Real-time measurement of ICD lead motion during stereotactic body radiotherapy of ventricular tachycardia
Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34046223
PubMed Central
PMC8149135
DOI
10.5603/rpor.a2021.0020
PII: rpor-26-1-128
Knihovny.cz E-zdroje
- Klíčová slova
- stereotactic body radiotherapy, ventricular tachycardia,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Here we aimed to evaluate the respiratory and cardiac-induced motion of a ICD lead used as surrogate in the heart during stereotactic body radiotherapy (SBRT) of ventricular tachycardia (VT). Data provides insight regarding motion and motion variations during treatment. MATERIALS AND METHODS: We analyzed the log files of surrogate motion during SBRT of ventricular tachycardia performed in 20 patients. Evaluated parameters included the ICD lead motion amplitudes; intrafraction amplitude variability; correlation error between the ICD lead and external markers; and margin expansion in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions to cover 90% or 95% of all amplitudes. RESULTS: In the SI, LL, and AP directions, respectively, the mean motion amplitudes were 5.0 ± 2.6, 3.4. ± 1.9, and 3.1 ± 1.6 mm. The mean intrafraction amplitude variability was 2.6 ± 0.9, 1.9 ± 1.3, and 1.6 ± 0.8 mm in the SI, LL, and AP directions, respectively. The margins required to cover 95% of ICD lead motion amplitudes were 9.5, 6.7, and 5.5 mm in the SI, LL, and AP directions, respectively. The mean correlation error was 2.2 ± 0.9 mm. CONCLUSIONS: Data from online tracking indicated motion irregularities and correlation errors, necessitating an increased CTV-PTV margin of 3 mm. In 35% of cases, the motion variability exceeded 3 mm in one or more directions. We recommend verifying the correlation between CTV and surrogate individually for every patient, especially for targets with posterobasal localization where we observed the highest difference between the lead and CTV motion.
Department of Cardiology Podlesi Hospital Trinec Czech Republic
Department of Oncology University Hospital Ostrava Ostrava Czech Republic
Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med. 1997;337(22):1576–1583. doi: 10.1056/NEJM199711273372202. PubMed DOI
Connolly S. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator study. Cardiac Arrest Study Hamburg . Canadian Implantable Defibrillator Study. Eur Heart J. 2000;21(24):2071–2078. doi: 10.1053/euhj.2000.2476. PubMed DOI
Moss AJ, Zareba W, Hall WJ, et al. Multicenter Automatic Defibrillator Implantation Trial II Investigators. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346(12):877–883. doi: 10.1056/NEJMoa013474. PubMed DOI
Nanthakumar K, Epstein AE, Kay GN, et al. Prophylactic implantable cardioverter-defibrillator therapy in patients with left ventricular systolic dysfunction: a pooled analysis of 10 primary prevention trials. J Am Coll Cardiol. 2004;44(11):2166–2172. doi: 10.1016/j.jacc.2004.08.054. PubMed DOI
Mallidi J, Nadkarni GN, Berger RD, et al. Meta-analysis of catheter ablation as an adjunct to medical therapy for treatment of ventricular tachycardia in patients with structural heart disease. Heart Rhythm. 2011;8(4):503–510. doi: 10.1016/j.hrthm.2010.12.015. PubMed DOI PMC
Marchlinski FE, Haffajee CI, Beshai JF, et al. Long-Term Success of Irrigated Radiofrequency Catheter Ablation of Sustained Ventricular Tachycardia: Post-Approval THER MOCOOL VT Trial. J Am Coll Cardiol. 2016;67(6):674–683. doi: 10.1016/j.jacc.2015.11.041. PubMed DOI
Sapp JL, Wells GA, Parkash R, et al. Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs. N Engl J Med. 2016;375(2):111–121. doi: 10.1056/NEJMoa1513614. PubMed DOI
Tokuda M, Kojodjojo P, Tung S, et al. Acute failure of catheter ablation for ventricular tachycardia due to structural heart disease: causes and significance. J Am Heart Assoc. 2013;2(3):e000072. doi: 10.1161/JAHA.113.000072. PubMed DOI PMC
Loo BW, Soltys SG, Wang L, et al. Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circ Arrhythm Electrophysiol. 2015;8(3):748–750. doi: 10.1161/CIRCEP.115.002765. PubMed DOI
Loo BW, Soltys SG, Wang L, et al. Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circ Arrhythm Electrophysiol. 2015;8(3):748–750. doi: 10.1161/CIRCEP.115.002765. PubMed DOI
Cvek J, Neuwirth R, Knybel L, et al. Cardiac radiosurgery for malignant ventricular tachycardia. Cureus. 2014;6(7):e190. doi: 10.7759/cureus.190.. DOI
