Secretion of a mammalian chondroitinase ABC aids glial integration at PNS/CNS boundaries
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/R004463/1
Medical Research Council - United Kingdom
MR/S011110/1
Medical Research Council - United Kingdom
PubMed
32647242
PubMed Central
PMC7347606
DOI
10.1038/s41598-020-67526-0
PII: 10.1038/s41598-020-67526-0
Knihovny.cz E-zdroje
- MeSH
- astrocyty metabolismus MeSH
- axony metabolismus MeSH
- buněčná adheze MeSH
- centrální nervový systém metabolismus MeSH
- chondroitinasa ABC metabolismus MeSH
- chondroitinsulfát proteoglykany metabolismus MeSH
- genetická terapie MeSH
- integriny metabolismus MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- Lentivirus enzymologie MeSH
- neurity metabolismus MeSH
- neuroglie metabolismus MeSH
- neurony metabolismus MeSH
- periferní nervový systém metabolismus MeSH
- pohyb buněk MeSH
- poranění míchy patofyziologie MeSH
- potkani Sprague-Dawley MeSH
- regenerace nervu účinky léků MeSH
- Schwannovy buňky metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chondroitinasa ABC MeSH
- chondroitinsulfát proteoglykany MeSH
- integriny MeSH
Schwann cell grafts support axonal growth following spinal cord injury, but a boundary forms between the implanted cells and host astrocytes. Axons are reluctant to exit the graft tissue in large part due to the surrounding inhibitory environment containing chondroitin sulphate proteoglycans (CSPGs). We use a lentiviral chondroitinase ABC, capable of being secreted from mammalian cells (mChABC), to examine the repercussions of CSPG digestion upon Schwann cell behaviour in vitro. We show that mChABC transduced Schwann cells robustly secrete substantial quantities of the enzyme causing large-scale CSPG digestion, facilitating the migration and adhesion of Schwann cells on inhibitory aggrecan and astrocytic substrates. Importantly, we show that secretion of the engineered enzyme can aid the intermingling of cells at the Schwann cell-astrocyte boundary, enabling growth of neurites over the putative graft/host interface. These data were echoed in vivo. This study demonstrates the profound effect of the enzyme on cellular motility, growth and migration. This provides a cellular mechanism for mChABC induced functional and behavioural recovery shown in in vivo studies. Importantly, we provide in vitro evidence that mChABC gene therapy is equally or more effective at producing these effects as a one-time application of commercially available ChABC.
Department of Physiology Development and Neuroscience University of Cambridge Cambridge CB2 0PY UK
Faculty of Environmental and Life Sciences University of Southampton Southampton SO17 1BJ UK
School of Biomedical Sciences Faculty of Biological Sciences University of Leeds Leeds LS2 9JT UK
Zobrazit více v PubMed
Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res. Bull. 1999;49:377–391. doi: 10.1016/S0361-9230(99)00072-6. PubMed DOI
Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal cord injury. Physiol. Rev. 2018;98:881–917. doi: 10.1152/physrev.00017.2017. PubMed DOI PMC
Rudge JS, Silver J. Inhibition of neurite outgrowth on astroglial scars in vitro. J. Neurosci. 1990;10:3594–3603. doi: 10.1523/JNEUROSCI.10-11-03594.1990. PubMed DOI PMC
McKeon RJ, Schreiber RC, Rudge JS, Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 1991;11:3398–3411. doi: 10.1523/JNEUROSCI.11-11-03398.1991. PubMed DOI PMC
Zuo J, Neubauer D, Dyess K, Ferguson TA, Muir D. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol. 1998;154:654–662. doi: 10.1006/exnr.1998.6951. PubMed DOI
Smith-Thomas LC, et al. An inhibitor of neurite outgrowth produced by astrocytes. J. Cell Sci. 1994;107(Pt 6):1687–1695. PubMed
Bradbury EJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–640. doi: 10.1038/416636a. PubMed DOI
Moon LD, Asher RA, Rhodes KE, Fawcett JW. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci. 2001;4:465–466. doi: 10.1038/87415. PubMed DOI
