Myxobacteria and their products: current trends and future perspectives in industrial applications
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34060028
DOI
10.1007/s12223-021-00875-z
PII: 10.1007/s12223-021-00875-z
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky biosyntéza MeSH
- Myxococcales * chemie metabolismus MeSH
- průmyslová mikrobiologie * trendy MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
Myxobacteria belong to a group of bacteria that are known for their well-developed communication system and synchronized or coordinated movement. This typical behavior of myxobacteria is mediated through secondary metabolites. They are capable of producing secondary metabolites belonging to several chemical classes with unique and wide spectrum of bioactivities. It is predominantly significant that myxobacteria specialize in mechanisms of action that are very rare with other producers. Most of the metabolites have been explored for their medical and pharmaceutical values while a lot of them are still unexplored. This review is an attempt to understand the role of potential metabolites produced by myxobacteria in different applications. Different myxobacterial metabolites have demonstrated antibacterial, antifungal, and antiviral properties along with cytotoxic activity against various cell lines. Beside their metabolites, these myxobacteria have also been discussed for better exploitation and implementation in different industrial sectors.
Zobrazit více v PubMed
Adaikpoh BI, Akbar S, Albataineh H et al (2020) Myxobacterial response to methyljasmonate exposure indicates contribution to plant recruitment of micropredators Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.00034
Albataineh H, Cole Stevens D (2018) Marine myxobacteria: a few good halophiles. Mar Drugs 16:209. https://doi.org/10.3390/md16060209 DOI PMC
Amiri Moghaddam J, Boehringer N, Burdziak A et al (2016) Different strategies of osmoadaptation in the closely related marine myxobacteria Enhygromyxa salina SWB007 and Plesiocystis pacifica SIR-1. Microbiol (united Kingdom) 162:651–661. https://doi.org/10.1099/mic.0.000250 DOI
Awal RP, Garcia R, Gemperlein K et al (2017) Vitiosangium cumulatum gen. nov., sp. nov. and Vitiosangium subalbum sp. nov., soil myxobacteria, and emended descriptions of the genera Archangium and Angiococcus, and of the family Cystobacteraceae. Int J Syst Evol Microbiol 67:1422–1430. https://doi.org/10.1099/ijsem.0.001829 PubMed DOI
Awal RP, Garcia R, Müller R (2016) Racemicystis crocea gen. nov., sp. nov., a soil myxobacterium in the family Polyangiaceae. Int J Syst Evol Microbiol 66:2389–2395. https://doi.org/10.1099/ijsem.0.001045 PubMed DOI
Bader CD, Neuber M, Panter F et al (2020a) Supercritical fluid extraction enhances discovery of secondary metabolites from myxobacteria. Anal Chem 92:15403–15411. https://doi.org/10.1021/acs.analchem.0c02995 PubMed DOI
Bader CD, Panter F, Müller R (2020b) In depth natural product discovery - myxobacterial strains that provided multiple secondary metabolites. Biotechnol Adv 39:107480. https://doi.org/10.1016/j.biotechadv.2019.107480 PubMed DOI
Barbier J, Jansen R, Irschik H et al (2012) Isolation and total synthesis of icumazoles and noricumazoles-antifungal antibiotics and cation-channel blockers from Sorangium cellulosum. Angew Chemie - Int Ed 51:1256–1260. https://doi.org/10.1002/anie.201106435 DOI
Beck S, Henß L, Weidner T et al (2016) Identification of entry inhibitors of Ebola virus pseudotyped vectors from a myxobacterial compound library. Antiviral Res 132:85–91. https://doi.org/10.1016/j.antiviral.2016.05.017 PubMed DOI
