Planet of the AAVs: The Spinal Cord Injury Episode
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-10365S
Grant Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/15_003/0000419
Center of Reconstruction Neuroscience - NEURORECON
320421
Charles University Grant Agency
PubMed
34071245
PubMed Central
PMC8228984
DOI
10.3390/biomedicines9060613
PII: biomedicines9060613
Knihovny.cz E-zdroje
- Klíčová slova
- AAV vector, adeno-associated virus, gene therapy, spinal cord injury,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The spinal cord injury (SCI) is a medical and life-disrupting condition with devastating consequences for the physical, social, and professional welfare of patients, and there is no adequate treatment for it. At the same time, gene therapy has been studied as a promising approach for the treatment of neurological and neurodegenerative disorders by delivering remedial genes to the central nervous system (CNS), of which the spinal cord is a part. For gene therapy, multiple vectors have been introduced, including integrating lentiviral vectors and non-integrating adeno-associated virus (AAV) vectors. AAV vectors are a promising system for transgene delivery into the CNS due to their safety profile as well as long-term gene expression. Gene therapy mediated by AAV vectors shows potential for treating SCI by delivering certain genetic information to specific cell types. This review has focused on a potential treatment of SCI by gene therapy using AAV vectors.
Zobrazit více v PubMed
McDonald J.W., Sadowsky C. Spinal-Cord Injury. Lancet Lond. Engl. 2002;359:417–425. doi: 10.1016/S0140-6736(02)07603-1. PubMed DOI
Eckert M.J., Martin M.J. Trauma: Spinal Cord Injury. Surg. Clin. N. Am. 2017;97:1031–1045. doi: 10.1016/j.suc.2017.06.008. PubMed DOI
Cappella M., Ciotti C., Cohen-Tannoudji M., Biferi M.G. Gene Therapy for ALS-A Perspective. Int. J. Mol. Sci. 2019;20:4388. doi: 10.3390/ijms20184388. PubMed DOI PMC
Tuszynski M.H., Yang J.H., Barba D., Hoi-Sang U., Bakay R.A.E., Pay M.M., Masliah E., Conner J.M., Kobalka P., Roy S., et al. Nerve Growth Factor Gene Therapy: Activation of Neuronal Responses in Alzheimer Disease. JAMA Neurol. 2015;72:1139–1147. doi: 10.1001/jamaneurol.2015.1807. PubMed DOI PMC
Hara H., Monsonego A., Yuasa K., Adachi K., Xiao X., Takeda S., Takahashi K., Weiner H.L., Tabira T. Development of a Safe Oral Abeta Vaccine Using Recombinant Adeno-Associated Virus Vector for Alzheimer’s Disease. J. Alzheimers Dis. JAD. 2004;6:483–488. doi: 10.3233/JAD-2004-6504. PubMed DOI
Zhang J., Wu X., Qin C., Qi J., Ma S., Zhang H., Kong Q., Chen D., Ba D., He W. A Novel Recombinant Adeno-Associated Virus Vaccine Reduces Behavioral Impairment and Beta-Amyloid Plaques in a Mouse Model of Alzheimer’s Disease. Neurobiol. Dis. 2003;14:365–379. doi: 10.1016/j.nbd.2003.07.005. PubMed DOI
Fukuchi K., Tahara K., Kim H.-D., Maxwell J.A., Lewis T.L., Accavitti-Loper M.A., Kim H., Ponnazhagan S., Lalonde R. Anti-Abeta Single-Chain Antibody Delivery via Adeno-Associated Virus for Treatment of Alzheimer’s Disease. Neurobiol. Dis. 2006;23:502–511. doi: 10.1016/j.nbd.2006.04.012. PubMed DOI PMC
Leff S.E., Spratt S.K., Snyder R.O., Mandel R.J. Long-Term Restoration of Striatal L-Aromatic Amino Acid Decarboxylase Activity Using Recombinant Adeno-Associated Viral Vector Gene Transfer in a Rodent Model of Parkinson’s Disease. Neuroscience. 1999;92:185–196. doi: 10.1016/S0306-4522(98)00741-6. PubMed DOI
Shen Y., Muramatsu S.I., Ikeguchi K., Fujimoto K.I., Fan D.S., Ogawa M., Mizukami H., Urabe M., Kume A., Nagatsu I., et al. Triple Transduction with Adeno-Associated Virus Vectors Expressing Tyrosine Hydroxylase, Aromatic-L-Amino-Acid Decarboxylase, and GTP Cyclohydrolase I for Gene Therapy of Parkinson’s Disease. Hum. Gene Ther. 2000;11:1509–1519. doi: 10.1089/10430340050083243. PubMed DOI
Muramatsu S.-I., Wang L., Ikeguchi K., Fujimoto K.-I., Nakano I., Ozawa K. Recombinant Adeno-Associated Viral Vectors Bring Gene Therapy for Parkinson’s Disease Closer to Reality. J. Neurol. 2002;249(Suppl. 2):II36–II40. doi: 10.1007/s00415-002-1207-1. PubMed DOI
Dufour B.D., Smith C.A., Clark R.L., Walker T.R., McBride J.L. Intrajugular Vein Delivery of AAV9-RNAi Prevents Neuropathological Changes and Weight Loss in Huntington’s Disease Mice. Mol. Ther. J. Am. Soc. Gene Ther. 2014;22:797–810. doi: 10.1038/mt.2013.289. PubMed DOI PMC
Pattali R., Mou Y., Li X.-J. AAV9 Vector: A Novel Modality in Gene Therapy for Spinal Muscular Atrophy. Gene Ther. 2019;26:287–295. doi: 10.1038/s41434-019-0085-4. PubMed DOI
Falk D.J., Mah C.S., Soustek M.S., Lee K.-Z., Elmallah M.K., Cloutier D.A., Fuller D.D., Byrne B.J. Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease. Mol. Ther. J. Am. Soc. Gene Ther. 2013;21:1661–1667. doi: 10.1038/mt.2013.96. PubMed DOI PMC
Elmallah M.K., Falk D.J., Nayak S., Federico R.A., Sandhu M.S., Poirier A., Byrne B.J., Fuller D.D. Sustained Correction of Motoneuron Histopathology Following Intramuscular Delivery of AAV in Pompe Mice. Mol. Ther. J. Am. Soc. Gene Ther. 2014;22:702–712. doi: 10.1038/mt.2013.282. PubMed DOI PMC
Todd A.G., McElroy J.A., Grange R.W., Fuller D.D., Walter G.A., Byrne B.J., Falk D.J. Correcting Neuromuscular Deficits With Gene Therapy in Pompe Disease. Ann. Neurol. 2015;78:222–234. doi: 10.1002/ana.24433. PubMed DOI PMC
Colella P., Mingozzi F. Gene Therapy for Pompe Disease: The Time Is Now. Hum. Gene Ther. 2019;30:1245–1262. doi: 10.1089/hum.2019.109. PubMed DOI
Salabarria S.M., Nair J., Clement N., Smith B.K., Raben N., Fuller D.D., Byrne B.J., Corti M. Advancements in AAV-Mediated Gene Therapy for Pompe Disease. J. Neuromuscul. Dis. 2020;7:15–31. doi: 10.3233/JND-190426. PubMed DOI PMC
Sánchez-Pernaute R., Harvey-White J., Cunningham J., Bankiewicz K.S. Functional Effect of Adeno-Associated Virus Mediated Gene Transfer of Aromatic L-Amino Acid Decarboxylase into the Striatum of 6-OHDA-Lesioned Rats. Mol. Ther. J. Am. Soc. Gene Ther. 2001;4:324–330. doi: 10.1006/mthe.2001.0466. PubMed DOI
Salami C.O., Jackson K., Jose C., Alyass L., Cisse G.-I., De B.P., Stiles K.M., Chiuchiolo M.J., Sondhi D., Crystal R.G., et al. Stress-Induced Mouse Model of the Cardiac Manifestations of Friedreich’s Ataxia Corrected by AAV-Mediated Gene Therapy. Hum. Gene Ther. 2020;31:819–827. doi: 10.1089/hum.2019.363. PubMed DOI
Taha M.F. Cell Based-Gene Delivery Approaches for the Treatment of Spinal Cord Injury and Neurodegenerative Disorders. Curr. Stem Cell Res. Ther. 2010;5:23–36. doi: 10.2174/157488810790442778. PubMed DOI