Massey JM. Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J. Neurosci. 2006;26:4406–4414. doi: 10.1523/JNEUROSCI.5467-05.2006. PubMed DOI PMC
Garcia-Alias G, et al. Chondroitinase ABC combined with neurotrophin NT-3 secretion and NR2D expression promotes axonal plasticity and functional recovery in rats with lateral hemisection of the spinal cord. J. Neurosci. 2011;31:17788–17799. doi: 10.1523/JNEUROSCI.4308-11.2011. PubMed DOI PMC
Yamagata T, Saito H, Habuchi O, Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J. Biol. Chem. 1968;243:1523–1535. PubMed
Pizzorusso T, et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298:1248–1251. doi: 10.1126/science.1072699. PubMed DOI
Galtrey CM, Asher RA, Nothias F, Fawcett JW. Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair. Brain. 2006;130:926–939. doi: 10.1093/brain/awl372. PubMed DOI
Carter LM, et al. The yellow fluorescent protein (YFP-H) mouse reveals neuroprotection as a novel mechanism underlying chondroitinase ABC-mediated repair after spinal cord injury. J. Neurosci. 2008;28:14107–14120. doi: 10.1523/JNEUROSCI.2217-08.2008. PubMed DOI PMC
Lemons ML, Howland DR, Anderson DK. Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Exp. Neurol. 1999;160:51–65. doi: 10.1006/exnr.1999.7184. PubMed DOI
Tester NJ, Howland DR. Chondroitinase ABC improves basic and skilled locomotion in spinal cord injured cats. Exp. Neurol. 2008;209:483–496. doi: 10.1016/j.expneurol.2007.07.019. PubMed DOI PMC
Lee H, McKeon RJ, Bellamkonda RV. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc. Natl. Acad. Sci. 2010;107:3340–3345. doi: 10.1073/pnas.0905437106. PubMed DOI PMC
Cafferty WBJ, Yang SH, Duffy PJ, Li S, Strittmatter SM. Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J. Neurosci. 2007;27:2176–2185. doi: 10.1523/JNEUROSCI.5176-06.2007. PubMed DOI PMC
Muir EM, et al. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells. J. Biotechnol. 2010;145:103–110. doi: 10.1016/j.jbiotec.2009.11.002. PubMed DOI PMC
Zhao R-R, et al. Lentiviral vectors express chondroitinase ABC in cortical projections and promote sprouting of injured corticospinal axons. J. Neurosci. Methods. 2011;201:228–238. doi: 10.1016/j.jneumeth.2011.08.003. PubMed DOI PMC
Bartus K, et al. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J. Neurosci. 2014;34:4822–4836. doi: 10.1523/JNEUROSCI.4369-13.2014. PubMed DOI PMC
James ND, et al. Chondroitinase gene therapy improves upper limb function following cervical contusion injury. Exp. Neurol. 2015;271:131–135. doi: 10.1016/j.expneurol.2015.05.022. PubMed DOI PMC
Burnside ER, et al. Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain. 2018 doi: 10.1093/brain/awy158. PubMed DOI PMC
Kanno H, et al. Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J. Neurosci. 2014;34:1838–1855. doi: 10.1523/JNEUROSCI.2661-13.2014. PubMed DOI PMC
Pearse DD, et al. Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: Survival, migration, axon association, and functional recovery. Glia. 2007;55:976–1000. doi: 10.1002/glia.20490. PubMed DOI
Saberi H, et al. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: An interim report on safety considerations and possible outcomes. Neurosci. Lett. 2008;443:46–50. doi: 10.1016/j.neulet.2008.07.041. PubMed DOI
Xu XM, Chen A, Guenard V, Kleitman N, Bunge MB. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. 1997;26:1–16. doi: 10.1023/A:1018557923309. PubMed DOI
Bartus K, et al. Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury. Brain. 2016;139:1394–1416. doi: 10.1093/brain/aww039. PubMed DOI PMC
Adcock KH, et al. Axon behaviour at Schwann cell - astrocyte boundaries: manipulation of axon signalling pathways and the neural adhesion molecule L1 can enable axons to cross. Eur. J. Neurosci. 2004;20:1425–1435. doi: 10.1111/j.1460-9568.2004.03573.x. PubMed DOI