Bedorf N, Höfle G, Irschik H et al (1994) The soraphens: a family of novel antifungal compounds from Sorangium cellulosum (myxobacteria). I. Soraphen A1α: fermentation, isolation, biological properties. J Antibiot (tokyo) 47:23–31. https://doi.org/10.7164/antibiotics DOI
Benoit I, Navarro D, Marnet N et al (2006) Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohydr Res 341:1820–1827. https://doi.org/10.1016/j.carres.2006.04.020 PubMed DOI
Bhople S, Gaikwad S, Deshmukh S et al (2016) Myxobacteria-mediated synthesis of silver nanoparticles and their impregnation in wrapping paper used for enhancing shelf life of apples. IET Nanobiotechnol 10:389–394. https://doi.org/10.1049/iet-nbt.2015.0111 PubMed DOI
Brodmann T, Janssen D, Kalesse M (2010) Total synthesis of chivosazole F. J Am Chem Soc 132:13610–13611. https://doi.org/10.1021/ja107290s PubMed DOI
Bull CT, Shetty KG, Subbarao KV (2002) Interactions between myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis 86:889–896. https://doi.org/10.1094/PDIS.2002.86.8.889 PubMed DOI
Burris HA (2008) Preclinical investigations with epothilones in breast cancer models. Semin Oncol 35:S15–S21. https://doi.org/10.1053/j.seminoncol.2008.02.002 PubMed DOI
Cao P, Dey A, Vassallo CN, Wall D (2015) How Myxobacteria Cooperate j Mol Biol 427:3709–3721. https://doi.org/10.1016/j.chembiol.2010.01.016 PubMed DOI
Chai Y, Pistorius D, Ullrich A et al (2010) Discovery of 23 natural tubulysins from Angiococcus disciformis An d48 and Cystobacter SBCb004. Chem Biol 17:296–309. https://doi.org/10.1016/j.chembiol.2010.01.016 PubMed DOI
Chaloupka J, Vinter V (1996) Programmed cell death in bacteria. Folia Microbiol (praha) 41:451–464. https://doi.org/10.1007/BF02814658 DOI
Charousová I, Steinmetz H, Medo J et al (2017) Soil myxobacteria as a potential source of polyketide-peptide substances. Folia Microbiol (praha) 62:305–315. https://doi.org/10.1007/s12223-017-0502-2 DOI
Chen X, Bui KC, Barat S et al (2017) Therapeutic effects of Argyrin F in pancreatic adenocarcinoma. Cancer Lett 399:20–28. https://doi.org/10.1016/j.canlet.2017.04.003 PubMed DOI
Chen X, jing, Han K, Feng J, et al (2016) The complete genome sequence and analysis of a plasmid-bearing myxobacterial strain Myxococcus fulvus 124B02 (M 206081). Stand Genomic Sci 11:1–9. https://doi.org/10.1186/s40793-015-0121-y PubMed DOI PMC
Cheng KL, Bradley T, Budman DR (2008) Novel microtubule-targeting agents - the epothilones. Biol Targets Ther 2:789–811. https://doi.org/10.2147/btt.s3487 DOI
Christmann M, Bhatt U, Quitschalle M et al (2000) Totalsynthese von (+)-Ratjadon. Angew Chemie 112:4535–4538. https://doi.org/10.1002/1521-3757(20001201)112:23%3c4535::aid-ange4535%3e3.0.co;2-k DOI
Cordonier EL, Jarecke SK, Hollinger FE, Zempleni J (2016) Inhibition of acetyl-CoA carboxylases by soraphen A prevents lipid accumulation and adipocyte differentiation in 3T3-L1 cells. Eur J Pharmacol 780:202–208. https://doi.org/10.1016/j.ejphar.2016.03.052 PubMed DOI PMC
Da Silva S, Bernet N, Delgenès JP, Moletta R (2000) Effect of culture conditions on the formation of struvite by Myxococcus xanthus. Chemosphere 40:1289–1296. https://doi.org/10.1016/S0045-6535(99)00224-6 PubMed DOI
Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427. https://doi.org/10.1111/j.1574-6976.2000.tb00548.x PubMed DOI
Dehhaghi M, Mohammadipanah F, Guillemin GJ (2018) Myxobacterial natural products: an under-valued source of products for drug discovery for neurological disorders. Neurotoxicology 66:195–203. https://doi.org/10.1016/j.neuro.2018.02.017