Bo X., Wu D., Yeh J., Zhang Y. Gene Therapy Approaches for Neuroprotection and Axonal Regeneration after Spinal Cord and Spinal Root Injury. Curr. Gene Ther. 2011;11:101–115. doi: 10.2174/156652311794940773. PubMed DOI
Rowland J.W., Hawryluk G.W.J., Kwon B., Fehlings M.G. Current Status of Acute Spinal Cord Injury Pathophysiology and Emerging Therapies: Promise on the Horizon. Neurosurg. Focus. 2008;25:E2. doi: 10.3171/FOC.2008.25.11.E2. PubMed DOI
Franz S., Weidner N., Blesch A. Gene Therapy Approaches to Enhancing Plasticity and Regeneration after Spinal Cord Injury. Exp. Neurol. 2012;235:62–69. doi: 10.1016/j.expneurol.2011.01.015. PubMed DOI PMC
Uchida K., Nakajima H., Guerrero A.R., Johnson W.E., Masri W.E., Baba H. Gene Therapy Strategies for the Treatment of Spinal Cord Injury. Ther. Deliv. 2014;5:591–607. doi: 10.4155/tde.14.20. PubMed DOI
Naso M.F., Tomkowicz B., Perry W.L., Strohl W.R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs Clin. Immunother. Biopharm. Gene Ther. 2017;31:317–334. doi: 10.1007/s40259-017-0234-5. PubMed DOI PMC
Becker D., Sadowsky C.L., McDonald J.W. Restoring Function after Spinal Cord Injury. Neurologist. 2003;9:1–15. doi: 10.1097/01.nrl.0000038587.58012.05. PubMed DOI
Tator C.H., Fehlings M.G. Review of the Secondary Injury Theory of Acute Spinal Cord Trauma with Emphasis on Vascular Mechanisms. J. Neurosurg. 1991;75:15–26. doi: 10.3171/jns.1991.75.1.0015. PubMed DOI
Westergren H., Farooque M., Olsson Y., Holtz A. Spinal Cord Blood Flow Changes Following Systemic Hypothermia and Spinal Cord Compression Injury: An Experimental Study in the Rat Using Laser-Doppler Flowmetry. Spinal Cord. 2001;39:74–84. doi: 10.1038/sj.sc.3101127. PubMed DOI
Simon C.M., Sharif S., Tan R.P., LaPlaca M.C. Spinal Cord Contusion Causes Acute Plasma Membrane Damage. J. Neurotrauma. 2009;26:563–574. doi: 10.1089/neu.2008.0523. PubMed DOI PMC
Oyinbo C.A. Secondary Injury Mechanisms in Traumatic Spinal Cord Injury: A Nugget of This Multiply Cascade. Acta Neurobiol. Exp. 2011;71:281–299. PubMed
Ng M.T.L., Stammers A.T., Kwon B.K. Vascular Disruption and the Role of Angiogenic Proteins after Spinal Cord Injury. Transl. Stroke Res. 2011;2:474–491. doi: 10.1007/s12975-011-0109-x. PubMed DOI PMC
Meldrum B.S. Glutamate as a Neurotransmitter in the Brain: Review of Physiology and Pathology. J. Nutr. 2000;130:1007S–1015S. doi: 10.1093/jn/130.4.1007S. PubMed DOI
Zhang N., Yin Y., Xu S.-J., Wu Y.-P., Chen W.-S. Inflammation & Apoptosis in Spinal Cord Injury. Indian J. Med. Res. 2012;135:287–296. PubMed PMC
Cafferty W.B.J., Duffy P., Huebner E., Strittmatter S.M. MAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma. J. Neurosci. Off. J. Soc. Neurosci. 2010;30:6825–6837. doi: 10.1523/JNEUROSCI.6239-09.2010. PubMed DOI PMC
Akbik F., Cafferty W.B.J., Strittmatter S.M. Myelin Associated Inhibitors: A Link Between Injury-Induced and Experience-Dependent Plasticity. Exp. Neurol. 2012;235:43–52. doi: 10.1016/j.expneurol.2011.06.006. PubMed DOI PMC
Fawcett J.W., Schwab M.E., Montani L., Brazda N., Müller H.W. Defeating Inhibition of Regeneration by Scar and Myelin Components. Handb. Clin. Neurol. 2012;109:503–522. doi: 10.1016/B978-0-444-52137-8.00031-0. PubMed DOI
Busch S.A., Horn K.P., Cuascut F.X., Hawthorne A.L., Bai L., Miller R.H., Silver J. Adult NG2+ Cells Are Permissive to Neurite Outgrowth and Stabilize Sensory Axons during Macrophage-Induced Axonal Dieback after Spinal Cord Injury. J. Neurosci. Off. J. Soc. Neurosci. 2010;30:255–265. doi: 10.1523/JNEUROSCI.3705-09.2010. PubMed DOI PMC
McTigue D.M., Tripathi R., Wei P. NG2 Colocalizes with Axons and Is Expressed by a Mixed Cell Population in Spinal Cord Lesions. J. Neuropathol. Exp. Neurol. 2006;65:406–420. doi: 10.1097/01.jnen.0000218447.32320.52. PubMed DOI
Anderson M.A., Burda J.E., Ren Y., Ao Y., O’Shea T.M., Kawaguchi R., Coppola G., Khakh B.S., Deming T.J., Sofroniew M.V. Astrocyte Scar Formation Aids Central Nervous System Axon Regeneration. Nature. 2016;532:195–200. doi: 10.1038/nature17623. PubMed DOI PMC
Yang T., Dai Y., Chen G., Cui S. Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Front. Cell. Neurosci. 2020;14:78. doi: 10.3389/fncel.2020.00078. PubMed DOI PMC
Bradbury E.J., Burnside E.R. Moving beyond the Glial Scar for Spinal Cord Repair. Nat. Commun. 2019;10:3879. doi: 10.1038/s41467-019-11707-7. PubMed DOI PMC
Sofroniew M.V. Reactive Astrocytes in Neural Repair and Protection. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry. 2005;11:400–407. doi: 10.1177/1073858405278321. PubMed DOI
Sofroniew M.V. Molecular Dissection of Reactive Astrogliosis and Glial Scar Formation. Trends Neurosci. 2009;32:638–647. doi: 10.1016/j.tins.2009.08.002. PubMed DOI PMC
Sofroniew M.V., Vinters H.V. Astrocytes: Biology and Pathology. Acta Neuropathol. 2010;119:7–35. doi: 10.1007/s00401-009-0619-8. PubMed DOI PMC
Berns K.I., Bohenzky R.A. Adeno-Associated Viruses: An Update. Adv. Virus Res. 1987;32:243–306. doi: 10.1016/s0065-3527(08)60479-0. PubMed DOI
Balakrishnan B., Jayandharan G.R. Basic Biology of Adeno-Associated Virus (AAV) Vectors Used in Gene Therapy. Curr. Gene Ther. 2014;14:86–100. doi: 10.2174/1566523214666140302193709. PubMed DOI
Warnock J.N., Daigre C., Al-Rubeai M. Introduction to Viral Vectors. Methods Mol. Biol. Clifton NJ. 2011;737:1–25. doi: 10.1007/978-1-61779-095-9_1. PubMed DOI
Gao G., Vandenberghe L.H., Alvira M.R., Lu Y., Calcedo R., Zhou X., Wilson J.M. Clades of Adeno-Associated Viruses Are Widely Disseminated in Human Tissues. J. Virol. 2004;78:6381–6388. doi: 10.1128/JVI.78.12.6381-6388.2004. PubMed DOI PMC
Gurda B.L., DiMattia M.A., Miller E.B., Bennett A., McKenna R., Weichert W.S., Nelson C.D., Chen W., Muzyczka N., Olson N.H., et al. Capsid Antibodies to Different Adeno-Associated Virus Serotypes Bind Common Regions. J. Virol. 2013;87:9111–9124. doi: 10.1128/JVI.00622-13. PubMed DOI PMC
Choi V.W., McCarty D.M., Samulski R.J. AAV Hybrid Serotypes: Improved Vectors for Gene Delivery. Curr. Gene Ther. 2005;5:299–310. doi: 10.2174/1566523054064968. PubMed DOI PMC
Ellis B.L., Hirsch M.L., Barker J.C., Connelly J.P., Steininger R.J., Porteus M.H. A Survey of Ex Vivo/in Vitro Transduction Efficiency of Mammalian Primary Cells and Cell Lines with Nine Natural Adeno-Associated Virus (AAV1-9) and One Engineered Adeno-Associated Virus Serotype. Virol. J. 2013;10:74. doi: 10.1186/1743-422X-10-74. PubMed DOI PMC
Zincarelli C., Soltys S., Rengo G., Rabinowitz J.E. Analysis of AAV Serotypes 1-9 Mediated Gene Expression and Tropism in Mice after Systemic Injection. Mol. Ther. J. Am. Soc. Gene Ther. 2008;16:1073–1080. doi: 10.1038/mt.2008.76. PubMed DOI
