Substrate Specificity and Biochemical Characteristics of an Engineered Mammalian Chondroitinase ABC
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
MR/R004463/1
Medical Research Council - United Kingdom
MR/S011110/1
Medical Research Council - United Kingdom
MR/V002694/1
Medical Research Council - United Kingdom
PubMed
34056277
PubMed Central
PMC8153898
DOI
10.1021/acsomega.0c06262
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Chondroitin sulfate proteoglycans inhibit regeneration, neuroprotection, and plasticity following spinal cord injury. The development of a second-generation chondroitinase ABC enzyme, capable of being secreted from mammalian cells (mChABC), has facilitated the functional recovery of animals following severe spinal trauma. The genetically modified enzyme has been shown to efficiently break down the inhibitory extracellular matrix surrounding cells at the site of injury, while facilitating cellular integration and axonal growth. However, the activity profile of the enzyme in relation to the original bacterial chondroitinase (bChABC) has not been determined. Here, we characterize the activity profile of mChABC and compare it to bChABC, both enzymes having been maintained under physiologically relevant conditions for the duration of the experiment. We show that this genetically modified enzyme can be secreted reliably and robustly in high yields from a mammalian cell line. The modifications made to the cDNA of the enzyme have not altered the functional activity of mChABC compared to bChABC, ensuring that it has optimal activity on chondroitin sulfate-A, with an optimal pH at 8.0 and temperature at 37 °C. However, mChABC shows superior thermostability compared to bChABC, ensuring that the recombinant enzyme operates with enhanced activity over a variety of physiologically relevant substrates and temperatures compared to the widely used bacterial alternative without substantially altering its kinetic output. The determination that mChABC can function with greater robustness under physiological conditions than bChABC is an important step in the further development of this auspicious treatment strategy toward a clinical application.
Department of Physiology Development and Neuroscience University of Cambridge Cambridge CB2 0PY U K
School of Biomedical Sciences Faculty of Biological Sciences University of Leeds Leeds LS2 9JT U K
Zobrazit více v PubMed
Properzi F.; Asher R. A.; Fawcett J. W. Chondroitin sulphate proteoglycans in the central nervous system: changes and synthesis after injury. Biochem. Soc. Trans. 2003, 31, 335–336. 10.1042/bst0310335. PubMed DOI
Sandvig A.; Berry M.; Barrett L. B.; Butt A.; Logan A. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 2004, 46, 225–251. 10.1002/glia.10315. PubMed DOI
Tran A. P.; Warren P. M.; Silver J. The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiol. Rev. 2018, 98, 881–917. 10.1152/physrev.00017.2017. PubMed DOI PMC
Yamagata T.; Saito H.; Habuchi O.; Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J. Biol. Chem. 1968, 243, 1523–1535. 10.1016/s0021-9258(18)93574-x. PubMed DOI
Huang W.; Matte A.; Suzuki S.; Sugiura N.; Miyazono H.; Cygler M. Crystallization and preliminary X-ray analysis of chondroitin sulfate ABC lyases I and II fromProteus vulgaris. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2000, 56, 904–906. 10.1107/s0907444900005102. PubMed DOI
