Perception-driven dynamics of mimicry based on attractor field model
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34055303
PubMed Central
PMC8086919
DOI
10.1098/rsfs.2020.0052
PII: rsfs20200052
Knihovny.cz E-zdroje
- Klíčová slova
- Batesian mimicry, Müllerian mimicry, agency, behaviour, frequency dependence, similarity,
- Publikační typ
- časopisecké články MeSH
We provide a formal account of an interface that bridges two different levels of dynamic processes manifested by mimicry: prey-prey interactions and predators' perception. Mimicry is a coevolutionary process between an animate selective agent and at least two similar organisms selected by agent's perception-driven actions. Attractor field model explains perceived similarity of forms by noting that in both human and animal cognition, morphologically intermediate forms are more likely to be perceived as belonging to rare rather than abundant forms. We formalize this model in terms of predators' perception space deformation using numerical simulations and argue that the probability of confusion between similar species creates pressure on the perception space, which in turn leads to inflation of regions of perception space with high density of species representations. Such inflation causes increased discrimination between species by a predator, which implies that adaptive mimicry could initially emerge more easily among atypical species because they do not need the same level of similarity to the model. We provide a theoretical instrument to conceptualize interdependence between objective measurable matrices and perceived matrices of the same external reality. We believe that our framework leads to a more precise understanding of the evolution of mimicry.
Zobrazit více v PubMed
Goodwin BC. 1963. Temporal organization in cells. A dynamic theory of cellular control processes. New York, NY: Academic Press.
Van Der Pol B, Van Der Mark J. 1928. LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Lond. Edinburgh Dublin Phil. Mag. J. Sci. 6, 763-775. (10.1080/14786441108564652) DOI
Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500-544. (10.1113/jphysiol.1952.sp004764) PubMed DOI PMC
Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12, 30-39. (10.1007/BF00289234) PubMed DOI
Turing AM. 1952. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37-72. (10.1098/rstb.1952.0012) PubMed DOI PMC
Newman SA, Bhat R. 2009. Dynamical patterning modules: a ‘pattern language’ for development and evolution of multicellular form. Int. J. Dev. Biol. 53, 693-705. (10.1387/ijdb.072481sn) PubMed DOI
Skarda CA, Freeman WJ. 1987. How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10, 161-195. (10.1017/S0140525X00047336) DOI
Tank DW, Hopfield JJ. 1987. Collective computation in neuronlike circuits. Sci. Am. 257, 104-115. PubMed
Halloy J, et al. . 2007. Social integration of robots into groups of cockroaches to control self-organized choices. Science 318, 1155-1158. (10.1126/science.1144259) PubMed DOI
Lotka AJ. 1920. Analytical note on certain rhythmic relations in organic systems. Proc. Natl Acad. Sci. USA 6, 410-415. (10.1073/pnas.6.7.410) PubMed DOI PMC
Volterra V. 1928. Variations and fluctuations of the number of individuals in animal species living together. ICES J. Mar. Sci. 3, 3-51. (10.1093/icesjms/3.1.3) DOI
Bathiany S, Dijkstra H, Crucifix M, Dakos V, Brovkin V, Williamson MS, Lenton TM, Scheffer M. 2016. Beyond bifurcation: using complex models to understand and predict abrupt climate change. Dyn. Stat. Clim. Syst. 1, dzw004. (10.1093/climsys/dzw004) DOI
Gjuvsland AB, Vik JO, Beard DA, Hunter PJ, Omholt SW. 2013. Bridging the genotype–phenotype gap: what does it take? J. Physiol. 591, 2055-2066. (10.1113/jphysiol.2012.248864) PubMed DOI PMC
Bruni LE, Giorgi F. 2015. Towards a heterarchical approach to biology and cognition. Prog. Biophys. Mol. Biol. 119, 481-492. (10.1016/j.pbiomolbio.2015.07.005) PubMed DOI
Galic N, Sullivan LL, Grimm V, Forbes VE. 2018. When things don't add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecol. Lett. 21, 568-577. (10.1111/ele.12923) PubMed DOI
García-Callejas D, Molowny-Horas R, Araújo MB. 2018. Multiple interactions networks: towards more realistic descriptions of the web of life. Oikos 127, 5-22. (10.1111/oik.04428) DOI
Bates HW. 1862. XXXII. Contributions to an insect fauna of the Amazon valley. Lepidoptera: Heliconidae. Trans. Linn. Soc. Lond. 23, 495-566. (10.1111/j.1096-3642.1860.tb00146.x DOI
Müller F. 1878. Über die vortheile der mimicry bei schmetterlingen. Zool. Anz. 1, 54-55.