Gianni C, Mohanty S, Trivedi C, et al. Alternative Approaches for Ablation of Resistant Ventricular Tachycardia. Card Electrophysiol Clin. 2017;9(1):93–98. doi: 10.1016/j.ccep.2016.10.006. PubMed DOI
Cuculich PS, Schill MR, Kashani R, et al. Noninvasive Cardiac Radiation for Ablation of Ventricular Tachycardia. N Engl J Med. 2017;377(24):2325–2336. doi: 10.1056/NEJMoa1613773. PubMed DOI PMC
Robinson CG, Samson PP, Moore KM, et al. Phase I/II Trial of Electrophysiology-Guided Noninvasive Cardiac Radioablation for Ventricular Tachycardia. Circulation. 2019;139(3):313–321. doi: 10.1161/CIRCULATIONAHA.118.038261. PubMed DOI PMC
Knutson NC, Samson PP, Hugo GD, et al. Radiation Therapy Workflow and Dosimetric Analysis from a Phase 1/2 Trial of Noninvasive Cardiac Radioablation for Ventricular Tachycardia. Int J Radiat Oncol Biol Phys. 2019;104(5):1114–1123. doi: 10.1016/j.ijrobp.2019.04.005. PubMed DOI
Jumeau R, Ozsahin M, Schwitter J, et al. Rescue procedure for an electrical storm using robotic non-invasive cardiac radio-ablation. Radiother Oncol. 2018;128(2):189–191. doi: 10.1016/j.radonc.2018.04.025. PubMed DOI
Haskova J, Peichl P, Pirk J, et al. Stereotactic radiosurgery as a treatment for recurrent ventricular tachycardia associated with cardiac fibroma. HeartRhythm Case Rep. 2019;5(1):44–47. doi: 10.1016/j.hrcr.2018.10.007. PubMed DOI PMC
Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822–834. doi: 10.1016/s0360-3016(02)02803-1. PubMed DOI
Chen T, Qin S, Xu X, et al. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management. Radiother Oncol. 2014;112(3):365–370. doi: 10.1016/j.radonc.2014.08.007. PubMed DOI PMC
Tong Y, Yin Y, Lu J, et al. Quantification of heart, pericardium, and left ventricular myocardium movements during the cardiac cycle for thoracic tumor radiotherapy. Onco Targets Ther. 2018;11:547–554. doi: 10.2147/OTT.S155680. PubMed DOI PMC
Zei PC, Soltys SG, Loo B. First-in-man treatment of arrhythmia (ventricular tachycardia) using stereotactic radiosurgery. Heart Rhythm. 2013;10:1–554.
Murphy MJ. Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys. 2002;29(3):334–344. doi: 10.1118/1.1448823. PubMed DOI
Hoogeman M, Prévost JB, Nuyttens J, et al. Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys. 2009;74(1):297–303. doi: 10.1016/j.ijrobp.2008.12.041. PubMed DOI
Pepin EW, Wu H, Zhang Y, et al. Correlation and prediction uncertainties in the cyberknife synchrony respiratory tracking system. Med Phys. 2011;38(7):4036–4044. doi: 10.1118/1.3596527. PubMed DOI PMC
Dieterich S, Green O, Booth J. SBRT targets that move with respiration. Phys Med. 2018;56:19–24. doi: 10.1016/j.ejmp.2018.10.021. PubMed DOI
Knybel L, Cvek J, Molenda L, et al. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume. Int J Radiat Oncol Biol Phys. 2016;96(4):751–758. doi: 10.1016/j.ijrobp.2016.08.008. PubMed DOI
Seppenwoolde Y, Berbeco RI, Nishioka S, et al. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys. 2007;34(7):2774–2784. doi: 10.1118/1.2739811. PubMed DOI
Braunstein SE, Descovich M, Johnson JA, et al. Effect of Stereotactic Tracking Method on Local Control in Early Stage Non-Small Cell Lung Cancer (NSC LC) Int J Radiat Oncol Biol Phys. 2014;90(1):S19. doi: 10.1016/j.ijrobp.2014.05.109. DOI
Ross C, Hussey D, Pennington E, et al. Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography. Int J Rad Oncol Biol Phys. 1990;18(3):671–677. doi: 10.1016/0360-3016(90)90076-v. PubMed DOI
Christ Z, Shang CY, Gibbard G, et al. Impact of Rotational Deviations on a Single Fiducial Based Respiratory Tracking. Int J Radiat Oncol Biol Phys. 2017;99(2):E650. doi: 10.1016/j.ijrobp.2017.06.2171. DOI
Wu X, Dieterich S, Orton CG. Point/counterpoint. Only a single implanted marker is needed for tracking lung cancers for IGRT. Med Phys. 2009;36(11):4845–4847. doi: 10.1118/1.3218765. PubMed DOI
Fuchs E, Müller MF, Oswald H, et al. Cardiac rotation and relaxation in patients with chronic heart failure. Eur J Heart Fail. 2004;6(6):715–722. doi: 10.1016/j.ejheart.2003.12.018. PubMed DOI
Seppenwoolde Y, Wunderink W, Wunderink-van Veen SR, et al. Treatment precision of image-guided liver SBRT using implanted fiducial markers depends on marker-tumour distance. Phys Med Biol. 2011;56(17):5445–5468. doi: 10.1088/0031-9155/56/17/001. PubMed DOI
Teo BK, Dieterich S, Blanck O, et al. SU-FF-T-559: Effect of Cardiac Motion On the Cyberknife Synchrony Tracking System for Radiosurgical Cardiac Ablation. Med Phys. 2009;36(6Part17):2653–2653. doi: 10.1118/1.3182057. DOI