Prabhakar V.; Raman R.; Capila I.; Bosques C. J.; Pojasek K.; Sasisekharan R. Biochemical characterization of the chondroitinase ABC I active site. Biochem 2005, 390, 395–405. 10.1042/bj20050532. PubMed DOI PMC
Huang W.-C.; Kuo W.-C.; Cherng J.-H.; Hsu S.-H.; Chen P.-R.; Huang S.-H.; Huang M.-C.; Liu J.-C.; Cheng H. Chondroitinase ABC promotes axonal re-growth and behavior recovery in spinal cord injury. Biochem. Biophys. Res. Commun. 2006, 349, 963–968. 10.1016/j.bbrc.2006.08.136. PubMed DOI
McKeon R. J.; Höke A.; Silver J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp. Neurol. 1995, 136, 32–43. 10.1006/exnr.1995.1081. PubMed DOI
Zuo J.; Neubauer D.; Dyess K.; Ferguson T. A.; Muir D. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol. 1998, 154, 654–662. 10.1006/exnr.1998.6951. PubMed DOI
Moon L. D. F.; Asher R. A.; Rhodes K. E.; Fawcett J. W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci. 2001, 4, 465–466. 10.1038/87415. PubMed DOI
Bradbury E. J.; Moon L. D. F.; Popat R. J.; King V. R.; Bennett G. S.; Patel P. N.; Fawcett J. W.; McMahon S. B. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002, 416, 636–640. 10.1038/416636a. PubMed DOI
Pizzorusso T.; Medini P.; Berardi N.; Chierzi S.; Fawcett J. W.; Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 2002, 298, 1248–1251. 10.1126/science.1072699. PubMed DOI
Warren P. M.; Steiger S. C.; Dick T. E.; MacFarlane P. M.; Alilain W. J.; Silver J. Rapid and robust restoration of breathing long after spinal cord injury. Nat. Commun. 2018, 9, 4843.10.1038/s41467-018-06937-0. PubMed DOI PMC
Tropea D.; Caleo M.; Maffei L. Synergistic effects of brain-derived neurotrophic factor and chondroitinase ABC on retinal fiber sprouting after denervation of the superior colliculus in adult rats. J. Neurosci. 2003, 23, 7034–7044. 10.1523/jneurosci.23-18-07034.2003. PubMed DOI PMC
Yick L. Axonal regeneration of Clarke’s neurons beyond the spinal cord injury scar after treatment with chondroitinase ABC. Exp. Neurol. 2003, 182, 160–168. 10.1016/s0014-4886(02)00052-3. PubMed DOI
Caggiano A. O.; Zimber M. P.; Ganguly A.; Blight A. R.; Gruskin E. A. Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord. J. Neurotrauma 2005, 22, 226–239. 10.1089/neu.2005.22.226. PubMed DOI
Cafferty W. B. J.; Bradbury E. J.; Lidierth M.; Jones M.; Duffy P. J.; Pezet S.; McMahon S. B. Chondroitinase ABC-Mediated Plasticity of Spinal Sensory Function. J. Neurosci. 2008, 28, 11998–12009. 10.1523/jneurosci.3877-08.2008. PubMed DOI PMC
Lin R.; Kwok J. C. F.; Crespo D.; Fawcett J. W. Chondroitinase ABC has a long-lasting effect on chondroitin sulphate glycosaminoglycan content in the injured rat brain. J. Neurochem. 2007, 104, 400–408. 10.1111/j.1471-4159.2007.05066.x. PubMed DOI
Tester N. J.; Plaas A. H.; Howland D. R. Effect of body temperature on chondroitinase ABC’s ability to cleave chondroitin sulfate glycosaminoglycans. J. Neurosci. Res. 2007, 85, 1110–1118. 10.1002/jnr.21199. PubMed DOI
Iseda T.; Okuda T.; Kane-Goldsmith N.; Mathew M.; Ahmed S.; Chang Y.-W.; Young W.; Grumet M. Single, High-Dose Intraspinal Injection of Chondroitinase Reduces Glycosaminoglycans in Injured Spinal Cord and Promotes Corticospinal Axonal Regrowth after Hemisection but Not Contusion. J. Neurotrauma 2008, 25, 334–349. 10.1089/neu.2007.0289. PubMed DOI
