 10.1371/journal.pbio.2005019. PubMed DOI PMC
Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature. 2010;466(7302):68–76. doi: 10.1038/nature09204. PubMed DOI PMC
Belohlavkova A, Sterbova K, Betzler C, Burkhard S, Panzer A, Wolff M, Lassuthova P, Vlckova M, Kyncl M, Benova B, Jahodova A, Kudr M, Goerg M, Dusek P, Seeman P, Kluger G, Krsek P. Clinical features and blood iron metabolism markers in children with beta-propeller protein associated neurodegeneration. Eur J Paediatr Neurol. 2020;28:81–88. doi: 10.1016/j.ejpn.2020.07.010. PubMed DOI
Berger A, Mayr JA, Meierhofer D, Fötschl U, Bittner R, Budka H, Grethen C, Huemer M, Kofler B, Sperl W. Severe depletion of mitochondrial DNA in spinal muscular atrophy. Acta Neuropathol (berl) 2003;105(3):245–251. doi: 10.1007/s00401-002-0638-1. PubMed DOI
Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O’Kane CJ, Rubinsztein DC. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet. 2006;15(3):433–442. doi: 10.1093/hmg/ddi458. PubMed DOI
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science. 2009;326(5959):1509–1512. doi: 10.1126/science.1178811. PubMed DOI
Di Meo I, Tiranti V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol EJPN off J Eur Paediatr Neurol Soc. 2018;22(2):272–284. doi: 10.1016/j.ejpn.2018.01.008. PubMed DOI
Diogo CV, Yambire KF, Fernández Mosquera L, Branco FT, Raimundo N. Mitochondrial adventures at the organelle society. Biochem Biophys Res Commun. 2018;500(1):87–93. doi: 10.1016/j.bbrc.2017.04.124. PubMed DOI PMC
Feichtinger RG, Zimmermann F, Mayr JA, Neureiter D, Hauser-Kronberger C, Schilling FH, Jones N, Sperl W, Kofler B. Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma. BMC Cancer. 2010;10:149. doi: 10.1186/1471-2407-10-149. PubMed DOI PMC
Feichtinger RG, Pétervári E, Zopf M, Vidali S, Aminzadeh-Gohari S, Mayr JA, Kofler B, Balaskó M. Effects of alpha-melanocyte-stimulating hormone on mitochondrial energy metabolism in rats of different age-groups. Neuropeptides. 2017;64:123–130. doi: 10.1016/j.npep.2016.08.009. PubMed DOI
Fuchs H, Gailus-Durner V, Neschen S, Adler T, Afonso LC, Aguilar-Pimentel JA, Becker L, Bohla A, Calzada-Wack J, Cohrs C, Dewert A, Fridrich B, Garrett L, Glasl L, Götz A, Hans W, Hölter SM, Horsch M, Hurt A, Janas E, Janik D, Kahle M, Kistler M, Klein-Rodewald T, Lengger C, Ludwig T, Maier H, Marschall S, Micklich K, Möller G, Naton B, Prehn C, Puk O, Rácz I, Räss M, Rathkolb B, Rozman J, Scheerer M, Schiller E, Schrewe A, Steinkamp R, Stöger C, Sun M, Szymczak W, Treise I, Vargas Panesso IL, Vernaleken AM, Willershäuser M, Wolff-Muscate A, Zeh R, Adamski J, Beckers J, Bekeredjian R, Busch DH, Eickelberg O, Favor J, Graw J, Höfler H, Höschen C, Katus H, Klingenspor M, Klopstock T, Neff F, Ollert M, Schulz H, Stöger T, Wolf E, Wurst W, Yildirim AÖ, Zimmer A, Hrabě de Angelis M. Innovations in phenotyping of mouse models in the German Mouse Clinic. Mamm Genome off J Int Mamm Genome Soc. 2012;23(9–10):611–622. doi: 10.1007/s00335-012-9415-1. PubMed DOI PMC
Garrett L, Zhang J, Zimprich A, Niedermeier KM, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Vogt Weisenhorn D, Wurst W, Hölter SM. Conditional reduction of adult born doublecortin-positive neurons reversibly impairs selective behaviors. Front Behav Neurosci. 2015;9:302. doi: 10.3389/fnbeh.2015.00302. PubMed DOI PMC
Grubb SC, Maddatu TP, Bult CJ, Bogue MA. Mouse phenome database. Nucleic Acids Res. 2009 doi: 10.1093/nar/gkn778. PubMed DOI PMC