Wallace AR. 1889. Darwinism: an exposition of the theory of natural selection with some of its applications. London, UK: Macmillan & Co.
Wickler W. 1965. Mimicry and the evolution of animal communication. Nature 208, 519-521. (10.1038/208519a0) DOI
Wickler W. 1968. Mimicry in plants and animals. New York, NY: McGraw-Hill.
Holmgren NMA, Enquist M. 1999. Dynamics of mimicry evolution. Biol. J. Linn. Soc. 66, 145-158. (10.1111/j.1095-8312.1999.tb01880.x) DOI
Joron M, Mallet JLB. 1998. Diversity in mimicry: paradox or paradigm? Trends Ecol. Evol. 13, 461-466. (10.1016/S0169-5347(98)01483-9) PubMed DOI
Akcali CK, Kikuchi DW, Pfennig DW. 2018. Coevolutionary arms races in Batesian mimicry? A test of the chase-away hypothesis. Biol. J. Linn. Soc. 124, 668-676. (10.1093/biolinnean/bly075) DOI
Kikuchi DW, Pfennig DW. 2013. Imperfect mimicry and the limits of natural selection. Q. Rev. Biol. 88, 297-315. (10.1086/673758) PubMed DOI
Font E. 2019. Mimicry, camouflage and perceptual exploitation: the evolution of deception in nature. Biosemiotics 12, 7-24. (10.1007/s12304-018-9339-6) DOI
Guilford T, Dawkins MS. 1991. Receiver psychology and the evolution of animal signals. Anim. Behav. 42, 1-14. (10.1016/s0003-3472(05)80600-1) DOI
Grim T. 2013. Mimicry, signalling and co-evolution: commentary on Wolfgang Wickler, ’Understanding mimicry’, with special reference to vocal mimicry. Ethology 119, 270-277. (10.1111/eth.12067) DOI
Komárek S. 2003. Mimicry, aposematism and related phenomena: mimetism in nature and the history of its study. Munich, Germany: Lincom Europa.
Van Someren VGL, Jackson THE. 1959. Some comments on protective resemblance amongst African Lepidoptera (Rhopalocera). J. Lepid. Soc. 13, 121.
Fisher RA. 1930. The genetical theory of natural selection. Oxford, UK: Clarendon Press.
Franks DW, Ruxton GD, Sherratt TN. 2009. Warning signals evolve to disengage Batesian mimics. Evol. Int. J. Org. Evol. 63, 256-267. (10.1111/j.1558-5646.2008.00509.x) PubMed DOI
Gavrilets S, Hastings A. 1998. Coevolutionary chase in two-species systems with applications to mimicry. J. Theor. Biol. 191, 415-427. (10.1006/jtbi.1997.0615) PubMed DOI
Brejcha J. 2019. Viper as a Batesian model: its role in an ecological community. Biosemiotics 12, 25-38. (10.1007/s12304-019-09347-x) DOI
Hotová SK, Exnerová A, Kopečková M, Štys P. 2013. How do predators learn to recognize a mimetic complex: experiments with naive great tits and aposematic Heteroptera. Ethology 119, 814-830. (10.1111/eth.12121) DOI
Mallet J. 1999. Causes and consequences of a lack of coevolution in Müllerian mimicry. Evol. Ecol. 13, 777-806. (10.1023/a:1011060330515 DOI
Speed MP. 1999. Batesian, quasi-Batesian or Müllerian mimicry? Theory and data in mimicry research. Evol. Ecol. 13, 755-776. (10.1023/a:1010871106763) DOI
Sherratt TN. 2008. The evolution of Müllerian mimicry. Naturwissenschaften 95, 681-695. (10.1007/s00114-008-0403-y) PubMed DOI PMC
Kleisner K. 2008. Homosemiosis, mimicry and superficial similarity: notes on the conceptualization of independent emergence of similarity in biology. Theory Biosci. 127, 15-21. (10.1007/s12064-007-0019-3) PubMed DOI
Kleisner K, Saribay SA. 2019. The dual nature of mimicry: organismal form and beholder's eye. Biosemiotics 12, 79-98. (10.1007/s12304-018-9333-z) DOI
Kleisner K. 2010. Re-semblance and re-evolution: paramorphism and semiotic co-option may explain the re-evolution of similar phenotypes. Sign Syst. Stud. 38, 378-392. (10.12697/sss.2010.38.1-4.13) DOI
Kleisner K. 2011. Perceive, co-opt, modify, and live! Organism as a centre of experience. Biosemiotics 4, 223-241. (10.1007/s12304-010-9093-x) DOI
Kleisner K, Markoš A. 2005. Semetic rings: towards the new concept of mimetic resemblances. Theory Biosci. 123, 209-222. (10.1016/j.thbio.2004.09.001) PubMed DOI
Maran T. 2017. Mimicry and meaning: structure and semiotics of biological mimicry. Cham, Switzerland: Springer.