Wu Z., Asokan A., Samulski R.J. Adeno-Associated Virus Serotypes: Vector Toolkit for Human Gene Therapy. Mol. Ther. 2006;14:316–327. doi: 10.1016/j.ymthe.2006.05.009. PubMed DOI
Bartlett J.S., Wilcher R., Samulski R.J. Infectious Entry Pathway of Adeno-Associated Virus and Adeno-Associated Virus Vectors. J. Virol. 2000;74:2777–2785. doi: 10.1128/JVI.74.6.2777-2785.2000. PubMed DOI PMC
Murlidharan G., Samulski R.J., Asokan A. Biology of Adeno-Associated Viral Vectors in the Central Nervous System. Front. Mol. Neurosci. 2014;7:76. doi: 10.3389/fnmol.2014.00076. PubMed DOI PMC
Yue Y., Duan D. Double Strand Interaction Is the Predominant Pathway for Intermolecular Recombination of Adeno-Associated Viral Genomes. Virology. 2003;313:1–7. doi: 10.1016/S0042-6822(03)00432-X. PubMed DOI
Sun X., Lu Y., Bish L.T., Calcedo R., Wilson J.M., Gao G. Molecular Analysis of Vector Genome Structures after Liver Transduction by Conventional and Self-Complementary Adeno-Associated Viral Serotype Vectors in Murine and Nonhuman Primate Models. Hum. Gene Ther. 2010;21:750–761. doi: 10.1089/hum.2009.214. PubMed DOI PMC
Dong B., Nakai H., Xiao W. Characterization of Genome Integrity for Oversized Recombinant AAV Vector. Mol. Ther. J. Am. Soc. Gene Ther. 2010;18:87–92. doi: 10.1038/mt.2009.258. PubMed DOI PMC
Chamberlain K., Riyad J.M., Weber T. Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids. Hum. Gene Ther. Methods. 2016;27:1–12. doi: 10.1089/hgtb.2015.140. PubMed DOI PMC
Adeno-Associated Virus Vector as a Platform for Gene Therapy Delivery|Nature Reviews Drug Discovery. [(accessed on 9 February 2021)]; Available online: https://www.nature.com/articles/s41573-019-0012-9#citeas. PubMed PMC
Verdera H.C., Kuranda K., Mingozzi F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol. Ther. J. Am. Soc. Gene Ther. 2020;28:723–746. doi: 10.1016/j.ymthe.2019.12.010. PubMed DOI PMC
Mammalian RNA Polymerase II Core Promoters: Insights from Genome-Wide Studies|Nature Reviews Genetics. [(accessed on 5 March 2021)]; Available online: https://www.nature.com/articles/nrg2026. PubMed
Chira S., Jackson C.S., Oprea I., Ozturk F., Pepper M.S., Diaconu I., Braicu C., Raduly L.-Z., Calin G.A., Berindan-Neagoe I. Progresses towards Safe and Efficient Gene Therapy Vectors. Oncotarget. 2015;6:30675–30703. doi: 10.18632/oncotarget.5169. PubMed DOI PMC
Senís E., Mosteiro L., Wilkening S., Wiedtke E., Nowrouzi A., Afzal S., Fronza R., Landerer H., Abad M., Niopek D., et al. AAV Vector-Mediated in Vivo Reprogramming into Pluripotency. Nat. Commun. 2018;9 doi: 10.1038/s41467-018-05059-x. PubMed DOI PMC
Kügler S., Kilic E., Bähr M. Human Synapsin 1 Gene Promoter Confers Highly Neuron-Specific Long-Term Transgene Expression from an Adenoviral Vector in the Adult Rat Brain Depending on the Transduced Area. Gene Ther. 2003;10:337–347. doi: 10.1038/sj.gt.3301905. PubMed DOI
Lee Y., Messing A., Su M., Brenner M. GFAP Promoter Elements Required for Region-Specific and Astrocyte-Specific Expression. Glia. 2008;56:481–493. doi: 10.1002/glia.20622. PubMed DOI
Niwa H., Yamamura K., Miyazaki J. Efficient Selection for High-Expression Transfectants with a Novel Eukaryotic Vector. Gene. 1991;108:193–199. doi: 10.1016/0378-1119(91)90434-d. PubMed DOI
Gray S.J., Foti S.B., Schwartz J.W., Bachaboina L., Taylor-Blake B., Coleman J., Ehlers M.D., Zylka M.J., McCown T.J., Samulski R.J. Optimizing Promoters for Recombinant Adeno-Associated Virus-Mediated Gene Expression in the Peripheral and Central Nervous System Using Self-Complementary Vectors. Hum. Gene Ther. 2011;22:1143–1153. doi: 10.1089/hum.2010.245. PubMed DOI PMC
Nieuwenhuis B., Haenzi B., Hilton S., Carnicer-Lombarte A., Hobo B., Verhaagen J., Fawcett J.W. Optimization of Adeno-Associated Viral Vector-Mediated Transduction of the Corticospinal Tract: Comparison of Four Promoters. Gene Ther. 2020:1–19. doi: 10.1038/s41434-020-0169-1. PubMed DOI PMC
Chen Y.H., Keiser M.S., Davidson B.L. Viral Vectors for Gene Transfer. Curr. Protoc. Mouse Biol. 2018;8:e58. doi: 10.1002/cpmo.58. PubMed DOI
Basner-Tschakarjan E., Mingozzi F. Cell-Mediated Immunity to AAV Vectors, Evolving Concepts and Potential Solutions. Front. Immunol. 2014;5:350. doi: 10.3389/fimmu.2014.00350. PubMed DOI PMC
Grieger J.C., Samulski R.J. Packaging Capacity of Adeno-Associated Virus Serotypes: Impact of Larger Genomes on Infectivity and Postentry Steps. J. Virol. 2005;79:9933–9944. doi: 10.1128/JVI.79.15.9933-9944.2005. PubMed DOI PMC
Selot R.S., Hareendran S., Jayandharan G.R. Developing Immunologically Inert Adeno-Associated Virus (AAV) Vectors for Gene Therapy: Possibilities and Limitations. Curr. Pharm. Biotechnol. 2014;14:1072–1082. doi: 10.2174/1389201015666140327141710. PubMed DOI
Vandamme C., Adjali O., Mingozzi F. Unraveling the Complex Story of Immune Responses to AAV Vectors Trial after Trial. Hum. Gene Ther. 2017;28:1061–1074. doi: 10.1089/hum.2017.150. PubMed DOI PMC
Berns K.I., Muzyczka N. AAV: An Overview of Unanswered Questions. Hum. Gene Ther. 2017;28:308–313. doi: 10.1089/hum.2017.048. PubMed DOI PMC
Meier A.F., Fraefel C., Seyffert M. The Interplay between Adeno-Associated Virus and Its Helper Viruses. Viruses. 2020;12:662. doi: 10.3390/v12060662. PubMed DOI PMC
Murin C.D., Wilson I.A., Ward A.B. Antibody Responses to Viral Infections: A Structural Perspective across Three Different Enveloped Viruses. Nat. Microbiol. 2019;4:734–747. doi: 10.1038/s41564-019-0392-y. PubMed DOI PMC
Mingozzi F., High K.A. Immune Responses to AAV Vectors: Overcoming Barriers to Successful Gene Therapy. Blood. 2013;122:23–36. doi: 10.1182/blood-2013-01-306647. PubMed DOI PMC
Li H., Lasaro M.O., Jia B., Lin S.W., Haut L.H., High K.A., Ertl H.C.J. Capsid-Specific T-Cell Responses to Natural Infections with Adeno-Associated Viruses in Humans Differ from Those of Nonhuman Primates. Mol. Ther. J. Am. Soc. Gene Ther. 2011;19:2021–2030. doi: 10.1038/mt.2011.81. PubMed DOI PMC
Ronzitti G., Gross D.-A., Mingozzi F. Human Immune Responses to Adeno-Associated Virus (AAV) Vectors. Front. Immunol. 2020;11:670. doi: 10.3389/fimmu.2020.00670. PubMed DOI PMC
Rabinowitz J., Chan Y.K., Samulski R.J. Adeno-Associated Virus (AAV) Versus Immune Response. Viruses. 2019;11:102. doi: 10.3390/v11020102. PubMed DOI PMC
Immune Responses to Viral Gene Therapy Vectors: Molecular Therapy. [(accessed on 6 May 2021)]; Available online: https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(20)30002-2.