Tom V. J.; Kadakia R.; Santi L.; Houlé J. D. Administration of chondroitinase ABC rostral or caudal to a spinal cord injury site promotes anatomical but not functional plasticity. J. Neurotrauma 2009, 26, 2323–2333. 10.1089/neu.2009.1047. PubMed DOI PMC
Fuller D. D.; Lee K.-Z.; Tester N. J. The impact of spinal cord injury on breathing during sleep. Respir. Physiol. Neurobiol. 2013, 188, 344–354. 10.1016/j.resp.2013.06.009. PubMed DOI PMC
Tauchi R.; Imagama S.; Natori T.; Ohgomori T.; Muramoto A.; Shinjo R.; Matsuyama Y.; Ishiguro N.; Kadomatsu K. The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury. J. Neuroinflammation 2012, 9, 53.10.1186/1742-2094-9-53. PubMed DOI PMC
Pakulska M. M.; Tator C. H.; Shoichet M. S. Local delivery of chondroitinase ABC with or without stromal cell-derived factor 1α promotes functional repair in the injured rat spinal cord. Biomaterials 2017, 134, 13–21. 10.1016/j.biomaterials.2017.04.016. PubMed DOI
Hyatt A. J. T.; Wang D.; Kwok J. C.; Fawcett J. W.; Martin K. R. Controlled release of chondroitinase ABC from fibrin gel reduces the level of inhibitory glycosaminoglycan chains in lesioned spinal cord. J. Controlled Release 2010, 147, 24–29. 10.1016/j.jconrel.2010.06.026. PubMed DOI
Azizi M.; Farahmandghavi F.; Joghataei M. T.; Zandi M.; Imani M.; Bakhtiari M.; Omidian H. ChABC-loaded PLGA nanoparticles: A comprehensive study on biocompatibility, functional recovery, and axonal regeneration in animal model of spinal cord injury. Int. J. Pharm. 2020, 577, 119037.10.1016/j.ijpharm.2020.119037. PubMed DOI
Cafferty W. B. J.; Yang S.-H.; Duffy P. J.; Li S.; Strittmatter S. M. Functional Axonal Regeneration through Astrocytic Scar Genetically Modified to Digest Chondroitin Sulfate Proteoglycans. J. Neurosci. 2007, 27, 2176–2185. 10.1523/jneurosci.5176-06.2007. PubMed DOI PMC
Muir E. M.; Fyfe I.; Gardiner S.; Li L.; Warren P.; Fawcett J. W.; Keynes R. J.; Rogers J. H. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells. J. Biotechnol. 2010, 145, 103–110. 10.1016/j.jbiotec.2009.11.002. PubMed DOI PMC
Warren P. M.; Andrews M. R.; Smith M.; Bartus K.; Bradbury E. J.; Verhaagen J.; Fawcett J. W.; Kwok J. C. F. Secretion of a mammalian chondroitinase ABC aids glial integration at PNS/CNS boundaries. Sci. Rep. 2020, 10, 11262.10.1038/s41598-020-67526-0. PubMed DOI PMC
Day P.; Alves N.; Daniell E.; Dasgupta D.; Ogborne R.; Steeper A.; Raza M.; Ellis C.; Fawcett J.; Keynes R.; Muir E. Targeting chondroitinase ABC to axons enhances the ability of chondroitinase to promote neurite outgrowth and sprouting. PLoS One 2020, 15, e022185110.1371/journal.pone.0221851. PubMed DOI PMC
Bartus K.; James N. D.; Didangelos A.; Bosch K. D.; Verhaagen J.; Yáñez-Muñoz R. J.; Rogers J. H.; Schneider B. L.; Muir E. M.; Bradbury E. J. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J. Neurosci. 2014, 34, 4822–4836. 10.1523/jneurosci.4369-13.2014. PubMed DOI PMC
Burnside E. R.; De Winter F.; Didangelos A.; James N. D.; Andreica E.-C.; Layard-Horsfall H.; Muir E. M.; Verhaagen J.; Bradbury E. J. Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain 2018, 141, 2362.10.1093/brain/awy158. PubMed DOI PMC