Plant GW, Bates ML, Bunge MB. Inhibitory Proteoglycan Immunoreactivity Is Higher at the Caudal Than the Rostral Schwann Cell Graft-Transected Spinal Cord Interface. Mol. Cell. Neurosci. 2001;17:471–487. doi: 10.1006/mcne.2000.0948. PubMed DOI
Afshari FT, Kwok JC, Fawcett JW. Astrocyte-produced ephrins inhibit Schwann cell migration via VAV2 signaling. J. Neurosci. 2010;30:4246–4255. doi: 10.1523/JNEUROSCI.3351-09.2010. PubMed DOI PMC
Williams RR, Henao M, Pearse DD, Bunge MB. Permissive Schwann cell graft/spinal cord interfaces for axon regeneration. Cell Transpl. 2015;24:115–131. doi: 10.3727/096368913X674657. PubMed DOI PMC
Seitz B, et al. Retroviral vector-mediated gene transfer into keratocytes: in vitro effects of polybrene and protamine sulfate. Graef's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 1998;236:602–612. doi: 10.1007/s004170050129. PubMed DOI
Frimpong K, Spector SA. Cotransduction of nondividing cells using lentiviral vectors. Gene Ther. 2000;7:1562–1569. doi: 10.1038/sj.gt.3301283. PubMed DOI
Golden KL, et al. Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp. Neurol. 2007;207:203–217. doi: 10.1016/j.expneurol.2007.06.023. PubMed DOI PMC
Lundberg C, et al. Applications of lentiviral vectors for biology and gene therapy of neurological disorders. Curr. Gene Ther. 2008;8:461–473. doi: 10.2174/156652308786847996. PubMed DOI
Wu D, et al. Targeting a dominant negative rho kinase to neurons promotes axonal outgrowth and partial functional recovery after rat rubrospinal tract lesion. Molecular Ther. 2009;17:2020–2030. doi: 10.1038/mt.2009.168. PubMed DOI PMC
Lin R, Rosahl TW, Whiting PJ, Fawcett JW, Kwok JCF. 6-Sulphated chondroitins have a positive influence on axonal regeneration. PLoS ONE. 2011;6:e21499. doi: 10.1371/journal.pone.0021499. PubMed DOI PMC
Lakatos A, Franklin RJ, Barnett SC. Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia. 2000;32:214–225. doi: 10.1002/1098-1136(200012)32:3<214::AID-GLIA20>3.0.CO;2-7. PubMed DOI
Lakatos A, Barnett SC, Franklin RJM. Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than schwann cells following transplantation into adult cns white matter. Exp. Neurol. 2003;184:237–246. doi: 10.1016/S0014-4886(03)00270-X. PubMed DOI
Afshari FT, Kwok JC, White L, Fawcett JW. Schwann cell migration is integrin-dependent and inhibited by astrocyte-produced aggrecan. Glia. 2010 doi: 10.1002/glia.20970. PubMed DOI
Wilby MJ, et al. N-Cadherin inhibits Schwann cell migration on astrocytes. Mol. Cell. Neurosci. 1999;14:66–84. doi: 10.1006/mcne.1999.0766. PubMed DOI
Orlando C, Ster J, Gerber U, Fawcett JW, Raineteau O. Perisynaptic Chondroitin Sulfate Proteoglycans Restrict Structural Plasticity in an Integrin-Dependent Manner. J. Neurosci. 2012;32:18009–18017. doi: 10.1523/JNEUROSCI.2406-12.2012. PubMed DOI PMC
Tan CL, et al. Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling. J. Neurosci. 2011;31:6289–6295. doi: 10.1523/JNEUROSCI.0008-11.2011. PubMed DOI PMC
Zuo J, Ferguson TA, Hernandez YJ, Stetler-Stevenson WG, Muir D. Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. J. Neurosci. 1998;18:5203–5211. doi: 10.1523/JNEUROSCI.18-14-05203.1998. PubMed DOI PMC
Milner R, et al. Division of labor of Schwann cell integrins during migration on peripheral nerve extracellular matrix ligands. Dev. Biol. 1997;185:215–228. doi: 10.1006/dbio.1997.8547. PubMed DOI
Previtali SC, et al. Role of integrins in the peripheral nervous system. Prog. Neurobiol. 2001;64:35–49. doi: 10.1016/S0301-0082(00)00045-9. PubMed DOI
Neugebauer KM, Reichardt LF. Cell-surface regulation of beta 1-integrin activity on developing retinal neurons. Nature. 1991;350:68–71. doi: 10.1038/350068a0. PubMed DOI PMC
Lemons ML, Condic ML. Combined integrin activation and intracellular cAMP cause Rho GTPase dependent growth cone collapse on laminin-1. Exp. Neurol. 2006;202:324–335. doi: 10.1016/j.expneurol.2006.06.008. PubMed DOI