Herzog R.W. Immune Responses to AAV Capsid: Are Mice Not Humans After All? Mol. Ther. 2007;15:649–650. doi: 10.1038/sj.mt.6300123. PubMed DOI
Kao J.-H., Chen S.L., Ma H.I., Law P.-Y., Tao P.L., Loh H.H. Intrathecal Delivery of a Mutant μ-Opioid Receptor Activated by Naloxone as a Possible Antinociceptive Paradigm. J. Pharmacol. Exp. Ther. 2010;334:739–745. doi: 10.1124/jpet.109.165399. PubMed DOI PMC
Snyder B.R., Gray S.J., Quach E.T., Huang J.W., Leung C.H., Samulski R.J., Boulis N.M., Federici T. Comparison of Adeno-Associated Viral Vector Serotypes for Spinal Cord and Motor Neuron Gene Delivery. Hum. Gene Ther. 2011;22:1129–1135. doi: 10.1089/hum.2011.008. PubMed DOI
Storek B., Reinhardt M., Wang C., Janssen W.G.M., Harder N.M., Banck M.S., Morrison J.H., Beutler A.S. Sensory neuron targeting by self-complementary AAV8 via lumbar puncture for chronic pain. Proc. Natl. Acad. Sci. USA. 2008;105:1055–1060. doi: 10.1073/pnas.0708003105. PubMed DOI PMC
Gray S.J., Kalburgi S.N., McCown T.J., Samulski R.J. Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther. 2013;20:450–459. doi: 10.1038/gt.2012.101. PubMed DOI PMC
Samaranch L., Salegio E.A., Sebastian W.S., Kells A.P., Foust K.D., Bringas J.R., Lamarre C., Forsayeth J., Kaspar B.K., Bankiewicz K.S. Adeno-Associated Virus Serotype 9 Transduction in the Central Nervous System of Nonhuman Primates. Hum. Gene Ther. 2012;23:382–389. doi: 10.1089/hum.2011.200. PubMed DOI PMC
Zavvarian M.-M., Toossi A., Khazaei M., Hong J., Fehlings M. Novel Innovations in Cell and Gene Therapies for Spinal Cord Injury. F1000Research. 2020;9 doi: 10.12688/f1000research.21989.1. PubMed DOI PMC
Watson G., Bastacky J., Belichenko P., Buddhikot M., Jungles S., Vellard M., Mobley W.C., Kakkis E. Intrathecal Administration of AAV Vectors for the Treatment of Lysosomal Storage in the Brains of MPS I Mice. Gene Ther. 2006;13:917–925. doi: 10.1038/sj.gt.3302735. PubMed DOI
Hardcastle N., Boulis N.M., Federici T. AAV Gene Delivery to the Spinal Cord: Serotypes, Methods, Candidate Diseases, and Clinical Trials. Expert Opin. Biol. Ther. 2018;18:293–307. doi: 10.1080/14712598.2018.1416089. PubMed DOI
Gray S.J., Woodard K.T., Samulski R.J. Viral Vectors and Delivery Strategies for CNS Gene Therapy. Ther. Deliv. 2010;1:517–534. doi: 10.4155/tde.10.50. PubMed DOI PMC
Tosolini A.P., Sleigh J.N. Intramuscular Delivery of Gene Therapy for Targeting the Nervous System. Front. Mol. Neurosci. 2020;13 doi: 10.3389/fnmol.2020.00129. PubMed DOI PMC
Bernstein D.R., Stelzner D.J. Plasticity of the Corticospinal Tract Following Midthoracic Spinal Injury in the Postnatal Rat. J. Comp. Neurol. 1983;221:382–400. doi: 10.1002/cne.902210403. PubMed DOI
Mason M.R.J., Tannemaat M.R., Malessy M.J.A., Verhaagen J. Gene Therapy for the Peripheral Nervous System: A Strategy to Repair the Injured Nerve? Curr. Gene Ther. 2011;11:75–89. doi: 10.2174/156652311794940764. PubMed DOI
Richardson P.M. Ciliary Neurotrophic Factor: A Review. Pharmacol. Ther. 1994;63:187–198. doi: 10.1016/0163-7258(94)90045-0. PubMed DOI
Harvey A.R., Hu Y., Leaver S.G., Mellough C.B., Park K., Verhaagen J., Plant G.W., Cui Q. Gene Therapy and Transplantation in CNS Repair: The Visual System. Prog. Retin. Eye Res. 2006;25:449–489. doi: 10.1016/j.preteyeres.2006.07.002. PubMed DOI
Hodgetts S.I., Yoon J.H., Fogliani A., Akinpelu E.A., Baron-Heeris D., Houwers I.G.J., Wheeler L.P.G., Majda B.T., Santhakumar S., Lovett S.J., et al. Cortical AAV-CNTF Gene Therapy Combined with Intraspinal Mesenchymal Precursor Cell Transplantation Promotes Functional and Morphological Outcomes after Spinal Cord Injury in Adult Rats. [(accessed on 9 February 2021)]; Available online: https://www.hindawi.com/journals/np/2018/9828725/ PubMed PMC
Ye J., Cao L., Cui R., Huang A., Yan Z., Lu C., He C. The Effects of Ciliary Neurotrophic Factor on Neurological Function and Glial Activity Following Contusive Spinal Cord Injury in the Rats. Brain Res. 2004;997:30–39. doi: 10.1016/j.brainres.2003.10.036. PubMed DOI
Yick L.-W., Wu W., So K.-F., Yip H.K. Peripheral Nerve Graft and Neurotrophic Factors Enhance Neuronal Survival and Expression of Nitric Oxide Synthase in Clarke’s Nucleus after Hemisection of the Spinal Cord in Adult Rat. Exp. Neurol. 1999;159:131–138. doi: 10.1006/exnr.1999.7134. PubMed DOI
Dechant G., Neumann H. Neurotrophins. Adv. Exp. Med. Biol. 2002;513:303–334. doi: 10.1007/978-1-4615-0123-7_11. PubMed DOI
Eaton M.J., Blits B., Ruitenberg M.J., Verhaagen J., Oudega M. Amelioration of Chronic Neuropathic Pain after Partial Nerve Injury by Adeno-Associated Viral (AAV) Vector-Mediated over-Expression of BDNF in the Rat Spinal Cord. Gene Ther. 2002;9:1387–1395. doi: 10.1038/sj.gt.3301814. PubMed DOI
Cohen-Cory S., Kidane A.H., Shirkey N.J., Marshak S. Brain-Derived Neurotrophic Factor and the Development of Structural Neuronal Connectivity. Dev. Neurobiol. 2010;70:271–288. doi: 10.1002/dneu.20774. PubMed DOI PMC
Ziemlińska E., Kügler S., Schachner M., Wewiór I., Czarkowska-Bauch J., Skup M. Overexpression of BDNF Increases Excitability of the Lumbar Spinal Network and Leads to Robust Early Locomotor Recovery in Completely Spinalized Rats. PLoS ONE. 2014;9:e88833. doi: 10.1371/journal.pone.0088833. PubMed DOI PMC
Mendell L.M., Arvanian V.L. Diversity of Neurotrophin Action in the Postnatal Spinal Cord. Brain Res. Rev. 2002;40:230–239. doi: 10.1016/S0165-0173(02)00205-9. PubMed DOI