Haack TB, Hogarth P, Kruer MC, Gregory A, Wieland T, Schwarzmayr T, Graf E, Sanford L, Meyer E, Kara E, Cuno SM, Harik SI, Dandu VH, Nardocci N, Zorzi G, Dunaway T, Tarnopolsky M, Skinner S, Frucht S, Hanspal E, Schrander-Stumpel C, Héron D, Mignot C, Garavaglia B, Bhatia K, Hardy J, Strom TM, Boddaert N, Houlden HH, Kurian MA, Meitinger T, Prokisch H, Hayflick SJ. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am J Hum Genet. 2012;91(6):1144–1149. doi: 10.1016/j.ajhg.2012.10.019. PubMed DOI PMC
Haack TB, Hogarth P, Gregory A, Prokisch H, Hayflick SJ (2013) BPAN. In: International Review of Neurobiology. Elsevier, pp 85–90 PubMed
Hayflick SJ, Kruer MC, Gregory A, Haack TB, Kurian MA, Houlden HH, Anderson J, Boddaert N, Sanford L, Harik SI, Dandu VH, Nardocci N, Zorzi G, Dunaway T, Tarnopolsky M, Skinner S, Holden KR, Frucht S, Hanspal E, Schrander-Stumpel C, Mignot C, Héron D, Saunders DE, Kaminska M, Lin J-P, Lascelles K, Cuno SM, Meyer E, Garavaglia B, Bhatia K, de Silva R, Crisp S, Lunt P, Carey M, Hardy J, Meitinger T, Prokisch H, Hogarth P. Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain. 2013;136(6):1708–1717. doi: 10.1093/brain/awt095. PubMed DOI PMC
Hoffjan S, Ibisler A, Tschentscher A, Dekomien G, Bidinost C, Rosa AL. WDR45 mutations in Rett (-like) syndrome and developmental delay: Case report and an appraisal of the literature. Mol Cell Probes. 2016;30(1):44–49. doi: 10.1016/j.mcp.2016.01.003. PubMed DOI
International Mouse Phenotyping Consortium (IMPC) (2021) MGI:1919494
Ji C, Zhao H, Li D, Sun H, Hao J, Chen R, Wang X, Zhang H, Zhao YG. Role of Wdr45b in maintaining neural autophagy and cognitive function. Autophagy. 2020;16(4):615–625. doi: 10.1080/15548627.2019.1632621. PubMed DOI PMC
Kaleka G, McCormick ME, Krishnan A. Beta-Propeller Protein-Associated Neurodegeneration (BPAN) Detected in a Child with Epileptic Spasms. Cureus. 2019 doi: 10.7759/cureus.5404. PubMed DOI PMC
Masuya H, Inoue M, Wada Y, Shimizu A, Nagano J, Kawai A, Inoue A, Kagami T, Hirayama T, Yamaga A, Kaneda H, Kobayashi K, Minowa O, Miura I, Gondo Y, Noda T, Wakana S, Shiroishi T. Implementation of the modified-SHIRPA protocol for screening of dominant phenotypes in a large-scale ENU mutagenesis program. Mamm Genome. 2005;16(11):829–837. doi: 10.1007/s00335-005-2430-8. PubMed DOI
Meierhofer D, Mayr JA, Foetschl U, Berger A, Fink K, Schmeller N, Hacker GW, Hauser-Kronberger C, Kofler B, Sperl W. Decrease of mitochondrial DNA content and energy metabolism in renal cell carcinoma. Carcinogenesis. 2004;25(6):1005–1010. doi: 10.1093/carcin/bgh104. PubMed DOI
Nafar Z, Wen R, Guan Z, Li Y, Jiao S. Quantifying lipofuscin in retinal pigment epithelium in vivo by visible-light optical coherence tomography-based multimodal imaging. Sci Rep. 2020;10(1):2942. doi: 10.1038/s41598-020-59951-y. PubMed DOI PMC
Nakashima M, Takano K, Tsuyusaki Y, Yoshitomi S, Shimono M, Aoki Y, Kato M, Aida N, Mizuguchi T, Miyatake S, Miyake N, Osaka H, Saitsu H, Matsumoto N. WDR45 mutations in three male patients with West syndrome. J Hum Genet. 2016;61(7):653–661. doi: 10.1038/jhg.2016.27. PubMed DOI
Okamoto N, Ikeda T, Hasegawa T, Yamamoto Y, Kawato K, Komoto T, Imoto I. Early manifestations of BPAN in a pediatric patient. Am J Med Genet A. 2014;164(12):3095–3099. doi: 10.1002/ajmg.a.36779. PubMed DOI
Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A. WIPI-1α (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene. 2004;23(58):9314–9325. doi: 10.1038/sj.onc.1208331. PubMed DOI
Proikas-Cezanne T, Takacs Z, Dönnes P, Kohlbacher O. WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J Cell Sci. 2015;128(2):207–217. doi: 10.1242/jcs.146258. PubMed DOI