Miao H, Burnett E, Kinch M, Simon E, Wang B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat. Cell Biol. 2000;2:62–69. doi: 10.1038/35000008. PubMed DOI
McKeon RJ, Höke A, Silver J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp. Neurol. 1995;136:32–43. doi: 10.1006/exnr.1995.1081. PubMed DOI
Asher RA, et al. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J. Neurosci. 2000;20:2427–2438. doi: 10.1523/JNEUROSCI.20-07-02427.2000. PubMed DOI PMC
Grimpe B, Pressman Y, Bunge MB, Silver J. The role of proteoglycans in Schwann cell/astrocyte interactions and in regeneration failure at PNS/CNS interfaces. Mol. Cell. Neurosci. 2005;28:18–29. doi: 10.1016/j.mcn.2004.06.010. PubMed DOI
Ghirnikar RS, Eng LF. Chondroitin sulfate proteoglycan staining in astrocyte-Schwann cell co-cultures. Glia. 1995;14:145–152. doi: 10.1002/glia.440140209. PubMed DOI
Tom VJ, Doller CM, Malouf AT, Silver J. Astrocyte-associated fibronectin is critical for axonal regeneration in adult white matter. J. Neurosci. 2004;24:9282–9290. doi: 10.1523/JNEUROSCI.2120-04.2004. PubMed DOI PMC
Dou CL, Levine JM. Inhibition of neurite growth by the NG2 chondroitin sulfate proteoglycan. J. Neurosci. 1994;14:7616–7628. doi: 10.1523/JNEUROSCI.14-12-07616.1994. PubMed DOI PMC
Snow DM, Lemmon V, Carrino DA, Caplan AI, Silver J. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp. Neurol. 1990;109:111–130. doi: 10.1016/s0014-4886(05)80013-5. PubMed DOI
Fidler PS, et al. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J. Neurosci. 1999;19:8778–8788. doi: 10.1523/JNEUROSCI.19-20-08778.1999. PubMed DOI PMC
Smith-Thomas LC, et al. Increased axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors. J. Cell Sci. 1995;108(Pt 3):1307–1315. PubMed
DiMilla PA, Barbee K, Lauffenburger DA. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J . 1991;60:15–37. doi: 10.1016/S0006-3495(91)82027-6. PubMed DOI PMC
Fouad K. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J. Neurosci. 2005;25:1169–1178. doi: 10.1523/JNEUROSCI.3562-04.2005. PubMed DOI PMC
Ikegami T, et al. Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury. Eur. J. Neurosci. 2005;22:3036–3046. doi: 10.1111/j.1460-9568.2005.04492.x. PubMed DOI
Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG. Synergistic Effects of Transplanted Adult Neural Stem/Progenitor Cells, Chondroitinase, and Growth Factors Promote Functional Repair and Plasticity of the Chronically Injured Spinal Cord. J. Neurosci. 2010;30:1657–1676. doi: 10.1523/JNEUROSCI.3111-09.2010. PubMed DOI PMC
Warren, P. M., Dickens, S. M., Gigout, S., Fawcett, J. W. & Kwok, J. C. F. (Oxford University Press, 2018).
Emsley JG, Hagg T. alpha6beta1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp. Neurol. 2003;183:273–285. doi: 10.1016/s0014-4886(03)00209-7. PubMed DOI
Jankovski A, Sotelo C. Subventricular zone-olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J. Comp. Neurol. 1996;371:376–396. doi: 10.1002/(sici)1096-9861(19960729)371:3<376::Aid-cne3>3.0.Co;2-#. PubMed DOI
Murase S, Horwitz AF. Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J. Neurosci. 2002;22:3568–3579. doi: 10.1523/JNEUROSCI.22-09-03568.2002. PubMed DOI PMC
Thomas LB, Gates MA, Steindler DA. Young neurons from the adult subependymal zone proliferate and migrate along an astrocyte, extracellular matrix-rich pathway. Glia. 1996;17:1–14. doi: 10.1002/(sici)1098-1136(199605)17:1<1::Aid-glia1>3.0.Co;2-7. PubMed DOI
Vavrek R, Pearse DD, Fouad K. Neuronal populations capable of regeneration following a combined treatment in rats with spinal cord transection. J. Neurotrauma. 2007;24:1667–1673. doi: 10.1089/neu.2007.0290. PubMed DOI
Tran AP, Warren PM, Silver J. Regulation of autophagy by inhibitory CSPG interactions with receptor PTPsigma and its impact on plasticity and regeneration after spinal cord injury. Exp Neurol. 2020;328:113276. doi: 10.1016/j.expneurol.2020.113276. PubMed DOI PMC
