Highly Biaxially Strained Silicene on Au(111)
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34055129
PubMed Central
PMC8154839
DOI
10.1021/acs.jpcc.0c11033
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Many of graphene's remarkable properties arise from its linear dispersion of the electronic states, forming a Dirac cone at the K points of the Brillouin zone. Silicene, the 2D allotrope of silicon, is also predicted to show a similar electronic band structure, with the addition of a tunable bandgap, induced by spin-orbit coupling. Because of these outstanding electronic properties, silicene is considered as a promising building block for next-generation electronic devices. Recently, it has been shown that silicene grown on Au(111) still possesses a Dirac cone, despite the interaction with the substrate. Here, to fully characterize the structure of this 2D material, we investigate the vibrational spectrum of a monolayer silicene grown on Au(111) by polarized Raman spectroscopy. To enable a detailed ex situ investigation, we passivated the silicene on Au(111) by encapsulating it under few layers hBN or graphene flakes. The observed spectrum is characterized by vibrational modes that are strongly red-shifted with respect to the ones expected for freestanding silicene. By comparing low-energy electron diffraction (LEED) patterns and Raman results with first-principles calculations, we show that the vibrational modes indicate a highly (>7%) biaxially strained silicene phase.
CEITEC BUT Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
Infineon Technologies Austria AG Siemensstraße 2 9500 Villach Austria
Institut de Ciència de Materials de Barcelona ICMAB CSIC Campus UAB 08193 Bellaterra Spain
Zobrazit více v PubMed
Tao L.; Cinquanta E.; Chiappe D.; Grazianetti C.; Fanciulli M.; Dubey M.; Molle A.; Akinwande D. Silicene Field-Effect Transistors Operating at Room Temperature. Nat. Nanotechnol. 2015, 10 (3), 227–231. 10.1038/nnano.2014.325. PubMed DOI
Le Lay G. Silicene Transistors. Nat. Nanotechnol. 2015, 10 (3), 202–203. 10.1038/nnano.2015.10. PubMed DOI
Zhao J.; Liu H.; Yu Z.; Quhe R.; Zhou S.; Wang Y.; Liu C. C.; Zhong H.; Han N.; Lu J.; Yao Y.; Wu K. Rise of Silicene: A Competitive 2D Material. Prog. Mater. Sci. 2016, 83, 24–151. 10.1016/j.pmatsci.2016.04.001. DOI
Cahangirov S.; Topsakal M.; Aktürk E.; Şahin H.; Ciraci S. Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Phys. Rev. Lett. 2009, 102 (23), 236804.10.1103/PhysRevLett.102.236804. PubMed DOI
Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Katsnelson M. I.; Grigorieva I. V.; Dubonos S. V.; Firsov A. A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438 (7065), 197–200. 10.1038/nature04233. PubMed DOI
Drummond N. D.; Zólyomi V.; Fal’ko V. I. Electrically Tunable Band Gap in Silicene. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85 (7), 075423.10.1103/PhysRevB.85.075423. DOI
Ni Z.; Liu Q.; Tang K.; Zheng J.; Zhou J.; Qin R.; Gao Z.; Yu D.; Lu J. Tunable Bandgap in Silicene and Germanene. Nano Lett. 2012, 12 (1), 113–118. 10.1021/nl203065e. PubMed DOI
Oughaddou H.; Enriquez H.; Tchalala M. R.; Yildirim H.; Mayne A. J.; Bendounan A.; Dujardin G.; Ait Ali M.; Kara A. Silicene, a Promising New 2D Material. Prog. Surf. Sci. 2015, 90 (1), 46–83. 10.1016/j.progsurf.2014.12.003. DOI