Arak A, Enquist M. 1993. Hidden preferences and the evolution of signals. Phil. Trans. R. Soc. Lond. B 340, 207-213. (10.1098/rstb.1993.0059) DOI
Schaefer HM, Ruxton GD. 2009. Deception in plants: mimicry or perceptual exploitation? Trends Ecol. Evol. 24, 676-685. (10.1016/j.tree.2009.06.006) PubMed DOI
Nelson XJ. 2014. Evolutionary implications of deception in mimicry and masquerade. Curr. Zool. 60, 6-15. (10.1093/czoolo/60.1.6) DOI
Tversky A. 1977. Features of similarity. Psychol. Rev. 84, 327. (10.1037/0033-295X.84.4.327) DOI
Medin DL, Goldstone RL, Gentner D. 1993. Respects for similarity. Psychol. Rev. 100, 254. (10.1037/0033-295x.100.2.254) DOI
Smith FW, Schyns PG. 2009. Smile through your fear and sadness: transmitting and identifying facial expression signals over a range of viewing distances. Psychol. Sci. 20, 1202-1208. (10.1111/j.1467-9280.2009.02427.x) PubMed DOI
Davidoff J, Davies I, Roberson D. 1999. Colour categories in a stone-age tribe. Nature 398, 203-204. (10.1038/18335) PubMed DOI
Heron-Delaney M, Anzures G, Herbert JS, Quinn PC, Slater AM, Tanaka JW, Lee K, Pascalis O. 2011. Perceptual training prevents the emergence of the other race effect during infancy. PLoS ONE 6, e19858. (10.1371/journal.pone.0019858) PubMed DOI PMC
Tanaka JW. 2001. The entry point of face recognition: evidence for face expertise. J. Exp. Psychol. Gen. 130, 534. (10.1037/0096-3445.130.3.534) PubMed DOI
Sy JL, Giesbrecht B. 2009 Target–target similarity and the attentional blink: task-relevance matters! Vis. Cogn. 17, 307-317. (10.1080/13506280802349746) PubMed DOI PMC
Dawkins MS. 1995. How do hens view other hens? The use of lateral and binocular visual fields in social recognition. Behaviour 132, 591-606. (10.1163/156853995×00225) DOI
Ryan M. 2019. A taste for the beautiful: the evolution of attraction. Princeton, NJ: Princeton University Press.