Fortun J., Puzis R., Pearse D.D., Gage F.H., Bunge M.B. Muscle Injection of AAV-NT3 Promotes Anatomical Reorganization of CST Axons and Improves Behavioral Outcome Following SCI. J. Neurotrauma. 2009;26:941–953. doi: 10.1089/neu.2008.0807. PubMed DOI
Chang Y.-X., Zhao Y., Pan S., Qi Z.-P., Kong W.-J., Pan Y.-R., Li H.-R., Yang X.-Y. Intramuscular Injection of Adenoassociated Virus Encoding Human Neurotrophic Factor 3 and Exercise Intervention Contribute to Reduce Spasms after Spinal Cord Injury. [(accessed on 9 February 2021)]; Available online: https://www.hindawi.com/journals/np/2019/3017678/ PubMed PMC
Zhou Y., Wang Z., Li J., Li X., Xiao J. Fibroblast Growth Factors in the Management of Spinal Cord Injury. J. Cell. Mol. Med. 2018;22:25–37. doi: 10.1111/jcmm.13353. PubMed DOI PMC
Huang W.-C., Kuo H.-S., Tsai M.-J., Ma H., Chiu C.-W., Huang M.-C., Yang L.-H., Chang P.-T., Lin Y.-L., Kuo W.-C., et al. Adeno-Associated Virus-Mediated Human Acidic Fibroblast Growth Factor Expression Promotes Functional Recovery of Spinal Cord–Contused Rats. J. Gene Med. 2011;13:283–289. doi: 10.1002/jgm.1568. PubMed DOI
Li J., Wang Q., Cai H., He Z., Wang H., Chen J., Zheng Z., Yin J., Liao Z., Xu H., et al. FGF1 Improves Functional Recovery through Inducing PRDX1 to Regulate Autophagy and Anti-ROS after Spinal Cord Injury. J. Cell. Mol. Med. 2018;22:2727–2738. doi: 10.1111/jcmm.13566. PubMed DOI PMC
Rabchevsky A.G., Fugaccia I., Fletcher-Turner A., Blades D.A., Mattson M.P., Scheff S.W. Basic Fibroblast Growth Factor (BFGF) Enhances Tissue Sparing and Functional Recovery Following Moderate Spinal Cord Injury. J. Neurotrauma. 1999;16:817–830. doi: 10.1089/neu.1999.16.817. PubMed DOI
Kasai M., Jikoh T., Fukumitsu H., Furukawa S. FGF-2-Responsive and Spinal Cord-Resident Cells Improve Locomotor Function after Spinal Cord Injury. J. Neurotrauma. 2014;31:1584–1598. doi: 10.1089/neu.2009.1108. PubMed DOI PMC
Fahmy G.H., Moftah M.Z. Fgf-2 in Astroglial Cells during Vertebrate Spinal Cord Recovery. Front. Cell. Neurosci. 2010;4:129. doi: 10.3389/fncel.2010.00129. PubMed DOI PMC
Watabe K., Ohashi T., Sakamoto T., Kawazoe Y., Takeshima T., Oyanagi K., Inoue K., Eto Y., Kim S.U. Rescue of Lesioned Adult Rat Spinal Motoneurons by Adenoviral Gene Transfer of Glial Cell Line-Derived Neurotrophic Factor. J. Neurosci. Res. 2000;60:511–519. doi: 10.1002/(SICI)1097-4547(20000515)60:4<511::AID-JNR10>3.0.CO;2-I. PubMed DOI
The Effects of Glial Cell Line-Derived Neurotrophic Factor after Spinal Cord Injury|Journal of Neurotrauma. [(accessed on 9 February 2021)]; Available online: https://www.liebertpub.com/doi/abs/10.1089/neu.2017.5175?journalCode=neu. PubMed DOI
Kotzbauer P.T., Lampe P.A., Heuckeroth R.O., Golden J.P., Creedon D.J., Johnson E.M., Jr., Milbrandt J. Neurturin, a Relative of Glial-Cell-Line-Derived Neurotrophic Factor. Nature. 1996;384:467–470. doi: 10.1038/384467a0. PubMed DOI
Ibáñez C.F., Andressoo J.-O. Biology of GDNF and Its Receptors—Relevance for Disorders of the Central Nervous System. Neurobiol. Dis. 2017;97:80–89. doi: 10.1016/j.nbd.2016.01.021. PubMed DOI
Encinas M., Tansey M.G., Tsui-Pierchala B.A., Comella J.X., Milbrandt J., Johnson E.M. C-Src Is Required for Glial Cell Line-Derived Neurotrophic Factor (GDNF) Family Ligand-Mediated Neuronal Survival via a Phosphatidylinositol-3 Kinase (PI-3K)-Dependent Pathway. J. Neurosci. Off. J. Soc. Neurosci. 2001;21:1464–1472. doi: 10.1523/JNEUROSCI.21-05-01464.2001. PubMed DOI PMC
The GDNF Family: Signalling, Biological Functions and Therapeutic Value|Nature Reviews Neuroscience. [(accessed on 9 February 2021)]; Available online: https://www.nature.com/articles/nrn812. PubMed
Izmailov A.A., Povysheva T.V., Bashirov F.V., Sokolov M.E., Fadeev F.O., Garifulin R.R., Naroditsky B.S., Logunov D.Y., Salafutdinov I.I., Chelyshev Y.A., et al. Spinal Cord Molecular and Cellular Changes Induced by Adenoviral Vector- and Cell-Mediated Triple Gene Therapy after Severe Contusion. Front. Pharmacol. 2017;8:813. doi: 10.3389/fphar.2017.00813. PubMed DOI PMC
Islamov R., Bashirov F., Fadeev F., Shevchenko R., Izmailov A., Markosyan V., Sokolov M., Kuznetsov M., Davleeva M., Garifulin R., et al. Epidural Stimulation Combined with Triple Gene Therapy for Spinal Cord Injury Treatment. Int. J. Mol. Sci. 2020;21:8896. doi: 10.3390/ijms21238896. PubMed DOI PMC
Chandran V., Coppola G., Nawabi H., Omura T., Versano R., Huebner E.A., Zhang A., Costigan M., Yekkirala A., Barrett L., et al. A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron. 2016;89:956–970. doi: 10.1016/j.neuron.2016.01.034. PubMed DOI PMC
Fagoe N.D., van Heest J., Verhaagen J. Spinal Cord Injury and the Neuron-Intrinsic Regeneration-Associated Gene Program. Neuromolecular Med. 2014;16:799–813. doi: 10.1007/s12017-014-8329-3. PubMed DOI
Ma T.C., Willis D.E. What Makes a RAG Regeneration Associated? Front. Mol. Neurosci. 2015;8 doi: 10.3389/fnmol.2015.00043. PubMed DOI PMC
Gao Y., Deng K., Hou J., Bryson J.B., Barco A., Nikulina E., Spencer T., Mellado W., Kandel E.R., Filbin M.T. Activated CREB Is Sufficient to Overcome Inhibitors in Myelin and Promote Spinal Axon Regeneration in Vivo. Neuron. 2004;44:609–621. doi: 10.1016/j.neuron.2004.10.030. PubMed DOI
Bareyre F.M., Garzorz N., Lang C., Misgeld T., Büning H., Kerschensteiner M. In Vivo Imaging Reveals a Phase-Specific Role of STAT3 during Central and Peripheral Nervous System Axon Regeneration. Proc. Natl. Acad. Sci. USA. 2011;108:6282–6287. doi: 10.1073/pnas.1015239108. PubMed DOI PMC