Dehhaghi M, Tan V, Heng B et al (2019) Protective effects of myxobacterial extracts on hydrogen peroxide-induced toxicity on human primary astrocytes. Neuroscience 399:1–11. https://doi.org/10.1016/j.neuroscience.2018.11.033 PubMed DOI
Diez J, Martinez JP, Mestres J et al (2012) Myxobacteria: natural pharmaceutical factories. Microb Cell Fact 11:1–13. https://doi.org/10.1186/1475-2859-11-52 DOI
Felder S, Kehraus S, Neu E et al (2013) Salimyxins and enhygrolides: antibiotic, sponge-related metabolites from the obligate marine myxobacterium Enhygromyxa salina. ChemBioChem 14:1363–1371. https://doi.org/10.1002/cbic.201300268 PubMed DOI
Findlay BL (2016) The chemical ecology of predatory soil bacteria. ACS Chem Biol 11:1502–1510. https://doi.org/10.1021/acschembio.6b00176 PubMed DOI
Fisher N, Meunier B (2005) Re-examination of inhibitor resistance conferred by Qo-site mutations in cytochrome b using yeast as a model system. Pest Manag Sci 61:973–978. https://doi.org/10.1002/ps.1066 PubMed DOI
Fleta-Soriano E, Martinez JP, Hinkelmann B et al (2014) The myxobacterial metabolite ratjadone A inhibits HIV infection by blocking the Rev/CRM1-mediated nuclear export pathway. Microb Cell Fact 13:1–10. https://doi.org/10.1186/1475-2859-13-17 DOI
Foster HA, Yasouri FN, Daoud NN (1992) Antibiotic activity of soil myxobacteria and its ecological implications. FEMS Microbiol Lett 101:27–32. https://doi.org/10.1111/j.1574-6968.1992.tb05758.x DOI
Franke J, Bock M, Dehn R et al (2015) Total and semi-syntheses of antimicrobial thuggacin derivatives. Chem - A Eur J 21:4272–4284. https://doi.org/10.1002/chem.201405874 DOI
Garcia R, Gemperlein K, Müller R (2014) Minicystis rosea gen. nov., sp. nov., a polyunsaturated fatty acid-rich and steroid-producing soil myxobacterium. Int J Syst Evol Microbiol 64:3733–3742. https://doi.org/10.1099/ijs.0.068270-0 PubMed DOI
Garcia R, Müller R (2018) Simulacricoccus ruber gen. nov., sp. nov., a microaerotolerant, non-fruiting, myxospore-forming soil myxobacterium and emended description of the family myxococcaceae. Int J Syst Evol Microbiol 68:3101–3110. https://doi.org/10.1099/ijsem.0.002936 PubMed DOI
Garcia R, Müller R (2014) The family phaselicystidaceae. In: The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. pp 239–245
Garcia R, Stadler M, Gemperlein K, Müller R (2016) Novel myxobacteria with promising biotechnological applications. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.000813 PubMed DOI
Garcia R, Stadler M, Gemperlein K, Müller R (2016b) Aetherobacter fasciculatus gen. nov., sp. nov. and Aetherobacter rufus sp. nov., novel myxobacteria with promising biotechnological applications. Int J Syst Evol Microbiol 66:928–938. https://doi.org/10.1099/ijsem.0.000813 PubMed DOI
Garcia RO, Reichenbach H, Ring MW, Müller R (2009) Phaselicystis flava gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov. Int J Syst Evol Microbiol 59:1524–1530. https://doi.org/10.1099/ijs.0.003814-0 PubMed DOI
Gemperlein K, Rachid S, Garcia RO et al (2014) Polyunsaturated fatty acid biosynthesis in myxobacteria: different PUFA synthases and their product diversity. Chem Sci 5:1733–1741. https://doi.org/10.1039/c3sc53163e DOI
Gemperlein K, Zaburannyi N, Garcia R et al (2018) Metabolic and biosynthetic diversity in marine myxobacteria. Mar Drugs 16:314. https://doi.org/10.3390/md16090314 DOI PMC
Goes A, Lapuhs P, Kuhn T et al (2020) Myxobacteria-derived outer membrane vesicles: potential applicability against intracellular infections. Cells 9:194. https://doi.org/10.3390/cells9010194 DOI PMC
