Real-time measurement of ICD lead motion during stereotactic body radiotherapy of ventricular tachycardia

. 2021 ; 26 (1) : 128-137. [epub] 20210225

Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34046223

BACKGROUND: Here we aimed to evaluate the respiratory and cardiac-induced motion of a ICD lead used as surrogate in the heart during stereotactic body radiotherapy (SBRT) of ventricular tachycardia (VT). Data provides insight regarding motion and motion variations during treatment. MATERIALS AND METHODS: We analyzed the log files of surrogate motion during SBRT of ventricular tachycardia performed in 20 patients. Evaluated parameters included the ICD lead motion amplitudes; intrafraction amplitude variability; correlation error between the ICD lead and external markers; and margin expansion in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions to cover 90% or 95% of all amplitudes. RESULTS: In the SI, LL, and AP directions, respectively, the mean motion amplitudes were 5.0 ± 2.6, 3.4. ± 1.9, and 3.1 ± 1.6 mm. The mean intrafraction amplitude variability was 2.6 ± 0.9, 1.9 ± 1.3, and 1.6 ± 0.8 mm in the SI, LL, and AP directions, respectively. The margins required to cover 95% of ICD lead motion amplitudes were 9.5, 6.7, and 5.5 mm in the SI, LL, and AP directions, respectively. The mean correlation error was 2.2 ± 0.9 mm. CONCLUSIONS: Data from online tracking indicated motion irregularities and correlation errors, necessitating an increased CTV-PTV margin of 3 mm. In 35% of cases, the motion variability exceeded 3 mm in one or more directions. We recommend verifying the correlation between CTV and surrogate individually for every patient, especially for targets with posterobasal localization where we observed the highest difference between the lead and CTV motion.

Zobrazit více v PubMed

Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med. 1997;337(22):1576–1583. doi: 10.1056/NEJM199711273372202. PubMed DOI

Connolly S. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator study. Cardiac Arrest Study Hamburg . Canadian Implantable Defibrillator Study. Eur Heart J. 2000;21(24):2071–2078. doi: 10.1053/euhj.2000.2476. PubMed DOI

Moss AJ, Zareba W, Hall WJ, et al. Multicenter Automatic Defibrillator Implantation Trial II Investigators. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346(12):877–883. doi: 10.1056/NEJMoa013474. PubMed DOI

Nanthakumar K, Epstein AE, Kay GN, et al. Prophylactic implantable cardioverter-defibrillator therapy in patients with left ventricular systolic dysfunction: a pooled analysis of 10 primary prevention trials. J Am Coll Cardiol. 2004;44(11):2166–2172. doi: 10.1016/j.jacc.2004.08.054. PubMed DOI

Mallidi J, Nadkarni GN, Berger RD, et al. Meta-analysis of catheter ablation as an adjunct to medical therapy for treatment of ventricular tachycardia in patients with structural heart disease. Heart Rhythm. 2011;8(4):503–510. doi: 10.1016/j.hrthm.2010.12.015. PubMed DOI PMC

Marchlinski FE, Haffajee CI, Beshai JF, et al. Long-Term Success of Irrigated Radiofrequency Catheter Ablation of Sustained Ventricular Tachycardia: Post-Approval THER MOCOOL VT Trial. J Am Coll Cardiol. 2016;67(6):674–683. doi: 10.1016/j.jacc.2015.11.041. PubMed DOI

Sapp JL, Wells GA, Parkash R, et al. Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs. N Engl J Med. 2016;375(2):111–121. doi: 10.1056/NEJMoa1513614. PubMed DOI

Tokuda M, Kojodjojo P, Tung S, et al. Acute failure of catheter ablation for ventricular tachycardia due to structural heart disease: causes and significance. J Am Heart Assoc. 2013;2(3):e000072. doi: 10.1161/JAHA.113.000072. PubMed DOI PMC

Loo BW, Soltys SG, Wang L, et al. Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circ Arrhythm Electrophysiol. 2015;8(3):748–750. doi: 10.1161/CIRCEP.115.002765. PubMed DOI

Loo BW, Soltys SG, Wang L, et al. Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circ Arrhythm Electrophysiol. 2015;8(3):748–750. doi: 10.1161/CIRCEP.115.002765. PubMed DOI

Cvek J, Neuwirth R, Knybel L, et al. Cardiac radiosurgery for malignant ventricular tachycardia. Cureus. 2014;6(7):e190. doi: 10.7759/cureus.190.. DOI

Gianni C, Mohanty S, Trivedi C, et al. Alternative Approaches for Ablation of Resistant Ventricular Tachycardia. Card Electrophysiol Clin. 2017;9(1):93–98. doi: 10.1016/j.ccep.2016.10.006. PubMed DOI

Cuculich PS, Schill MR, Kashani R, et al. Noninvasive Cardiac Radiation for Ablation of Ventricular Tachycardia. N Engl J Med. 2017;377(24):2325–2336. doi: 10.1056/NEJMoa1613773. PubMed DOI PMC