Kara A.; Enriquez H.; Seitsonen A. P.; Lew Yan Voon L. C.; Vizzini S.; Aufray B.; Oughaddou H. A Review on Silicene — New Candidate for Electronics. Surf. Sci. Rep. 2012, 67 (1), 1–18. 10.1016/j.surfrep.2011.10.001. DOI
Lalmi B.; Oughaddou H.; Enriquez H.; Kara A.; Vizzini S.; Ealet B.; Aufray B. Epitaxial Growth of a Silicene Sheet. Appl. Phys. Lett. 2010, 97 (22), 223109.10.1063/1.3524215. DOI
Vogt P.; De Padova P.; Quaresima C.; Avila J.; Frantzeskakis E.; Asensio M. C.; Resta A.; Ealet B.; Le Lay G. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett. 2012, 108 (15), 155501.10.1103/PhysRevLett.108.155501. PubMed DOI
Chen L.; Liu C.-C.; Feng B.; He X.; Cheng P.; Ding Z.; Meng S.; Yao Y.; Wu K. Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon. Phys. Rev. Lett. 2012, 109 (5), 056804.10.1103/PhysRevLett.109.056804. PubMed DOI
Lin C.-L.; Arafune R.; Kawahara K.; Kanno M.; Tsukahara N.; Minamitani E.; Kim Y.; Kawai M.; Takagi N. Substrate-Induced Symmetry Breaking in Silicene. Phys. Rev. Lett. 2013, 110 (7), 076801.10.1103/PhysRevLett.110.076801. PubMed DOI
Wang Y.-P.; Cheng H.-P. Absence of a Dirac Cone in Silicene on Ag(111): First-Principles Density Functional Calculations with a Modified Effective Band Structure Technique. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87 (24), 245430.10.1103/PhysRevB.87.245430. DOI
Mahatha S. K.; Moras P.; Bellini V.; Sheverdyaeva P. M.; Struzzi C.; Petaccia L.; Carbone C. Silicene on Ag(111): A Honeycomb Lattice without Dirac Bands. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89 (20), 201416.10.1103/PhysRevB.89.201416. DOI
Sadeddine S.; Enriquez H.; Bendounan A.; Kumar Das P.; Vobornik I.; Kara A.; Mayne A. J.; Sirotti F.; Dujardin G.; Oughaddou H. Compelling Experimental Evidence of a Dirac Cone in the Electronic Structure of a 2D Silicon Layer. Sci. Rep. 2017, 7 (1), 44400.10.1038/srep44400. PubMed DOI PMC
Tang L.; Li F.; Guo Q. A Structured Two-Dimensional Au–Si Alloy. Appl. Surf. Sci. 2011, 258 (3), 1109–1114. 10.1016/j.apsusc.2011.09.046. DOI
Stpniak-Dybala A.; Dyniec P.; Kopciuszyski M.; Zdyb R.; Jałochowski M.; Krawiec M. Planar Silicene: A New Silicon Allotrope Epitaxially Grown by Segregation. Adv. Funct. Mater. 2019, 29 (50), 1906053.10.1002/adfm.201906053. DOI
Ritter V.; Genser J.; Nazzari D.; Bethge O.; Bertagnolli E.; Lugstein A. Silicene Passivation by Few-Layer Graphene. ACS Appl. Mater. Interfaces 2019, 11 (13), 12745–12751. 10.1021/acsami.8b20751. PubMed DOI
Gonze X.; Jollet F.; Abreu Araujo F.; Adams D.; Amadon B.; Applencourt T.; Audouze C.; Beuken J.-M.; Bieder J.; Bokhanchuk A.; Bousquet E.; Bruneval F.; Caliste D.; Côté M.; Dahm F.; Da Pieve F.; Delaveau M.; Di Gennaro M.; Dorado B.; Espejo C.; Geneste G.; Genovese L.; Gerossier A.; Giantomassi M.; Gillet Y.; Hamann D. R.; He L.; Jomard G.; Laflamme Janssen J.; Le Roux S.; Levitt A.; Lherbier A.; Liu F.; Lukačević I.; Martin A.; Martins C.; Oliveira M. J. T.; Poncé S.; Pouillon Y.; Rangel T.; Rignanese G.-M.; Romero A. H.; Rousseau B.; Rubel O.; Shukri A. A.; Stankovski M.; Torrent M.; Van Setten M. J.; Van Troeye B.; Verstraete M. J.; Waroquiers D.; Wiktor J.; Xu B.; Zhou A.; Zwanziger J. W. Recent Developments in the ABINIT Software Package. Comput. Phys. Commun. 2016, 205, 106–131. 10.1016/j.cpc.2016.04.003. DOI
Baroni S.; de Gironcoli S.; Dal Corso A.; Giannozzi P. Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys. 2001, 73 (2), 515–562. 10.1103/RevModPhys.73.515. DOI