González-Muñoz MT, Rodriguez-Navarro C, Martínez-Ruiz F et al (2010) Bacterial biomineralization: new insights from Myxococcus-induced mineral precipitation. Geol Soc Spec Publ 336:31–50. https://doi.org/10.1144/SP336.3 DOI
Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond Biomed Res Int 2013. https://doi.org/10.1155/2013/329121
Guzman CA, Feuerstein GZ (2004) Pharmaceutical biotechnology. Curr Opin Biotechnol 6:503–505. https://doi.org/10.1016/j.copbio.2004.10.009 DOI
Hall JA, Kusuma BR, Brandt GEL, Blagg BSJ (2014) Cruentaren A binds F1F0 ATP synthase to modulate the Hsp90 protein folding machinery. ACS Chem Biol 9:976–985. https://doi.org/10.1021/cb400906e PubMed DOI PMC
Hemmerling F, Lebe KE, Wunderlich J, Hahn F (2018) An unusual fatty acyl: adenylATE LIGASE (FAAL)–acyl carrier protein (ACP) didomain in ambruticin biosynthesis. ChemBioChem 19:1006–1011. https://doi.org/10.1002/cbic.201800084 PubMed DOI
Herrmann J, Fayad AA, Müller R (2017) Natural products from myxobacteria: novel metabolites and bioactivities. Nat Prod Rep 34:135–160. https://doi.org/10.1039/C6NP00106H PubMed DOI
Herrmann J, Hüttel S, Müller R (2013) Discovery and biological activity of new chondramides from Chondromyces sp. ChemBioChem 14:1573–1580. https://doi.org/10.1002/cbic.201300140 PubMed DOI
Hug JJ, Panter F, Krug D, Müller R (2019) Genome mining reveals uncommon alkylpyrones as type III PKS products from myxobacteria. J Ind Microbiol Biotechnol 46:319–334. https://doi.org/10.1007/s10295-018-2105-6 PubMed DOI
Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397. https://doi.org/10.1016/S0958-1669(02)00341-5 PubMed DOI
Jroundi F, Gonzalez-Muñoz MT, Garcia-Bueno A, Rodriguez-Navarro C (2014) Consolidation of archaeological gypsum plaster by bacterial biomineralization of calcium carbonate. In: Acta Biomaterialia. pp 3844–3854. https://doi.org/10.1016/j.actbio.2014.03.007
Julien B, Tian ZQ, Reid R, Reeves CD (2006) Analysis of the ambruticin and jerangolid gene clusters of Sorangium cellulosum reveals unusual mechanisms of polyketide biosynthesis. Chem Biol 13:1277–1286. https://doi.org/10.1016/j.chembiol.2006.10.004 PubMed DOI
Jurkiewicz E, Jansen R, Kunze B et al (1992) Three new potent HIV-1 inhibitors from myxobacteria. Antivir Chem Chemother 3:189–193. https://doi.org/10.1177/095632029200300401 DOI
Kappler S, Karmann L, Prudel C et al (2018) Synthesis and biological evaluation of modified miuraenamides. European J Org Chem 2018:6952–6965. https://doi.org/10.1002/ejoc.201801391 DOI
Karwehl S, Mohr KI, Jansen R et al (2015) Edonamides, the first secondary metabolites from the recently described myxobacterium Aggregicoccus edonensis. Tetrahedron Lett 56:6402–6404. https://doi.org/10.1016/j.tetlet.2015.09.139 DOI
Kaur R, Kumari A, Kaur R, Kaur R (2018) Myxobacteria: producers of enormous bioactive secondary metabolites. Int J Res Pharm Sci. https://doi.org/10.26452/ijrps.v9i2.1440
Kim BM, Van Minh N, Choi HY, Kim WG (2019) Coralmycin derivatives with potent anti-gram negative activity produced by the myxobacteria Corallococcus coralloides M23. Molecules 24:1390. https://doi.org/10.3390/molecules24071390 DOI PMC
Knauth P, Reichenbach H (2000) On the mechanism of action of the myxobacterial fungicide ambruticin. J Antibiot (tokyo) 53:1182–1190. https://doi.org/10.7164/antibiotics.53.1182 DOI
Korp J, Winand L, Seste A, Netta M (2018) Engineering pseudochelin production in myxococcus xanthus Appl Environ Microbiol 84. https://doi.org/10.1128/AEM.01789-18
