Stereotactic Ablative Radiotherapy of Ventricular Tachycardia Using Tracking: Optimized Target Definition Workflow
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35586650
PubMed Central
PMC9108236
DOI
10.3389/fcvm.2022.870127
Knihovny.cz E-zdroje
- Klíčová slova
- Cyberknife, deformation, motion management, radiotherapy, stereotactic, target definition, tracking,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND PURPOSE: Stereotactic arrhythmia radioablation (STAR) has been suggested as a promising therapeutic alternative in cases of failed catheter ablation for recurrent ventricular tachycardias in patients with structural heart disease. Cyberknife® robotic radiosurgery system utilizing target tracking technology is one of the available STAR treatment platforms. Tracking using implantable cardioverter-defibrillator lead tip as target surrogate marker is affected by the deformation of marker-target geometry. A simple method to account for the deformation in the target definition process is proposed. METHODS: Radiotherapy planning CT series include scans at expiration and inspiration breath hold, and three free-breathing scans. All secondary series are triple registered to the primary CT: 6D/spine + 3D translation/marker + 3D translation/target surrogate-a heterogeneous structure around the left main coronary artery. The 3D translation difference between the last two registrations reflects the deformation between the marker and the target (surrogate) for the respective respiratory phase. Maximum translation differences in each direction form an anisotropic geometry deformation margin (GDM) to expand the initial single-phase clinical target volume (CTV) to create an internal target volume (ITV) in the dynamic coordinates of the marker. Alternative GDM-based target volumes were created for seven recent STAR patients and compared to the original treated planning target volumes (PTVs) as well as to analogical volumes created using deformable image registration (DIR) by MIM® and Velocity® software. Intra- and inter-observer variabilities of the triple registration process were tested as components of the final ITV to PTV margin. RESULTS: A margin of 2 mm has been found to cover the image registration observer variability. GDM-based target volumes are larger and shifted toward the inspiration phase relative to the original clinical volumes based on a 3-mm isotropic margin without deformation consideration. GDM-based targets are similar (mean DICE similarity coefficient range 0.80-0.87) to their equivalents based on the DIR of the primary target volume delineated by dedicated software. CONCLUSION: The proposed GDM method is a simple way to account for marker-target deformation-related uncertainty for tracking with Cyberknife® and better control of the risk of target underdose. The principle applies to general radiotherapy as well.
Department of Oncology University Hospital Motol Praha Czechia
Department of Oncology University Hospital Ostrava Ostrava Czechia
Department of Radiation Protection General University Hospital Prague Praha Czechia
Faculty of Medicine University Hospital Ostrava Ostrava Czechia
Zobrazit více v PubMed
van der Ree MH, Blanck O, Limpens J, Lee CH, Balgobind B, Dieleman EM, et al. . Cardiac radioablation-a systematic review. Heart Rhythm. (2020) 17:1381–92. 10.1016/j.hrthm.2020.03.013 PubMed DOI
Lydiard S, Blanck O, Hugo G, O'Brien R, Keall P. A review of cardiac radioablation (CR) for arrhythmias: procedures, technology, and future opportunities. Int J Radiat Oncol Biol Phys. (2021) 109:783–800. 10.1016/j.ijrobp.2020.10.036 PubMed DOI
Fahimian BP, Loo BW, Soltys SG, Zei P, Lo AT, Maguire PJ, et al. . First in-human stereotactic arrhythmia radioablation (STAR) of ventricular tachycardia: dynamic tracking delivery analysis and implications. Int J Radiat Oncol Biol Phys. (2015) 93:E466–7. 10.1016/j.ijrobp.2015.07.1738 DOI
Cvek J, Neuwirth R, Knybel L, Molenda L, Otahal B, Pindor J, et al. . Cardiac radiosurgery for malignant ventricular tachycardia. Cureus. (2014) 6:e190. 10.7759/cureus.190 DOI