Gonze X.; Vigneron J.-P. Density-Functional Approach to Nonlinear-Response Coefficients of Solids. Phys. Rev. B: Condens. Matter Mater. Phys. 1989, 39 (18), 13120–13128. 10.1103/PhysRevB.39.13120. PubMed DOI
De Luca M.; Cartoixà X.; Martín-Sánchez J.; López-Suárez M.; Trotta R.; Rurali R.; Zardo I. New Insights in the Lattice Dynamics of Monolayers, Bilayers, and Trilayers of WSe2 and Unambiguous Determination of Few-Layer-Flakes’ Thickness. 2D Mater. 2020, 7 (2), 025004.10.1088/2053-1583/ab5dec. DOI
Moras P.; Mentes T. O.; Sheverdyaeva P. M.; Locatelli A.; Carbone C. Coexistence of Multiple Silicene Phases in Silicon Grown on Ag(111). J. Phys.: Condens. Matter 2014, 26 (18), 185001.10.1088/0953-8984/26/18/185001. PubMed DOI
Pflugradt P.; Matthes L.; Bechstedt F. Silicene-Derived Phases on Ag(111) Substrate versus Coverage: Ab Initio Studies. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89 (3), 035403.10.1103/PhysRevB.89.035403. PubMed DOI
Sojka F.; Meissner M.; Zwick C.; Forker R.; Fritz T. Determination and Correction of Distortions and Systematic Errors in Low-Energy Electron Diffraction. Rev. Sci. Instrum. 2013, 84 (1), 015111.10.1063/1.4774110. PubMed DOI
Shpyrko O. G.; Streitel R.; Balagurusamy V. S. K.; Grigoriev A. Yu; Deutsch M.; Ocko B. M.; Meron M.; Lin B.; Pershan P. S. Crystalline Surface Phases of the Liquid Au-Si Eutectic Alloy. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76 (24), 245436.10.1103/PhysRevB.76.245436. DOI
Shpyrko O. G.; Streitel R.; Balagurusamy V. S. K.; Grigoriev A. Y.; Deutsch M.; Ocko B. M.; Meron M.; Lin B.; Pershan P. S. Surface Crystallization in a Liquid AuSi Alloy. Science 2006, 313 (5783), 77–80. 10.1126/science.1128314. PubMed DOI
Ashtikar M. S.; Sharma G. L. Structural Investigation of Gold Induced Crystallization in Hydrogenated Amorphous Silicon Thin Films. Jpn. J. Appl. Phys. 1995, 34 (10R), 5520.10.1143/JJAP.34.5520. DOI
Liebhaber M.; Halbig B.; Bass U.; Geurts J.; Neufeld S.; Sanna S.; Schmidt W. G.; Speiser E.; Räthel J.; Chandola S.; Esser N. Vibration Eigenmodes of the Au-(5 × 2)/Si(111) Surface Studied by Raman Spectroscopy and First-Principles Calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94 (23), 235304.10.1103/PhysRevB.94.235304. DOI
Halbig B.; Liebhaber M.; Bass U.; Geurts J.; Speiser E.; Räthel J.; Chandola S.; Esser N.; Krenz M.; Neufeld S.; Schmidt W. G.; Sanna S. Vibrational Properties of the Au-(√3x√3)/Si(111) Surface Reconstruction. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 97 (3), 035412.10.1103/PhysRevB.97.035412. DOI
Aroyo M. I.; Perez-Mato J. M.; Capillas C.; Kroumova E.; Ivantchev S.; Madariaga G.; Kirov A.; Wondratschek H. Bilbao Crystallographic Server: I. Databases and Crystallographic Computing Programs. Z. Kristallogr. - Cryst. Mater. 2006, 221 (1), 15–27. 10.1524/zkri.2006.221.1.15. DOI
Ribeiro-Soares J.; Almeida R. M.; Cançado L. G.; Dresselhaus M. S.; Jorio A. Group Theory for Structural Analysis and Lattice Vibrations in Phosphorene Systems. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91 (20), 205421.10.1103/PhysRevB.91.205421. DOI
Solonenko D.; Selyshchev O.; Zahn D. R. T.; Vogt P. Oxidation of Epitaxial Silicene on Ag(111). Phys. Status Solidi B 2019, 256 (2), 1800432.10.1002/pssb.201800432. DOI