Prabhakar V.; Capila I.; Bosques C. J.; Pojasek K.; Sasisekharan R. Chondroitinase ABC I from Proteus vulgaris: cloning, recombinant expression and active site identification. Biochem 2005, 386, 103–112. 10.1042/bj20041222. PubMed DOI PMC
Prabhakar V.; Capila I.; Raman R.; Srinivasan A.; Bosques C. J.; Pojasek K.; Wrick M. A.; Sasisekharan R. The Catalytic Machinery of Chondroitinase ABC I Utilizes a Calcium Coordination Strategy to Optimally Process Dermatan Sulfate†. Biochem 2006, 45, 11130–11139. 10.1021/bi0605484. PubMed DOI
Hiyama K.; Okada S. Action of Chondroitinases. J. Biochem. 1976, 80, 1201–1207. 10.1093/oxfordjournals.jbchem.a131390. PubMed DOI
Klüppel M. Efficient secretion of biologically active Chondroitinase ABC from mammalian cells in the absence of an N-terminal signal peptide. Mol. Cell. Biochem. 2011, 351, 1–11. 10.1007/s11010-010-0705-1. PubMed DOI
Guo Y.; Klüppel M.; Tang H.; Tan S.; Zhang P.; Chen Z. Lentivirus-mediated transfection of chondroitinase ABC gene without the bacterial leader sequence enables long-term secretion of functional chondroitinase ABC in human bone marrow stromal cells. Biotechnol. Lett. 2016, 38, 893–900. 10.1007/s10529-016-2046-y. PubMed DOI
Coulson-Thomas Y. M.; Coulson-Thomas V. J.; Filippo T. R.; Mortara R. A.; da Silveira R. B.; Nader H. B.; Porcionatto M. A. Adult bone marrow-derived mononuclear cells expressing chondroitinase AC transplanted into CNS injury sites promote local brain chondroitin sulphate degradation. J. Neurosci. Methods 2008, 171, 19–29. 10.1016/j.jneumeth.2008.01.030. PubMed DOI
Jin Y.; Ketschek A.; Jiang Z.; Smith G.; Fischer I. Chondroitinase activity can be transduced by a lentiviral vector in vitro and in vivo. J. Neurosci. Methods 2011, 199, 208–213. 10.1016/j.jneumeth.2011.05.007. PubMed DOI PMC
Curinga G. M.; Snow D. M.; Mashburn C.; Kohler K.; Thobaben R.; Caggiano A. O.; Smith G. M. Mammalian-produced chondroitinase AC mitigates axon inhibition by chondroitin sulfate proteoglycans. J. Neurochem. 2007, 102, 275–288. 10.1111/j.1471-4159.2007.04530.x. PubMed DOI
Kwok J. C. F.; Afshari F.; García-Alías G.; Fawcett J. W. Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restor. Neurol. Neurosci. 2008, 26, 131–145. PubMed
Properzi F.; Carulli D.; Asher R. A.; Muir E.; Camargo L. M.; van Kuppevelt T. H.; ten Dam G. B.; Furukawa Y.; Mikami T.; Sugahara K.; Toida T.; Geller H. M.; Fawcett J. W. Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia. Eur. J. Neurosci. 2005, 21, 378–390. 10.1111/j.1460-9568.2005.03876.x. PubMed DOI
Shaya D.; Hahn B.-S.; Park N. Y.; Sim J.-S.; Kim Y. S.; Cygler M. Characterization of Chondroitin Sulfate Lyase ABC fromBacteroides thetaiotaomicronWAL2926†. Biochem 2008, 47, 6650–6661. 10.1021/bi800353g. PubMed DOI
Lee H.; McKeon R. J.; Bellamkonda R. V. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 3340–3345. 10.1073/pnas.0905437106. PubMed DOI PMC
Alves J. N.; Muir E. M.; Andrews M. R.; Ward A.; Michelmore N.; Dasgupta D.; Verhaagen J.; Moloney E. B.; Keynes R. J.; Fawcett J. W.; Rogers J. H. AAV vector-mediated secretion of chondroitinase provides a sensitive tracer for axonal arborisations. J. Neurosci. Methods 2014, 227, 107–120. 10.1016/j.jneumeth.2014.02.010. PubMed DOI