Knudsen EI. 2020. Evolution of neural processing for visual perception in vertebrates. J. Comp. Neurol. 17, 2888-2901. (10.1002/cne.24871) PubMed DOI PMC
Breakspear M. 2017. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340-352. (10.1038/nn.4497) PubMed DOI
Rabinovich MI, Varona P. 2011. Robust transient dynamics and brain functions. Front. Comput. Neurosci. 5, 24. (10.3389/fncom.2011.00024) PubMed DOI PMC
Kringelbach ML, Cruzat J, Cabral J, Knudsen GM, Carhart-Harris R, Whybrow PC, Logothetis NK, Deco G. 2020. Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc. Natl Acad. Sci. USA 117, 9566-9576. (10.1073/pnas.1921475117) PubMed DOI PMC
Freeman WJ. 1987. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol. Cybern. 56, 139-150. (10.1007/BF00317988) PubMed DOI
King CC. 1991. Fractal and chaotic dynamics in nervous systems. Prog. Neurobiol. 36, 279-308. (10.1016/0301-0082(91)90003-J) PubMed DOI
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. 2001. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150-157. (10.1038/35084005) PubMed DOI
Zhang Z, Bai L, Cong L, Yu P, Zhang T, Shi W, Li F, Du J, Wang K.. 2021. Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy. Nat. Biotechnol. 39, 74-83. (10.1038/s41587-020-0628-7) PubMed DOI
Feierstein CE, Portugues R, Orger MB. 2015. Seeing the whole picture: a comprehensive imaging approach to functional mapping of circuits in behaving zebrafish. Neuroscience 296, 26-38. (10.1016/j.neuroscience.2014.11.046) PubMed DOI
Ju H, Bassett DS. 2020. Dynamic representations in networked neural systems. Nat. Neurosci. 23, 908-917. (10.1038/s41593-020-0653-3) PubMed DOI
Marques JC, Li M, Schaak D, Robson DN, Li JM. 2020. Internal state dynamics shape brainwide activity and foraging behaviour. Nature 577, 239-243. (10.1038/s41586-019-1858-z) PubMed DOI
Saxena S, Cunningham JP. 2019. Towards the neural population doctrine. Curr. Opin. Neurobiol. 55, 103-111. (10.1016/j.conb.2019.02.002) PubMed DOI
Schyns PG, Zhan J, Jack RE, Ince RAA. 2020. Revealing the information contents of memory within the stimulus information representation framework. Phil. Trans. R. Soc. B 375, 20190705. (10.1098/rstb.2019.0705) PubMed DOI PMC
Zhan J, Ince RAA, Van Rijsbergen N, Schyns PG.. 2019. Dynamic construction of reduced representations in the brain for perceptual decision behavior. Curr. Biol. 29, 319-326. (10.1101/284158) PubMed DOI PMC
Tanaka JW, Corneille O. 2007. Typicality effects in face and object perception: further evidence for the attractor field model. Percept. Psychophys. 69, 619-627. (10.3758/BF03193919) PubMed DOI
Tanaka J, Giles M, Kremen S, Simon V. 1998. Mapping attractor fields in face space: the atypicality bias in face recognition. Cognition 68, 199-220. (10.1016/S0010-0277(98)00048-1) PubMed DOI
Krumhansl CL. 1978. Concerning the applicability of geometric models to similarity data: the interrelationship between similarity and spatial density. Psychol. Rev. 85, 445-463. (10.1037/0033-295X.85.5.445) DOI
Valentine T, Lewis MB, Hills PJ. 2016. Face-space: a unifying concept in face recognition research. Q. J. Exp. Psychol. 69, 1996-2019. (10.1080/17470218.2014.990392) PubMed DOI
Valentine T, Ferrara A. 1991. Typicality in categorization, recognition and identification: evidence from face recognition. Br. J. Psychol. 82, 87-102. (10.1111/j.2044-8295.1991.tb02384.x) DOI
Kleisner K, Pokorný Š, Saribay SA. 2019. Toward a new approach to cross-cultural distinctiveness and typicality of human faces: the cross-group typicality/distinctiveness metric. Front. Psychol. 10, 124. (10.3389/fpsyg.2019.00124) PubMed DOI PMC
Worthen JB, Garcia-Rivas G, Green CR, Vidos RA. 2000. Tests of a cognitive-resource-allocation account of the bizarreness effect. J. Gen. Psychol. 127, 117-144. (10.1080/00221300009598573) PubMed DOI
Einstein GO, McDaniel MA. 1987. Distinctiveness and the mnemonic benefits of bizarre imagery. In Imagery and related mnemonic processes (eds McDaniel MA, Pressley M), pp. 78-102. New York, NY: Springer.