Lang C., Bradley P.M., Jacobi A., Kerschensteiner M., Bareyre F.M. STAT3 Promotes Corticospinal Remodelling and Functional Recovery after Spinal Cord Injury. EMBO Rep. 2013;14:931–937. doi: 10.1038/embor.2013.117. PubMed DOI PMC
Blackmore M.G., Wang Z., Lerch J.K., Motti D., Zhang Y.P., Shields C.B., Lee J.K., Goldberg J.L., Lemmon V.P., Bixby J.L. Krüppel-like Factor 7 Engineered for Transcriptional Activation Promotes Axon Regeneration in the Adult Corticospinal Tract. Proc. Natl. Acad. Sci. USA. 2012 doi: 10.1073/pnas.1120684109. PubMed DOI PMC
AAV-KLF7 Promotes Descending Propriospinal Neuron Axonal Plasticity after Spinal Cord Injury. [(accessed on 9 February 2021)]; Available online: https://www.hindawi.com/journals/np/2017/1621629/ PubMed PMC
Parikh P., Hao Y., Hosseinkhani M., Patil S.B., Huntley G.W., Tessier-Lavigne M., Zou H. Regeneration of Axons in Injured Spinal Cord by Activation of Bone Morphogenetic Protein/Smad1 Signaling Pathway in Adult Neurons. Proc. Natl. Acad. Sci. USA. 2011;108:E99–E107. doi: 10.1073/pnas.1100426108. PubMed DOI PMC
Transneuronal Delivery of Hyper-Interleukin-6 Enables Functional Recovery after Severe Spinal Cord Injury in Mice | Nature Communications. [(accessed on 9 February 2021)]; Available online: https://www.nature.com/articles/s41467-020-20112-4. PubMed PMC
Nakamura M., Okada S., Toyama Y., Okano H. Role of IL-6 in Spinal Cord Injury in a Mouse Model. Clin. Rev. Allergy Immunol. 2005;28:197–203. doi: 10.1385/CRIAI:28:3:197. PubMed DOI
Overexpression of Sox11 Promotes Corticospinal Tract Regeneration after Spinal Injury While Interfering with Functional Recovery | Journal of Neuroscience. [(accessed on 9 February 2021)]; Available online: https://www.jneurosci.org/content/35/7/3139. PubMed PMC
Zholudeva L.V., Qiang L., Marchenko V., Dougherty K.J., Sakiyama-Elbert S.E., Lane M.A. The Neuroplastic and Therapeutic Potential of Spinal Interneurons in the Injured Spinal Cord. Trends Neurosci. 2018;41:625–639. doi: 10.1016/j.tins.2018.06.004. PubMed DOI PMC
Chen B., Li Y., Yu B., Zhang Z., Brommer B., Williams P.R., Liu Y., Hegarty S.V., Zhou S., Zhu J., et al. Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations. Cell. 2018;174:521–535.e13. doi: 10.1016/j.cell.2018.06.005. PubMed DOI PMC
Goutierre M., Al Awabdh S., Donneger F., François E., Gomez-Dominguez D., Irinopoulou T., Menendez de la Prida L., Poncer J.C. KCC2 Regulates Neuronal Excitability and Hippocampal Activity via Interaction with Task-3 Channels. Cell Rep. 2019;28:91–103.e7. doi: 10.1016/j.celrep.2019.06.001. PubMed DOI
Campbell J.N., Meyer R.A. Mechanisms of Neuropathic Pain. Neuron. 2006;52:77–92. doi: 10.1016/j.neuron.2006.09.021. PubMed DOI PMC
Tang B.L. The Expanding Therapeutic Potential of Neuronal KCC2. Cells. 2020;9:240. doi: 10.3390/cells9010240. PubMed DOI PMC
Nassi J.J., Cepko C.L., Born R.T., Beier K.T. Neuroanatomy Goes Viral! Front. Neuroanat. 2015;9:80. doi: 10.3389/fnana.2015.00080. PubMed DOI PMC
Roth B.L. Dreadds for Neuroscientists. Neuron. 2016;89:683–694. doi: 10.1016/j.neuron.2016.01.040. PubMed DOI PMC
Atasoy D., Sternson S.M. Chemogenetic Tools for Causal Cellular and Neuronal Biology. Physiol. Rev. 2018;98:391–418. doi: 10.1152/physrev.00009.2017. PubMed DOI PMC
Bareyre F.M., Kerschensteiner M., Raineteau O., Mettenleiter T.C., Weinmann O., Schwab M.E. The Injured Spinal Cord Spontaneously Forms a New Intraspinal Circuit in Adult Rats. Nat. Neurosci. 2004;7:269–277. doi: 10.1038/nn1195. PubMed DOI
Bradley P.M., Denecke C.K., Aljovic A., Schmalz A., Kerschensteiner M., Bareyre F.M. Corticospinal Circuit Remodeling after Central Nervous System Injury Is Dependent on Neuronal Activity. J. Exp. Med. 2019;216:2503–2514. doi: 10.1084/jem.20181406. PubMed DOI PMC
Duebel J., Marazova K., Sahel J.-A. Optogenetics. Curr. Opin. Ophthalmol. 2015;26:226–232. doi: 10.1097/ICU.0000000000000140. PubMed DOI PMC
Petersen E.D., Sharkey E.D., Pal A., Shafau L.O., Zenchak J.R., Peña A.J., Aggarwal A., Prakash M., Hochgeschwender U. Restoring Function After Severe Spinal Cord Injury Through Bioluminescence-Driven Optogenetics. bioRxiv. 2019:710194. doi: 10.1101/710194. PubMed DOI PMC
Han H. RNA Interference to Knock Down Gene Expression. Methods Mol. Biol. Clifton NJ. 2018;1706:293–302. doi: 10.1007/978-1-4939-7471-9_16. PubMed DOI PMC
Ahmed B.Y., Chakravarthy S., Eggers R., Hermens W.T.J.M.C., Zhang J.Y., Niclou S.P., Levelt C., Sablitzky F., Anderson P.N., Lieberman A.R., et al. Efficient Delivery of Cre-Recombinase to Neurons in Vivo and Stable Transduction of Neurons Using Adeno-Associated and Lentiviral Vectors. BMC Neurosci. 2004;5:4. doi: 10.1186/1471-2202-5-4. PubMed DOI PMC
Filbin M.T. Myelin-Associated Inhibitors of Axonal Regeneration in the Adult Mammalian CNS. Nat. Rev. Neurosci. 2003;4:703–713. doi: 10.1038/nrn1195. PubMed DOI
Liu J., Gao H.-Y., Wang X.-F. The Role of the Rho/ROCK Signaling Pathway in Inhibiting Axonal Regeneration in the Central Nervous System. Neural Regen. Res. 2015;10:1892–1896. doi: 10.4103/1673-5374.170325. PubMed DOI PMC
Koch J.C., Tönges L., Barski E., Michel U., Bähr M., Lingor P. ROCK2 Is a Major Regulator of Axonal Degeneration, Neuronal Death and Axonal Regeneration in the CNS. Cell Death Dis. 2014;5:e1225. doi: 10.1038/cddis.2014.191. PubMed DOI PMC
