Longitudinal association between CRP levels and risk of psychosis: a meta-analysis of population-based cohort studies

. 2021 May 28 ; 7 (1) : 31. [epub] 20210528

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34050185

Grantová podpora
Wellcome Trust - United Kingdom
DRF-2018-11-ST2-018 Department of Health - United Kingdom
MC_PC_17213 Medical Research Council - United Kingdom
MR/S037675/1 Medical Research Council - United Kingdom

Odkazy

PubMed 34050185
PubMed Central PMC8163886
DOI 10.1038/s41537-021-00161-4
PII: 10.1038/s41537-021-00161-4
Knihovny.cz E-zdroje

Meta-analyses of cross-sectional studies suggest that patients with psychosis have higher circulating levels of C-reactive protein (CRP) compared with healthy controls; however, cause and effect is unclear. We examined the prospective association between CRP levels and subsequent risk of developing a psychotic disorder by conducting a systematic review and meta-analysis of population-based cohort studies. Databases were searched for prospective studies of CRP and psychosis. We obtained unpublished results, including adjustment for age, sex, body mass index, smoking, alcohol use, and socioeconomic status and suspected infection (CRP > 10 mg/L). Based on random effect meta-analysis of 89,792 participants (494 incident cases of psychosis at follow-up), the pooled odds ratio (OR) for psychosis for participants with high (>3 mg/L), as compared to low (≤3 mg/L) CRP levels at baseline was 1.50 (95% confidence interval [CI], 1.09-2.07). Evidence for this association remained after adjusting for potential confounders (adjusted OR [aOR] = 1.31; 95% CI, 1.03-1.66). After excluding participants with suspected infection, the OR for psychosis was 1.36 (95% CI, 1.06-1.74), but the association attenuated after controlling for confounders (aOR = 1.23; 95% CI, 0.95-1.60). Using CRP as a continuous variable, the pooled OR for psychosis per standard deviation increase in log(CRP) was 1.11 (95% CI, 0.93-1.34), and this association further attenuated after controlling for confounders (aOR = 1.07; 95% CI, 0.90-1.27) and excluding participants with suspected infection (aOR = 1.07; 95% CI, 0.92-1.24). There was no association using CRP as a categorical variable (low, medium or high). While we provide some evidence of a longitudinal association between high CRP (>3 mg/L) and psychosis, larger studies are required to enable definitive conclusions.

Applied Research Collaboration East of England National Institute for Health Research England UK

Barking Havering and Redbridge University Hospitals NHS Trust Romford UK

Cambridgeshire and Peterborough NHS Foundation Trust Cambridge UK

Center for Clinical Research and Prevention Bispebjerg and Frederiksberg Hospital Frederiksberg Denmark

Central Finland Health Care District Department of Medicine Jyväskylä Finland

Centre for Academic Mental Health Population Health Sciences Bristol Medical School University of Bristol Bristol UK

Department of Clinical Biochemistry Herlev and Gentofte Hospitals Herlev Denmark

Department of Kinanthropology and Humanities Charles University Prague Czech Republic

Department of Psychiatry University of Cambridge Cambridge UK

Department of Public Health and Primary Care University of Cambridge Cambridge UK

Institute of Clinical Medicine Department of Medicine University of Eastern Finland Kuopio Finland

Institute of Public Health and Clinical Nutrition University of Eastern Finland Kuopio Finland

MRC Integrative Epidemiology Unit Population Health Sciences Bristol Medical School University of Bristol Bristol UK

MRC London Institute of Medical Sciences Institute of Clinical Sciences Imperial College London London UK

National Institute for Health Research Bristol Biomedical Research Centre University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol Bristol UK

Psychiatric Center Ballerup Ballerup Denmark

Translational Health Sciences Bristol Medical School University of Bristol Learning and Research Building Southmead Hospital Bristol UK

Zobrazit více v PubMed

Dalman C, et al. Infections in the CNS during childhood and the risk of subsequent psychotic illness: a cohort study of more than one million Swedish subjects. Am. J. Psychiatry. 2008;165:59–65. doi: 10.1176/appi.ajp.2007.07050740. PubMed DOI

Leask SJ, Done DJ, Crow TJ. Adult psychosis, common childhood infections and neurological soft signs in a national birth cohort. Br. J. Psychiatry. 2002;181:387–392. doi: 10.1192/bjp.181.5.387. PubMed DOI

Koponen H, et al. Childhood central nervous system infections and risk for schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2004;254:9–13. doi: 10.1007/s00406-004-0485-2. PubMed DOI