Lui C. H.; Ye Z.; Ji C.; Chiu K.-C.; Chou C.-T.; Andersen T. I.; Means-Shively C.; Anderson H.; Wu J.-M.; Kidd T.; Lee Y.-H.; He R. Observation of Interlayer Phonon Modes in van Der Waals Heterostructures. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91 (16), 165403.10.1103/PhysRevB.91.165403. DOI
Gorbachev R. V.; Riaz I.; Nair R. R.; Jalil R.; Britnell L.; Belle B. D.; Hill E. W.; Novoselov K. S.; Watanabe K.; Taniguchi T.; Geim A. K.; Blake P. Hunting for Monolayer Boron Nitride: Optical and Raman Signatures. Small 2011, 7 (4), 465–468. 10.1002/smll.201001628. PubMed DOI
Solonenko D.; Gordan O. D.; Lay G. L.; Şahin H.; Cahangirov S.; Zahn D. R. T.; Vogt P. 2D Vibrational Properties of Epitaxial Silicene on Ag(111). 2D Mater. 2017, 4 (1), 015008.10.1088/2053-1583/4/1/015008. DOI
Yan J.-A.; Stein R.; Schaefer D. M.; Wang X.-Q.; Chou M. Y. Electron-Phonon Coupling in Two-Dimensional Silicene and Germanene. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88 (12), 121403.10.1103/PhysRevB.88.121403. DOI
Gori P.; Pulci O.; de Lieto Vollaro R.; Guattari C. Thermophysical Properties of the Novel 2D Materials Graphene and Silicene: Insights from Ab-Initio Calculations. Energy Procedia 2014, 45, 512–517. 10.1016/j.egypro.2014.01.055. DOI
Li X.; Mullen J. T.; Jin Z.; Borysenko K. M.; Buongiorno Nardelli M.; Kim K. W. Intrinsic Electrical Transport Properties of Monolayer Silicene and MoS2 from First Principles. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87 (11), 115418.10.1103/PhysRevB.87.115418. DOI
Zhuang J.; Xu X.; Du Y.; Wu K.; Chen L.; Hao W.; Wang J.; Yeoh W. K.; Wang X.; Dou S. X. Investigation of Electron-Phonon Coupling in Epitaxial Silicene by in Situ Raman Spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91 (16), 161409.10.1103/PhysRevB.91.161409. DOI
Molle A.; Grazianetti C.; Chiappe D.; Cinquanta E.; Cianci E.; Tallarida G.; Fanciulli M. Hindering the Oxidation of Silicene with Non-Reactive Encapsulation. Adv. Funct. Mater. 2013, 23 (35), 4340–4344. 10.1002/adfm.201300354. DOI
Mohiuddin T. M. G.; Lombardo A.; Nair R. R.; Bonetti A.; Savini G.; Jalil R.; Bonini N.; Basko D. M.; Galiotis C.; Marzari N.; Novoselov K. S.; Geim A. K.; Ferrari A. C. Uniaxial Strain in Graphene by Raman Spectroscopy: G Peak Splitting, Grüneisen Parameters, and Sample Orientation. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79 (20), 205433.10.1103/PhysRevB.79.205433. DOI
Hanke F.; Björk J. Structure and Local Reactivity of the Au(111) Surface Reconstruction. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87 (23), 235422.10.1103/PhysRevB.87.235422. DOI
Caldwell W. B.; Chen K.; Herr B. R.; Mirkin C. A.; Hulteen J. C.; Van Duyne R. P. Self-Assembled Monolayers of Ferrocenylazobenzenes on Au(111)/Mica Films: Surface-Enhanced Raman Scattering Response vs Surface Morphology. Langmuir 1994, 10 (11), 4109–4115. 10.1021/la00023a034. DOI
Lombardi J. R.; Birke R. L. A Unified Approach to Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2008, 112 (14), 5605–5617. 10.1021/jp800167v. DOI
Kaloni T. P.; Cheng Y. C.; Schwingenschlögl U. Hole Doped Dirac States in Silicene by Biaxial Tensile Strain. J. Appl. Phys. 2013, 113 (10), 104305.10.1063/1.4794812. DOI
Umam K.; Sholihun; Nurwantoro P.; Ulil Absor M. A.; Nugraheni A. D.; Budhi R. H. S. Biaxial Strain Effects on the Electronic Properties of Silicene: The Density-Functional-Theory-Based Calculations. J. Phys.: Conf. Ser. 2018, 1011, 012074.10.1088/1742-6596/1011/1/012074. DOI