Rathkolb B, Fuchs H, Gailus-Durner V, Aigner B, Wolf E, Hrabě de Angelis M. Blood collection from mice and hematological analyses on mouse blood. Curr Protoc Mouse Biol. 2013;3(2):101–119. doi: 10.1002/9780470942390.mo130054. PubMed DOI
Rathkolb B, Hans W, Prehn C, Fuchs H, Gailus-Durner V, Aigner B, Adamski J, Wolf E, Hrabě de Angelis M. Clinical Chemistry and Other Laboratory Tests on Mouse Plasma or Serum. Curr Protoc Mouse Biol. 2013;3(2):69–100. doi: 10.1002/9780470942390.mo130043. PubMed DOI
Rathore GS, Schaaf CP, Stocco AJ. Novel mutation of the WDR45 gene causing beta-propeller protein-associated neurodegeneration. Mov Disord off J Mov Disord Soc. 2014;29(4):574–575. doi: 10.1002/mds.25868. PubMed DOI
Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet. 2002;11(9):1107–1117. doi: 10.1093/hmg/11.9.1107. PubMed DOI
Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ, Martin JE. Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome off J Int Mamm Genome Soc. 1997;8(10):711–713. doi: 10.1007/s003359900551. PubMed DOI
Rogers DC, Peters J, Martin JE, Ball S, Nicholson SJ, Witherden AS, Hafezparast M, Latcham J, Robinson TL, Quilter CA, Fisher EM. SHIRPA, a protocol for behavioral assessment: validation for longitudinal study of neurological dysfunction in mice. Neurosci Lett. 2001;306(1–2):89–92. doi: 10.1016/s0304-3940(01)01885-7. PubMed DOI
Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, Kasai-Yoshida E, Sawaura N, Nishida H, Hoshino A, Ryujin F, Yoshioka S, Nishiyama K, Kondo Y, Tsurusaki Y, Nakashima M, Miyake N, Arakawa H, Kato M, Mizushima N, Matsumoto N. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet. 2013;45(4):445–449. doi: 10.1038/ng.2562. PubMed DOI
Seibler P, Burbulla LF, Dulovic M, Zittel S, Heine J, Schmidt T, Rudolph F, Westenberger A, Rakovic A, Münchau A, Krainc D, Klein C. Iron overload is accompanied by mitochondrial and lysosomal dysfunction in WDR45 mutant cells. Brain. 2018;141(10):3052–3064. doi: 10.1093/brain/awy230. PubMed DOI PMC
Tiedemann LM, Reed D, Joseph A, Yoo SH. Ocular and systemic manifestations of beta-propeller protein-associated neurodegeneration. J Am Assoc Pediatr Ophthalmol Strabismus. 2018;22(5):403–405. doi: 10.1016/j.jaapos.2018.03.013. PubMed DOI
Ueda K, Zhao J, Kim HJ, Sparrow JR. Photodegradation of retinal bisretinoids in mouse models and implications for macular degeneration. Proc Natl Acad Sci. 2016;113(25):6904–6909. doi: 10.1073/pnas.1524774113. PubMed DOI PMC
Wan H, Wang Q, Chen X, Zeng Q, Shao Y, Fang H, Liao X, Li H-S, Liu M-G, Xu T-L, Diao M, Li D, Meng B, Tang B, Zhang Z, Liao L. WDR45 contributes to neurodegeneration through regulation of ER homeostasis and neuronal death. Autophagy. 2020;16(3):531–547. doi: 10.1080/15548627.2019.1630224. PubMed DOI PMC
Wang Y, Singh R, Massey AC, Kane SS, Kaushik S, Grant T, Xiang Y, Cuervo AM, Czaja MJ. Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus. J Biol Chem. 2008;283(8):4766–4777. doi: 10.1074/jbc.M706666200. PubMed DOI PMC
Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem. 2003;278(27):25009–25013. doi: 10.1074/jbc.M300227200. PubMed DOI
Zhang Y, Qi H, Taylor R, Xu W, Liu LF, Jin SV. The Role of Autophagy in Mitochondria Maintenance: Characterization of Mitochondrial Functions in Autophagy-Deficient S. cerevisiae Strains. Autophagy. 2007;3(4):337–346. doi: 10.4161/auto.4127. PubMed DOI
Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. 2011;29(2):149–153. doi: 10.1038/nbt.1775. PubMed DOI PMC
Zhao YG, Sun L, Miao G, Ji C, Zhao H, Sun H, Miao L, Yoshii SR, Mizushima N, Wang X, Zhang H. The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis. Autophagy. 2015;11(6):881–890. doi: 10.1080/15548627.2015.1047127. PubMed DOI PMC