Khandaker GM, Zimbron J, Dalman C, Lewis G, Jones PB. Childhood infection and adult schizophrenia: a meta-analysis of population-based studies. Schizophrenia Res. 2012;139:161–168. doi: 10.1016/j.schres.2012.05.023. PubMed DOI PMC

Sørensen HJ, Mortensen EL, Reinisch JM, Mednick SA. Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophrenia Bull. 2009;35:631–637. doi: 10.1093/schbul/sbn121. PubMed DOI PMC

Brown AS, et al. Maternal exposure to respiratory infections and adult schizophrenia spectrum disorders: a prospective birth cohort study. Schizophrenia Bull. 2000;26:287–295. doi: 10.1093/oxfordjournals.schbul.a033453. PubMed DOI

Babulas V, Factor-Litvak P, Goetz R, Schaefer CA, Brown AS. Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am. J. Psychiatry. 2006;163:927–929. doi: 10.1176/ajp.2006.163.5.927. PubMed DOI

Nielsen PR, Laursen TM, Mortensen PB. Association between parental hospital-treated infection and the risk of schizophrenia in adolescence and early adulthood. Schizophrenia Bull. 2013;39:230–237. doi: 10.1093/schbul/sbr149. PubMed DOI PMC

Potvin S, et al. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol. Psychiatry. 2008;63:801–808. doi: 10.1016/j.biopsych.2007.09.024. PubMed DOI

Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol. Psychiatry. 2011;70:663–671. doi: 10.1016/j.biopsych.2011.04.013. PubMed DOI PMC

Miller BJ, Gassama B, Sebastian D, Buckley P, Mellor A. Meta-analysis of lymphocytes in schizophrenia: clinical status and antipsychotic effects. Biol. Psychiatry. 2013;73:993–999. doi: 10.1016/j.biopsych.2012.09.007. PubMed DOI PMC

Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry. 2016;21:1696–1709. doi: 10.1038/mp.2016.3. PubMed DOI PMC

Miller BJ, Culpepper N, Rapaport MH. C-reactive protein levels in schizophrenia: a review and meta-analysis. Clin. Schizophr. Relat. Psychoses. 2014;7:223–230. doi: 10.3371/CSRP.MICU.020813. PubMed DOI

Fernandes B, et al. C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: meta-analysis and implications. Mol. Psychiatry. 2016;21:554. doi: 10.1038/mp.2015.87. PubMed DOI

Pillinger T, et al. A Meta-analysis of immune parameters, variability, and assessment of modal distribution in psychosis and test of the immune subgroup hypothesis. Schizophrenia Bull. 2019;45:1120–1133. doi: 10.1093/schbul/sby160. PubMed DOI PMC

Upthegrove R, Manzanares-Teson N, Barnes NM. Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophrenia Res. 2014;155:101–108. doi: 10.1016/j.schres.2014.03.005. PubMed DOI

Danesh J, et al. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. Bmj. 2000;321:199–204. doi: 10.1136/bmj.321.7255.199. PubMed DOI PMC

Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. JAMA. 1999;282:2131–2135. doi: 10.1001/jama.282.22.2131. PubMed DOI

von Känel R, et al. Evidence for low-grade systemic proinflammatory activity in patients with posttraumatic stress disorder. J. Psychiatr. Res. 2007;41:744–752. doi: 10.1016/j.jpsychires.2006.06.009. PubMed DOI

Osimo EF, Baxter LJ, Lewis G, Jones PB, Khandaker GM. Prevalence of Low-grade Inflammation in Depression: a systematic review and meta-analysis of CRP levels. Psychological Med. 2019;49:1958–1970. doi: 10.1017/S0033291719001454. PubMed DOI PMC

Osimo EF, Cardinal RN, Jones PB, Khandaker GM. Prevalence and correlates of low-grade systemic inflammation in adult psychiatric inpatients: an electronic health record-based study. Psychoneuroendocrinology. 2018;91:226–234. doi: 10.1016/j.psyneuen.2018.02.031. PubMed DOI PMC

Wysokiński A, Margulska A, Strzelecki D, Kłoszewska I. Levels of C-reactive protein (CRP) in patients with schizophrenia, unipolar depression and bipolar disorder. Nord. J. Psychiatry. 2015;69:346–353. doi: 10.3109/08039488.2014.984755. PubMed DOI

De Berardis D, et al. The role of C-reactive protein in mood disorders. Int J. Immunopathol. Pharm. 2006;19:721–725. doi: 10.1177/039463200601900402. PubMed DOI