Robinson CG, Samson PP, Moore KM, et al. Phase I/II Trial of Electrophysiology-Guided Noninvasive Cardiac Radioablation for Ventricular Tachycardia. Circulation. 2019;139(3):313–321. doi: 10.1161/CIRCULATIONAHA.118.038261. PubMed DOI PMC

Knutson NC, Samson PP, Hugo GD, et al. Radiation Therapy Workflow and Dosimetric Analysis from a Phase 1/2 Trial of Noninvasive Cardiac Radioablation for Ventricular Tachycardia. Int J Radiat Oncol Biol Phys. 2019;104(5):1114–1123. doi: 10.1016/j.ijrobp.2019.04.005. PubMed DOI

Jumeau R, Ozsahin M, Schwitter J, et al. Rescue procedure for an electrical storm using robotic non-invasive cardiac radio-ablation. Radiother Oncol. 2018;128(2):189–191. doi: 10.1016/j.radonc.2018.04.025. PubMed DOI

Haskova J, Peichl P, Pirk J, et al. Stereotactic radiosurgery as a treatment for recurrent ventricular tachycardia associated with cardiac fibroma. HeartRhythm Case Rep. 2019;5(1):44–47. doi: 10.1016/j.hrcr.2018.10.007. PubMed DOI PMC

Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822–834. doi: 10.1016/s0360-3016(02)02803-1. PubMed DOI

Chen T, Qin S, Xu X, et al. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management. Radiother Oncol. 2014;112(3):365–370. doi: 10.1016/j.radonc.2014.08.007. PubMed DOI PMC

Tong Y, Yin Y, Lu J, et al. Quantification of heart, pericardium, and left ventricular myocardium movements during the cardiac cycle for thoracic tumor radiotherapy. Onco Targets Ther. 2018;11:547–554. doi: 10.2147/OTT.S155680. PubMed DOI PMC

Zei PC, Soltys SG, Loo B. First-in-man treatment of arrhythmia (ventricular tachycardia) using stereotactic radiosurgery. Heart Rhythm. 2013;10:1–554.

Murphy MJ. Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys. 2002;29(3):334–344. doi: 10.1118/1.1448823. PubMed DOI

Hoogeman M, Prévost JB, Nuyttens J, et al. Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys. 2009;74(1):297–303. doi: 10.1016/j.ijrobp.2008.12.041. PubMed DOI

Pepin EW, Wu H, Zhang Y, et al. Correlation and prediction uncertainties in the cyberknife synchrony respiratory tracking system. Med Phys. 2011;38(7):4036–4044. doi: 10.1118/1.3596527. PubMed DOI PMC

Dieterich S, Green O, Booth J. SBRT targets that move with respiration. Phys Med. 2018;56:19–24. doi: 10.1016/j.ejmp.2018.10.021. PubMed DOI

Knybel L, Cvek J, Molenda L, et al. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume. Int J Radiat Oncol Biol Phys. 2016;96(4):751–758. doi: 10.1016/j.ijrobp.2016.08.008. PubMed DOI

Seppenwoolde Y, Berbeco RI, Nishioka S, et al. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys. 2007;34(7):2774–2784. doi: 10.1118/1.2739811. PubMed DOI

Braunstein SE, Descovich M, Johnson JA, et al. Effect of Stereotactic Tracking Method on Local Control in Early Stage Non-Small Cell Lung Cancer (NSC LC) Int J Radiat Oncol Biol Phys. 2014;90(1):S19. doi: 10.1016/j.ijrobp.2014.05.109. DOI

Ross C, Hussey D, Pennington E, et al. Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography. Int J Rad Oncol Biol Phys. 1990;18(3):671–677. doi: 10.1016/0360-3016(90)90076-v. PubMed DOI

Christ Z, Shang CY, Gibbard G, et al. Impact of Rotational Deviations on a Single Fiducial Based Respiratory Tracking. Int J Radiat Oncol Biol Phys. 2017;99(2):E650. doi: 10.1016/j.ijrobp.2017.06.2171. DOI

Wu X, Dieterich S, Orton CG. Point/counterpoint. Only a single implanted marker is needed for tracking lung cancers for IGRT. Med Phys. 2009;36(11):4845–4847. doi: 10.1118/1.3218765. PubMed DOI

Fuchs E, Müller MF, Oswald H, et al. Cardiac rotation and relaxation in patients with chronic heart failure. Eur J Heart Fail. 2004;6(6):715–722. doi: 10.1016/j.ejheart.2003.12.018. PubMed DOI

Seppenwoolde Y, Wunderink W, Wunderink-van Veen SR, et al. Treatment precision of image-guided liver SBRT using implanted fiducial markers depends on marker-tumour distance. Phys Med Biol. 2011;56(17):5445–5468. doi: 10.1088/0031-9155/56/17/001. PubMed DOI

Teo BK, Dieterich S, Blanck O, et al. SU-FF-T-559: Effect of Cardiac Motion On the Cyberknife Synchrony Tracking System for Radiosurgical Cardiac Ablation. Med Phys. 2009;36(6Part17):2653–2653. doi: 10.1118/1.3182057. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...