Koch J.C., Tönges L., Michel U., Bähr M., Lingor P. Viral Vector-Mediated Downregulation of RhoA Increases Survival and Axonal Regeneration of Retinal Ganglion Cells. Front. Cell. Neurosci. 2014;8:273. doi: 10.3389/fncel.2014.00273. PubMed DOI PMC
Shen J., Yi X., Xiong N., Wang H., Duan X., Zhao H. GSK-3β Activation Mediates Nogo-66-Induced Inhibition of Neurite Outgrowth in N2a Cells. Neurosci. Lett. 2011;505:165–170. doi: 10.1016/j.neulet.2011.10.012. PubMed DOI
Kim Y.T., Hur E.-M., Snider W.D., Zhou F.-Q. Role of GSK3 Signaling in Neuronal Morphogenesis. Front. Mol. Neurosci. 2011;4:48. doi: 10.3389/fnmol.2011.00048. PubMed DOI PMC
Zuo Y.-C., Xiong N.-X., Zhao H.-Y. Stereotactic Injection of Shrna GSK-3β-AAV Promotes Axonal Regeneration after Spinal Cord Injury. J. Huazhong Univ. Sci. Technol. 2016;36:548–553. doi: 10.1007/s11596-016-1623-6. PubMed DOI
Liu K., Lu Y., Lee J.K., Samara R., Willenberg R., Sears-Kraxberger I., Tedeschi A., Park K.K., Jin D., Cai B., et al. PTEN Deletion Enhances the Regenerative Ability of Adult Corticospinal Neurons. Nat. Neurosci. 2010;13:1075–1081. doi: 10.1038/nn.2603. PubMed DOI PMC
Yang J.-M., Nguyen H.-N., Sesaki H., Devreotes P.N., Iijima M. Engineering PTEN Function: Membrane Association and Activity. Methods San Diego Calif. 2015;77–78:119–124. doi: 10.1016/j.ymeth.2014.10.018. PubMed DOI PMC
Xu F., Na L., Li Y., Chen L. Roles of the PI3K/AKT/MTOR Signalling Pathways in Neurodegenerative Diseases and Tumours. Cell Biosci. 2020;10:54. doi: 10.1186/s13578-020-00416-0. PubMed DOI PMC
Zukor K., Belin S., Wang C., Keelan N., Wang X., He Z. Short Hairpin RNA against PTEN Enhances Regenerative Growth of Corticospinal Tract Axons after Spinal Cord Injury. J. Neurosci. Off. J. Soc. Neurosci. 2013;33:15350–15361. doi: 10.1523/JNEUROSCI.2510-13.2013. PubMed DOI PMC
Danilov C.A., Steward O. Conditional Genetic Deletion of PTEN after a Spinal Cord Injury Enhances Regenerative Growth of CST Axons and Motor Function Recovery in Mice. Exp. Neurol. 2015;266:147–160. doi: 10.1016/j.expneurol.2015.02.012. PubMed DOI PMC
Jin D., Liu Y., Sun F., Wang X., Liu X., He Z. Restoration of Skilled Locomotion by Sprouting Corticospinal Axons Induced by Co-Deletion of PTEN and SOCS3. Nat. Commun. 2015;6:8074. doi: 10.1038/ncomms9074. PubMed DOI PMC
Sun F., Park K.K., Belin S., Wang D., Lu T., Chen G., Zhang K., Yeung C., Feng G., Yankner B.A., et al. Sustained Axon Regeneration Induced by Co-Deletion of PTEN and SOCS3. Nature. 2011;480:372–375. doi: 10.1038/nature10594. PubMed DOI PMC
Brittain T. The Anti-Apoptotic Role of Neuroglobin. Cells. 2012;1:1133–1155. doi: 10.3390/cells1041133. PubMed DOI PMC
Park K.W., Lin C.-Y., Lee Y.-S. Expression of Suppressor of Cytokine Signaling-3 (SOCS3) and Its Role in Neuronal Death after Complete Spinal Cord Injury. Exp. Neurol. 2014;261:65–75. doi: 10.1016/j.expneurol.2014.06.013. PubMed DOI PMC
Dai J.-L., Lin Y., Yuan Y.-J., Xing S.-T., Xu Y., Zhang Q.-H., Min J.-K. Regulatory Effect of Neuroglobin in the Recovery of Spinal Cord Injury. J. Spinal Cord Med. 2019;42:371–377. doi: 10.1080/10790268.2017.1397874. PubMed DOI PMC
De Marinis E., Acaz-Fonseca E., Arevalo M.A., Ascenzi P., Fiocchetti M., Marino M., Garcia-Segura L.M. 17β-Oestradiol Anti-Inflammatory Effects in Primary Astrocytes Require Oestrogen Receptor β-Mediated Neuroglobin up-Regulation. J. Neuroendocrinol. 2013;25:260–270. doi: 10.1111/jne.12007. PubMed DOI
Adams K.L., Gallo V. The Diversity and Disparity of the Glial Scar. Nat. Neurosci. 2018;21:9–15. doi: 10.1038/s41593-017-0033-9. PubMed DOI PMC
Niu W., Zang T., Smith D.K., Vue T.Y., Zou Y., Bachoo R., Johnson J.E., Zhang C.-L. SOX2 Reprograms Resident Astrocytes into Neural Progenitors in the Adult Brain. Stem Cell Rep. 2015;4:780–794. doi: 10.1016/j.stemcr.2015.03.006. PubMed DOI PMC
Yang T., Xing L., Yu W., Cai Y., Cui S., Chen G. Astrocytic Reprogramming Combined with Rehabilitation Strategy Improves Recovery from Spinal Cord Injury. FASEB J. 2020;34:15504–15515. doi: 10.1096/fj.202001657RR. PubMed DOI
Guo Z., Zhang L., Wu Z., Chen Y., Wang F., Chen G. In Vivo Direct Reprogramming of Reactive Glial Cells into Functional Neurons after Brain Injury and in an Alzheimer’s Disease Model. Cell Stem Cell. 2014;14:188–202. doi: 10.1016/j.stem.2013.12.001. PubMed DOI PMC
Chen Y.-C., Ma N.-X., Pei Z.-F., Wu Z., Do-Monte F.H., Keefe S., Yellin E., Chen M.S., Yin J.-C., Lee G., et al. A NeuroD1 AAV-Based Gene Therapy for Functional Brain Repair after Ischemic Injury through In Vivo Astrocyte-to-Neuron Conversion. Mol. Ther. J. Am. Soc. Gene Ther. 2020;28:217–234. doi: 10.1016/j.ymthe.2019.09.003. PubMed DOI PMC
Zhang L., Lei Z., Guo Z., Pei Z., Chen Y., Zhang F., Cai A., Mok G., Lee G., Swaminathan V., et al. Development of Neuroregenerative Gene Therapy to Reverse Glial Scar Tissue Back to Neuron-Enriched Tissue. Front. Cell. Neurosci. 2020;14 doi: 10.3389/fncel.2020.594170. PubMed DOI PMC
Galtrey C.M., Fawcett J.W. The Role of Chondroitin Sulfate Proteoglycans in Regeneration and Plasticity in the Central Nervous System. Brain Res. Rev. 2007;54:1–18. doi: 10.1016/j.brainresrev.2006.09.006. PubMed DOI
Chondroitinase: A Promising Therapeutic Enzyme: Critical Reviews in Microbiology: Vol 42, No 3. [(accessed on 9 February 2021)]; Available online: https://www.tandfonline.com/doi/abs/10.3109/1040841X.2014.959893?journalCode=imby20. PubMed DOI
Chondroitinase ABC Promotes Functional Recovery after Spinal Cord Injury|Nature. [(accessed on 9 February 2021)]; Available online: https://www.nature.com/articles/416636a.