De Berardis D, et al. Alexithymia, suicide ideation, C-reactive protein, and serum lipid levels among outpatients with generalized anxiety disorder. Arch. Suicide Res. 2017;21:100–112. doi: 10.1080/13811118.2015.1004485. PubMed DOI

De Berardis D, et al. Evaluation of C-reactive protein and total serum cholesterol in adult patients with bipolar disorder. Int J. Immunopathol. Pharm. 2008;21:319–324. doi: 10.1177/039463200802100208. PubMed DOI

Orsolini L, et al. Protein-C reactive as biomarker predictor of schizophrenia phases of illness? A systematic review. Curr. Neuropharmacol. 2018;16:583–606. doi: 10.2174/1570159X16666180119144538. PubMed DOI PMC

Menard, S. Handbook of lOngitudinal Research: Design, Measurement, and Analysis. (Elsevier, 2007).

Wium-Andersen MK, Ørsted DD, Nordestgaard BG. Elevated C-reactive protein associated with late-and very-late-onset schizophrenia in the general population: a prospective study. Schizophrenia Bull. 2014;40:1117–1127. doi: 10.1093/schbul/sbt120. PubMed DOI PMC

Khandaker GM, Pearson RM, Zammit S, Lewis G, Jones PB. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatry. 2014;71:1121–1128. doi: 10.1001/jamapsychiatry.2014.1332. PubMed DOI PMC

Laukkanen T, Laukkanen JA, Kunutsor SK. Sauna bathing and risk of psychotic disorders: a prospective cohort study. Med. Princ. Pract. 2018;27:562–569. doi: 10.1159/000493392. PubMed DOI PMC

Metcalf SA, et al. Serum C-reactive protein in adolescence and risk of schizophrenia in adulthood: a prospective birth cohort study. Brain Behav. Immun. 2017;59:253–259. doi: 10.1016/j.bbi.2016.09.008. PubMed DOI PMC

Francesconi M, et al. Internalising symptoms mediate the longitudinal association between childhood inflammation and psychotic-like experiences in adulthood. Schizophrenia Res. 2020;215:424–429. doi: 10.1016/j.schres.2019.07.035. PubMed DOI

Miller, B. J. et al. Inflammation, hippocampal volume, and cognition in schizophrenia: results from the Northern Finland Birth Cohort 1966. Eur. Arch. Psychiatry Clin. Neurosci. 10.1007/s00406-020-01134-x (2020). PubMed

Perry BI, Zammit S, Jones PB, Khandaker GM. Childhood inflammatory markers and risks for psychosis and depression at age 24: examination of temporality and specificity of association in a population-based prospective birth cohort. Schizophrenia Res. 2021;230:69–76. doi: 10.1016/j.schres.2021.02.008. PubMed DOI PMC

Pearson TA, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107:499–511. doi: 10.1161/01.CIR.0000052939.59093.45. PubMed DOI

Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010;25:603–605. doi: 10.1007/s10654-010-9491-z. PubMed DOI

Steiner J, et al. Innate immune cells and C-reactive protein in acute first-episode psychosis and schizophrenia: relationship to psychopathology and treatment. Schizophr. Bull. 2020;46:363–373. doi: 10.1093/schbul/sbaa031.077. PubMed DOI PMC

Inoshita M, et al. A significant causal association between C-reactive protein levels and schizophrenia. Sci. Rep. 2016;6:26105. doi: 10.1038/srep26105. PubMed DOI PMC

Lin BD, et al. Assessing causal links between metabolic traits, inflammation and schizophrenia: a univariable and multivariable, bidirectional Mendelian-randomization study. Int. J. Epidemiol. 2019;48:1505–1514. doi: 10.1093/ije/dyz176. PubMed DOI PMC

Hartwig FP, Borges MC, Horta BL, Bowden J, Davey Smith G. Inflammatory Biomarkers and Risk of Schizophrenia: A 2-Sample Mendelian Randomization Study. JAMA Psychiatry. 2017;74:1226–1233. doi: 10.1001/jamapsychiatry.2017.3191. PubMed DOI PMC

Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell167, 1415–1429.e1419 (2016). PubMed PMC

Khandaker GM. Commentary: Causal associations between inflammation, cardiometabolic markers and schizophrenia: the known unknowns. Int. J. Epidemiol. 2019;48:1516–1518. doi: 10.1093/ije/dyz201. PubMed DOI PMC

Perry, B. I. et al. Inflammatory network alterations in schizophrenia, depression and bipolar disorder: a bi-directional two-sample Mendelian randomization study. Under review (2021). PubMed PMC