Alilain WJ, Horn KP, Hu H, Dick TE, Silver J. Functional regeneration of respiratory pathways after spinal cord injury. Nature. 2011;475:196–200. doi: 10.1038/nature10199. PubMed DOI PMC
DePaul MA, Lin C-Y, Silver J, Lee Y-S. Peripheral nerve transplantation combined with acidic fibroblast growth factor and chondroitinase induces regeneration and improves urinary function in complete spinal cord transected adult mice. PLoS ONE. 2015;10:e0139335. doi: 10.1371/journal.pone.0139335. PubMed DOI PMC
Tom VJ, et al. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord. J. Neurosci. 2009;29:14881–14890. doi: 10.1523/JNEUROSCI.3641-09.2009. PubMed DOI PMC
Houle JD, et al. Combining an autologous peripheral nervous system "bridge" and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J. Neurosci. 2006;26:7405–7415. doi: 10.1523/JNEUROSCI.1166-06.2006. PubMed DOI PMC
Chau CH. Chondroitinase ABC enhances axonal regrowth through Schwann cell-seeded guidance channels after spinal cord injury. FASEB J. 2003 doi: 10.1096/fj.03-0196fje. PubMed DOI
Morgelin M, Paulsson M, Malmstrom A, Heinegard D. Shared and distinct structural features of interstitial proteoglycans from different bovine tissues revealed by electron microscopy. J. Biol. Chem. 1989;264:12080–12090. PubMed
Shen Y, et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science. 2009;326:592–596. doi: 10.1126/science.1178310. PubMed DOI PMC
Lang BT, et al. Modulation of the proteoglycan receptor PTPsigma promotes recovery after spinal cord injury. Nature. 2015;518:404–408. doi: 10.1038/nature13974. PubMed DOI PMC
Fry EJ, Chagnon MJ, López-Vales R, Tremblay ML, David S. Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma deficient mice. Glia. 2010;58:423–433. doi: 10.1002/glia.20934. PubMed DOI
Coles CH, et al. Proteoglycan-specific molecular switch for RPTPsigma clustering and neuronal extension. Science. 2011;332:484–488. doi: 10.1126/science.1200840. PubMed DOI PMC
Jin Y, Ketschek A, Jiang Z, Smith G, Fischer I. Chondroitinase activity can be transduced by a lentiviral vector in vitro and in vivo. J. Neurosci. Methods. 2011 doi: 10.1016/j.jneumeth.2011.05.007. PubMed DOI PMC
Curinga GM, et al. Mammalian-produced chondroitinase AC mitigates axon inhibition by chondroitin sulfate proteoglycans. J. Neurochem. 2007;102:275–288. doi: 10.1111/j.1471-4159.2007.04530.x. PubMed DOI
Guo Y, et al. Lentivirus-mediated transfection of chondroitinase ABC gene without the bacterial leader sequence enables long-term secretion of functional chondroitinase ABC in human bone marrow stromal cells. Biotech. Lett. 2016;38:893–900. doi: 10.1007/s10529-016-2046-y. PubMed DOI
Goldshmit Y. Axonal Regeneration and Lack of Astrocytic Gliosis in EphA4-Deficient Mice. J. Neurosci. 2004;24:10064–10073. doi: 10.1523/JNEUROSCI.2981-04.2004. PubMed DOI PMC
Fairless R, Frame MC, Barnett SC. N-cadherin differentially determines Schwann cell and olfactory ensheathing cell adhesion and migration responses upon contact with astrocytes. Mol. Cell. Neurosci. 2005;28:253–263. doi: 10.1016/j.mcn.2004.09.009. PubMed DOI
Alves JN, et al. AAV vector-mediated secretion of chondroitinase provides a sensitive tracer for axonal arborisations. J. Neurosci. Methods. 2014;227:107–120. doi: 10.1016/j.jneumeth.2014.02.010. PubMed DOI
Hacein-Bey-Abina S, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 2003;348:255–256. doi: 10.1056/NEJM200301163480314. PubMed DOI
Hoyng SA, et al. Developing a potentially immunologically inert tetracycline-regulatable viral vector for gene therapy in the peripheral nerve. Gene Ther. 2014;21:549–557. doi: 10.1038/gt.2014.22. PubMed DOI
Hyatt AJT, Wang D, Kwok JC, Fawcett JW, Martin KR. Controlled release of chondroitinase ABC from fibrin gel reduces the level of inhibitory glycosaminoglycan chains in lesioned spinal cord. J. Controlled Rel. 2010 doi: 10.1016/j.jconrel.2010.06.026. PubMed DOI