Synergistic Effects of Transplanted Adult Neural Stem/Progenitor Cells, Chondroitinase, and Growth Factors Promote Functional Repair and Plasticity of the Chronically Injured Spinal Cord|Journal of Neuroscience. [(accessed on 9 February 2021)]; Available online: https://www.jneurosci.org/content/30/5/1657. PubMed PMC
Nori S., Khazaei M., Ahuja C.S., Yokota K., Ahlfors J.-E., Liu Y., Wang J., Shibata S., Chio J., Hettiaratchi M.H., et al. Human Oligodendrogenic Neural Progenitor Cells Delivered with Chondroitinase ABC Facilitate Functional Repair of Chronic Spinal Cord Injury. Stem Cell Rep. 2018;11:1433–1448. doi: 10.1016/j.stemcr.2018.10.017. PubMed DOI PMC
Warren P.M., Andrews M.R., Smith M., Bartus K., Bradbury E.J., Verhaagen J., Fawcett J.W., Kwok J.C.F. Secretion of a Mammalian Chondroitinase ABC Aids Glial Integration at PNS/CNS Boundaries. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-67526-0. PubMed DOI PMC
Zhao R.-R., Muir E.M., Alves J.N., Rickman H., Allan A.Y., Kwok J.C., Roet K.C.D., Verhaagen J., Schneider B.L., Bensadoun J.-C., et al. Lentiviral Vectors Express Chondroitinase ABC in Cortical Projections and Promote Sprouting of Injured Corticospinal Axons. J. Neurosci. Methods. 2011;201:228–238. doi: 10.1016/j.jneumeth.2011.08.003. PubMed DOI PMC
Kwok J.C.F., Dick G., Wang D., Fawcett J.W. Extracellular Matrix and Perineuronal Nets in CNS Repair. Dev. Neurobiol. 2011;71:1073–1089. doi: 10.1002/dneu.20974. PubMed DOI
Carstens K.E., Gloss B.R., Alexander G.M., Dudek S.M. Modified Adeno-Associated Virus Targets the Bacterial Enzyme Chondroitinase ABC to Select Mouse Neuronal Populations in Vivo Using the Cre-LoxP System. Eur. J. Neurosci. 2020 doi: 10.1111/ejn.15050. PubMed DOI PMC
Impaired Cognitive Function after Perineuronal Net Degradation in the Medial Prefrontal Cortex|ENeuro. [(accessed on 9 February 2021)]; Available online: https://www.eneuro.org/content/early/2018/12/06/ENEURO.0253-18.2018/tab-article-info?versioned=true. PubMed PMC
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) Family|Genome Biology|Full Text. [(accessed on 9 February 2021)]; Available online: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0676-3. PubMed DOI PMC
Astrocyte-Selective AAV-ADAMTS4 Gene Therapy Combined with Hindlimb Rehabilitation Promotes Functional Recovery after Spinal Cord Injury|BioRxiv. [(accessed on 9 February 2021)]; Available online: https://www.biorxiv.org/content/10.1101/797696v1. PubMed DOI
Nakanishi T., Fujita Y., Yamashita T. Neuropilin-1-Mediated Pruning of Corticospinal Tract Fibers Is Required for Motor Recovery after Spinal Cord Injury. Cell Death Dis. 2019;10:1–11. doi: 10.1038/s41419-019-1338-2. PubMed DOI PMC
Fawcett J.W., Asher R.A. The Glial Scar and Central Nervous System Repair. Brain Res. Bull. 1999;49:377–391. doi: 10.1016/S0361-9230(99)00072-6. PubMed DOI
Dawson M.R.L., Levine J.M., Reynolds R. NG2-Expressing Cells in the Central Nervous System: Are They Oligodendroglial Progenitors? J. Neurosci. Res. 2000;61:471–479. doi: 10.1002/1097-4547(20000901)61:5<471::AID-JNR1>3.0.CO;2-N. PubMed DOI
NG2 Is a Major Chondroitin Sulfate Proteoglycan Produced after Spinal Cord Injury and Is Expressed by Macrophages and Oligodendrocyte Progenitors|Journal of Neuroscience. [(accessed on 9 February 2021)]; Available online: https://www.jneurosci.org/content/22/7/2792/tab-article-info. PubMed PMC
Chen J., Wu J., Apostolova I., Skup M., Irintchev A., Kügler S., Schachner M. Adeno-Associated Virus-Mediated L1 Expression Promotes Functional Recovery after Spinal Cord Injury. Brain. 2007;130:954–969. doi: 10.1093/brain/awm049. PubMed DOI
Lemmon V., Farr K.L., Lagenaur C. L1-Mediated Axon Outgrowth Occurs via a Homophilic Binding Mechanism. Neuron. 1989;2:1597–1603. doi: 10.1016/0896-6273(89)90048-2. PubMed DOI
L1 Mono- and Polyclonal Antibodies Modify Cell Migration in Early Postnatal Mouse Cerebellum|Nature. [(accessed on 10 February 2021)]; Available online: https://www.nature.com/articles/305427a0. PubMed
Neural Adhesion Molecule L1 as a Member of the Immunoglobulin Superfamily with Binding Domains Similar to Fibronectin|Nature. [(accessed on 10 February 2021)]; Available online: https://www.nature.com/articles/334701a0. PubMed
The Neural Recognition Molecule L1 Is a Sialic Acid-Binding Lectin for CD24, Which Induces Promotion and Inhibition of Neurite Outgrowth*. [(accessed on 10 February 2021)];J. Biol. Chem. Available online: https://www.jbc.org/article/S0021-9258(20)78741-7/abstract. PubMed
Soluble Cell Adhesion Molecule L1-Fc Promotes Locomotor Recovery in Rats after Spinal Cord Injury. [(accessed on 10 February 2021)];J. Neurotrauma. Available online: https://www.liebertpub.com/doi/abs/10.1089/089771503322385809. PubMed DOI
Chen J., Bernreuther C., Dihné M., Schachner M. Cell Adhesion Molecule L1–Transfected Embryonic Stem Cells with Enhanced Survival Support Regrowth of Corticospinal Tract Axons in Mice after Spinal Cord Injury. J. Neurotrauma. 2005;22:896–906. doi: 10.1089/neu.2005.22.896. PubMed DOI
Coutelle O., Nyakatura G., Taudien S., Elgar G., Brenner S., Platzer M., Drescher B., Jouet M., Kenwrick S., Rosenthal A. The Neural Cell Adhesion Molecule L1: Genomic Organisation and Differential Splicing Is Conserved between Man and the Pufferfish Fugu1O.C. and G.N. Share First Authorship.12EMBL Accession Nos. Z29373 and Z71926.2. Gene. 1998;208:7–15. doi: 10.1016/S0378-1119(97)00614-8. PubMed DOI
Czajkowsky D.M., Hu J., Shao Z., Pleass R.J. Fc-Fusion Proteins: New Developments and Future Perspectives. EMBO Mol. Med. 2012;4:1015–1028. doi: 10.1002/emmm.201201379. PubMed DOI PMC
Anderson R. Manipulation of Cell Surface Macromolecules by Flaviviruses. Adv. Virus Res. 2003;59:229–274. doi: 10.1016/S0065-3527(03)59007-8. PubMed DOI PMC
Blanquie O., Bradke F. Cytoskeleton Dynamics in Axon Regeneration. Curr. Opin. Neurobiol. 2018;51:60–69. doi: 10.1016/j.conb.2018.02.024. PubMed DOI
JCI-Profilin 1 Delivery Tunes Cytoskeletal Dynamics toward CNS Axon Regeneration. [(accessed on 10 February 2021)]; Available online: https://www.jci.org/articles/view/125771. PubMed PMC
An Integrin Approach to Axon Regeneration|Eye. [(accessed on 10 February 2021)]; Available online: https://www.nature.com/articles/eye2016293.
Tan C.L., Andrews M.R., Kwok J.C.F., Heintz T.G.P., Gumy L.F., Fässler R., Fawcett J.W. Kindlin-1 Enhances Axon Growth on Inhibitory Chondroitin Sulfate Proteoglycans and Promotes Sensory Axon Regeneration. J. Neurosci. 2012;32:7325–7335. doi: 10.1523/JNEUROSCI.5472-11.2012. PubMed DOI PMC
Hu F., Strittmatter S.M. The N-Terminal Domain of Nogo-A Inhibits Cell Adhesion and Axonal Outgrowth by an Integrin-Specific Mechanism. J. Neurosci. 2008;28:1262–1269. doi: 10.1523/JNEUROSCI.1068-07.2008. PubMed DOI PMC
Integrin Activation Promotes Axon Growth on Inhibitory Chondroitin Sulfate Proteoglycans by Enhancing Integrin Signaling. [(accessed on 10 February 2021)];J. Neurosci. Available online: https://www.jneurosci.org/content/31/17/6289. PubMed PMC
Barczyk M., Carracedo S., Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–280. doi: 10.1007/s00441-009-0834-6. PubMed DOI PMC
Herz C., Aumailley M., Schulte C., Schlötzer-Schrehardt U., Bruckner-Tuderman L., Has C. Kindlin-1 Is a Phosphoprotein Involved in Regulation of Polarity, Proliferation, and Motility of Epidermal Keratinocytes*. J. Biol. Chem. 2006;281:36082–36090. doi: 10.1074/jbc.M606259200. PubMed DOI
Cheah M., Andrews M.R., Chew D.J., Moloney E.B., Verhaagen J., Fässler R., Fawcett J.W. Expression of an Activated Integrin Promotes Long-Distance Sensory Axon Regeneration in the Spinal Cord. J. Neurosci. 2016;36:7283–7297. doi: 10.1523/JNEUROSCI.0901-16.2016. PubMed DOI PMC
O’Carroll S.J., Cook W.H., Young D. AAV Targeting of Glial Cell Types in the Central and Peripheral Nervous System and Relevance to Human Gene Therapy. Front. Mol. Neurosci. 2020;13:618020. doi: 10.3389/fnmol.2020.618020. PubMed DOI PMC
Colella P., Ronzitti G., Mingozzi F. Emerging Issues in AAV-Mediated In Vivo Gene Therapy. Mol. Ther. Methods Clin. Dev. 2018;8:87–104. doi: 10.1016/j.omtm.2017.11.007. PubMed DOI PMC
Keeler A.M., Flotte T.R. Recombinant Adeno-Associated Virus Gene Therapy in Light of Luxturna (and Zolgensma and Glybera): Where Are We, and How Did We Get Here? Annu. Rev. Virol. 2019;6:601–621. doi: 10.1146/annurev-virology-092818-015530. PubMed DOI PMC