Cho M, et al. Adjunctive use of anti-inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Aust. N.Z. J. Psychiatry. 2019;53:742–759. doi: 10.1177/0004867419835028. PubMed DOI

Kessler RC, et al. Age of onset of mental disorders: a review of recent literature. Curr. Opin. Psychiatry. 2007;20:359. doi: 10.1097/YCO.0b013e32816ebc8c. PubMed DOI PMC

Wörns MA, Victor A, Galle PR, Höhler T. Genetic and environmental contributions to plasma C-reactive protein and interleukin-6 levels – a study in twins. Genes Immun. 2006;7:600–605. doi: 10.1038/sj.gene.6364330. PubMed DOI

Radua J, et al. What causes psychosis? An umbrella review of risk and protective factors. World Psychiatry. 2018;17:49–66. doi: 10.1002/wps.20490. PubMed DOI PMC

Aleman A, Kahn RS, Selten J-P. Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch. Gen. Psychiatry. 2003;60:565–571. doi: 10.1001/archpsyc.60.6.565. PubMed DOI

Greenfield JR, et al. Obesity is an important determinant of baseline serum C-reactive protein concentration in monozygotic twins, independent of genetic influences. Circulation. 2004;109:3022–3028. doi: 10.1161/01.CIR.0000130640.77501.79. PubMed DOI

Timpson NJ, et al. C-reactive protein levels and body mass index: elucidating direction of causation through reciprocal Mendelian randomization. Int. J. Obes. 2011;35:300–308. doi: 10.1038/ijo.2010.137. PubMed DOI PMC

Sormunen E, et al. F135. Body Mass Index Trajectories in Childhood and Risk for Non-Affective Psychosis – a General Population Cohort Study. Schizophrenia Bull. 2018;44:S272–S272. doi: 10.1093/schbul/sby017.666. DOI

Bulik-Sullivan B, et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015;47:1236–1241. doi: 10.1038/ng.3406. PubMed DOI PMC

Nettis MA, et al. Metabolic-inflammatory status as predictor of clinical outcome at 1-year follow-up in patients with first episode psychosis. Psychoneuroendocrinology. 2019;99:145–153. doi: 10.1016/j.psyneuen.2018.09.005. PubMed DOI

Osimo EF, et al. Inflammatory and cardiometabolic markers at presentation with first episode psychosis and long-term clinical outcomes: a longitudinal study using electronic health records. Brain Behav. Immun. 2021;91:117–127. doi: 10.1016/j.bbi.2020.09.011. PubMed DOI PMC

Compton MT, et al. Association of pre-onset cannabis, alcohol, and tobacco use with age at onset of prodrome and age at onset of psychosis in first-episode patients. Am. J. Psychiatry. 2009;166:1251–1257. doi: 10.1176/appi.ajp.2009.09030311. PubMed DOI PMC

Cochrane Collaboration. 10.4. 3.1 Recommendations on testing for funnel plot asymmetry, https://handbook-5-1.cochrane.org/chapter_10/10_4_3_1_recommendations_on_testing_for_funnel_plot_asymmetry.htm (2011).

Wener MH, Daum PR, McQuillan GM. The influence of age, sex, and race on the upper reference limit of serum C-reactive protein concentration. J. Rheumatol. 2000;27:2351–2359. PubMed

Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097. PubMed DOI PMC

Haddaway NR, Collins AM, Coughlin D, Kirk S. The role of Google scholar in evidence reviews and its applicability to grey literature searching. PLoS ONE. 2015;10:e0138237. doi: 10.1371/journal.pone.0138237. PubMed DOI PMC

Higgins, J. P. T., Green, S. & Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions (Wiley-Blackwell, 2008).

Brannick MT, Yang L-Q, Cafri G. Comparison of weights for meta-analysis of r and d under realistic conditions. Organ. Res. Methods. 2011;14:587–607. doi: 10.1177/1094428110368725. DOI

Viechtbauer W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010;36:1–48. doi: 10.18637/jss.v036.i03. DOI

R: A language and environment for statistical computing [Software] (R Foundation for Statistical Computing, Vienna, Austria, 2020).

Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002;21:1539–1558. doi: 10.1002/sim.1186. PubMed DOI

Sullivan SA, et al. A population-based cohort study examining the incidence and impact of psychotic experiences from childhood to adulthood, and prediction of psychotic disorder. Am. J. Psychiatry. 2020;177:308–317. doi: 10.1176/appi.ajp.2019.19060654. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...