Wei C, Qian PC, Boeck M, Bredfeldt JS, Blankstein R, Tedrow UB, et al. . Cardiac stereotactic body radiation therapy for ventricular tachycardia: current experience and technical gaps. J Cardiovasc Electrophysiol. (2021) 32:2901–14. 10.1111/jce.15259 PubMed DOI
Guckenberger M, Baus WW, Blanck O, Combs SE, Debus J, Engenhart-Cabillic R et al. Definition and quality requirements for stereotactic radiotherapy: consensus statement from the DEGRO/DGMP working group stereotactic radiotherapy and radiosurgery. Strahlentherapie und Onkologie. (2020) 196:417–20. 10.1007/s00066-020-01603-1 PubMed DOI PMC
Knybel L, Cvek J, Neuwirth R, Jiravsky O, Hecko J, Penhaker M, et al. . Real-time measurement of ICD lead motion during stereotactic body radiotherapy of ventricular tachycardia. Rep Pract Oncol Radiothe. (2021) 26:128–37. 10.5603/RPOR.a2021.0020 PubMed DOI PMC
Neuwirth R, Cvek J, Knybel L, Jiravsky O, Molenda L, Kodaj M, et al. . Stereotactic radiosurgery for ablation of ventricular tachycardia. EP Europace. (2019) 21:1088–95. 10.1093/europace/euz133 PubMed DOI
Haskova J, Peichl P, Pirk J, Cvek J, Neuwirth R, Kautzner J. Stereotactic radiosurgery as a treatment for recurrent ventricular tachycardia associated with cardiac fibroma. HeartRhythm Case Rep. (2019) 5:44–7. 10.1016/j.hrcr.2018.10.007 PubMed DOI PMC
Lloyd MS, Wight J, Schneider F, Hoskins M, Attia T, Escott C, et al. . Clinical experience of stereotactic body radiation for refractory ventricular tachycardia in advanced heart failure patients. Heart Rhythm. (2020) 17:415–22. 10.1016/j.hrthm.2019.09.028 PubMed DOI
Gianni C, Rivera D, Burkhardt JD, Pollard B, Gardner E, Maguire P, et al. . Stereotactic arrhythmia radioablation for refractory scar-related ventricular tachycardia. Heart Rhythm. (2020) 17:1241–48. 10.1016/j.hrthm.2020.02.036 PubMed DOI
Loo Jr BW, Soltys SG, Wang L, Lo A, Fahimian BP, Iagaru A, et al. . Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circ Arrhythm Electrophysiol. (2015) 8:748–50. 10.1161/CIRCEP.115.002765 PubMed DOI
Kikinis R, Pieper SD, Vosburgh K. 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. Intraoperative Imaging Image-Guided Therapy. (2014) 3:277–89 10.1007/978-1-4614-7657-3_19 DOI
Zhu J, Chen X, Yang B, Bi N, Zhang T, Men K, et al. . Evaluation of automatic segmentation model with dosimetric metrics for radiotherapy of esophageal cancer. Front Oncol. (2020) 10:564737. 10.3389/fonc.2020.564737 PubMed DOI PMC
Huttenlocher DP, Klanderman GA, Rucklidge WJ. Comparing images using the hausdorff distance. IEEE Trans Pattern Anal and Mac Intell. (1993) 15:850–63. 10.1109/34.232073 DOI
Lawson JD, Schreibmann E, Jani AB, Fox T. Quantitative evaluation of a cone-beam computed tomography–planning computed tomography deformable image registration method for adaptive radiation therapy. J Appl Clin Med Phys. (2007) 8:96–113. 10.1120/jacmp.v8i4.2432 PubMed DOI PMC
Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM radiation therapy committee task group no. 132. Med Phys. (2017) 44:e43–76. 10.1002/mp.12256 PubMed DOI
Blanck O, Ipsen S, Chan MK, Bauer R, Kerl M, Hunold P, et al. . Treatment planning considerations for robotic guided cardiac radiosurgery for atrial fibrillation. Cureus. (2016) 8:e705. 10.7759/cureus.705 PubMed DOI PMC
Meroni R. Francesco La Torre (Accuray Inc.): personal communication. (2021).
Speight R, Sykes J, Lindsay R, Franks K, Thwaites D. The evaluation of a deformable image registration segmentation technique for semi-automating internal target volume (ITV) production from 4DCT images of lung stereotactic body radiotherapy (SBRT) patients. Radiother Oncol. (2011) 98:277–83. 10.1016/j.radonc.2010.12.007 PubMed DOI
Tong Y, Yin Y, Cheng P, Gong G. Impact of deformable image registration on dose accumulation applied electrocardiograph-gated 4DCT in the heart and left ventricular myocardium during esophageal cancer radiotherapy. Radiat Oncol. (2018) 13:1–7. 10.1186/s13014-018-1093-z PubMed DOI PMC
Abdel-Kafi S, Sramko M, Omara S, de Riva M, Cvek J, Peichl P, et al. . Accuracy of electroanatomical mapping-guided cardiac radiotherapy for ventricular tachycardia: pitfalls and solutions. EP Europace. (2021) 23:1989–97. 10.1093/europace/euab195 PubMed DOI
Repeated stereotactic radiotherapy of recurrent ventricular tachycardia