Tamarit I, Cuesta JA, Dunbar RIM, Sánchez A. 2018. Cognitive resource allocation determines the organization of personal networks. Proc. Natl Acad. Sci. 115, 8316-8321. (10.1073/pnas.1719233115) PubMed DOI PMC
R Core Team. 2017. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Akima H. 1996. Algorithm 761: scattered-data surface fitting that has the accuracy of a cubic polynomial. ACM Trans. Math. Softw. 22, 362-371. (10.1145/232826.232856) DOI
Akima H, Gebhardt A, Petzoldt T, Maechler M. 2013. akima: Interpolation of irregularly spaced data. R Packag. version 0.5–11. See http//CRAN.R-project.org/package=akima.
Horn RA, Johnson CR. 2012. Matrix analysis. Cambridge, UK: Cambridge University Press.
Gilbert F. 2004. The evolution of imperfect mimicry in hoverflies. In Insect evolutionary ecology (eds Fellowes MDE, Holloway GJ, Rolff J), pp. 231-288. Delémont, Switzerland: CABI.
Johnstone RA. 2002. The evolution of inaccurate mimics. Nature 418, 524-526. (10.1038/nature00845) PubMed DOI
Sherratt TN. 2002. The evolution of imperfect mimicry. Behav. Ecol. 13, 821-826. (10.1093/beheco/13.6.821) DOI
Ihalainen E, Lindström L, Mappes J. 2007. Investigating Müllerian mimicry: predator learning and variation in prey defences. J. Evol. Biol. 20, 780-791. (10.1111/j.1420-9101.2006.01234.x) PubMed DOI
Rowland HM, Ihalainen E, Lindström L, Mappes J, Speed MP. 2007. Co-mimics have a mutualistic relationship despite unequal defences. Nature 448, 64-67. (10.1038/nature05899) PubMed DOI
Speed MP, Alderson NJ, Hardman C, Ruxton GD. 2000. Testing Müllerian mimicry: an experiment with wild birds. Proc. R. Soc. Lond. B 267, 725-731. (10.1098/rspb.2000.1063) PubMed DOI PMC
Rabosky ARD, Cox CL, Rabosky DL, Holmes IA, Feldman A, McGuire JA. 2016. Coral snakes predict the evolution of mimicry across New World snakes. Nat. Commun. 7, 11484. (10.1038/ncomms11484) PubMed DOI PMC
Pfennig DW. 2016. Evolutionary biology: to mimicry and back again. Nature 534, 184. (10.1038/nature18441) PubMed DOI
Jazayeri M, Afraz A. 2017. Navigating the neural space in search of the neural code. Neuron 93, 1003-1014. (10.1016/j.neuron.2017.02.019) PubMed DOI
Montgomerie R. 2006. Analyzing colors. In Bird coloration: mechanisms and measurements (eds Hill G, McGraw K), pp. 90-147. Cambridge, MA: Harvard University Press.
Stoddard MC, Prum RO. 2011. How colorful are birds? Evolution of the avian plumage color gamut. Behav. Ecol. 22, 1042-1052. (10.1093/beheco/arr088 DOI
Pérez de Lanuza G, Font E, Monterde JL. 2013. Using visual modelling to study the evolution of lizard coloration: sexual selection drives the evolution of sexual dichromatism in lacertids. J. Evol. Biol. 26, 1826-1835. (10.1111/jeb.12185 PubMed DOI
Ehrenstein WH, Ehrenstein A. 1999. Psychophysical methods. In Modern techniques in neuroscience research (eds Windhorst U, Johansson H), pp. 1211-1241. Berlin, Germany: Springer.
Loffler G, Yourganov G, Wilkinson F, Wilson HR. 2005. fMRI evidence for the neural representation of faces. Nat. Neurosci. 8, 1386-1391. (10.1038/nn1538) PubMed DOI
Jack RE, Schyns PG. 2017. Toward a social psychophysics of face communication. Annu. Rev. Psychol. 68, 269-297. (10.1146/annurev-psych-010416-044242) PubMed DOI
Schyns PG, Ince RAA. 2019. Making the brain-activity-to-information leap using a novel framework: Stimulus Information Representation (SIR). bioRxiv, 658682. (10.1101/658682) DOI
de Polavieja GG, Orger MB. 2018. Social behavior: a neural circuit for social behavior in zebrafish. Curr. Biol. 28, R828-R830. (10.1016/j.cub.2018.06.065) PubMed DOI
figshare
10.6084/m9.figshare.c.5354183