Krastel P, Roggo S, Schirle M et al (2015) Nannocystin A: an elongation factor 1 inhibitor from myxobacteria with differential anti-cancer properties. Angew Chemie - Int Ed 54:10149–10154. https://doi.org/10.1002/anie.201505069 DOI
Kumar S, Yadav AK, Chambel P, Kaur R (2017) Molecular and functional characterization of myxobacteria isolated from soil in India. 3 Biotech 7:1–9. https://doi.org/10.1007/s13205-017-0722-9
Kunze B, Reck M, Dötsch A et al (2010) Damage of Streptococcus mutans biofilms by carolacton, a secondary metabolite from the myxobacterium Sorangium cellulosum. BMC Microbiol 10:1–13. https://doi.org/10.1186/1471-2180-10-199 DOI
Kunze B, Sasse F, Wieczorek H, Huss M (2007) Cruentaren A, a highly cytotoxic benzolactone from myxobacteria is a novel selective inhibitor of mitochondrial F1-ATPases. FEBS Lett 581:3523–3527. https://doi.org/10.1016/j.febslet.2007.06.069 PubMed DOI
Lang E, Schumann P, Tindall BJ et al (2015) Reclassification of Angiococcus disciformis, Cystobacter minus and Cystobacter violaceus as Archangium disciforme comb. nov., Archangium minus comb. nov. and Archangium violaceum comb. nov. Unification of the Families Archangiaceae and Cystobacteraceae, Int J Syst Evol Microbiol 65:4032–4042. https://doi.org/10.1099/ijsem.0.000533 PubMed DOI
Li Z, Xia C, Wang Y et al (2019) Identification of an endo-chitinase from Corallococcus sp. EGB and evaluation of its antifungal properties. Int J Biol Macromol 132:1235–1243. https://doi.org/10.1016/j.ijbiomac.2019.04.056 PubMed DOI
Liu X, Kokare C (2017) Microbial enzymes of use in industry. In: Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications. pp 267–298. https://doi.org/10.1016/B978-0-12-803725-6.00011-X
Livingstone PG, Ingleby O, Girdwood S, et al (2020) Predatory organisms with untapped biosynthetic potential: descriptions of novel corallococcus species C. aberystwythensis sp. nov., C. carmarthensis sp. nov., C. exercitus sp. nov., C. interemptor sp. nov., C. llansteffanensis sp. nov., C. praedator sp. nov. Appl Environ Microbiol 86:. https://doi.org/10.1128/AEM.01931-19
Ma X, Gao M, Gao Z et al (2018) Past, current, and future research on microalga-derived biodiesel: a critical review and bibliometric analysis. Environ Sci Pollut Res 25:10596–10610. https://doi.org/10.1007/s11356-018-1453-0 DOI
Ma X, Jin M, Cai Y et al (2011) Mitochondrial electron transport chain complex III is required for antimycin A to inhibit autophagy. Chem Biol 18:1474–1481. https://doi.org/10.1016/j.chembiol.2011.08.009 PubMed DOI PMC
Martinez JP, Hinkelmann B, Fleta-Soriano E et al (2013) Identification of myxobacteria-derived HIV inhibitors by a high-throughput two-step infectivity assay. Microb Cell Fact 12:1–9. https://doi.org/10.1186/1475-2859-12-85 DOI
Moradi A, Ebrahimipour GH, Mohr KI et al (2017) Racemicystis persica sp. nov., a myxobacterium from soil. Int J Syst Evol Microbiol 67:472–478. https://doi.org/10.1099/ijsem.0.001655 PubMed DOI
Müller S, Rachid S, Hoffmann T et al (2014) Biosynthesis of crocacin involves an unusual hydrolytic release domain showing similarity to condensation domains. Chem Biol 21:855–865. https://doi.org/10.1016/j.chembiol.2014.05.012 PubMed DOI
Mulwa L, Stadler M (2018) Antiviral Compounds from Myxobacteria Microorganisms 6:73. https://doi.org/10.3390/microorganisms6030073 DOI
Mulwa LS, Jansen R, Praditya DF et al (2018a) Six heterocyclic metabolites from the myxobacterium labilithrix luteola. Molecules 23:542. https://doi.org/10.3390/molecules23030542 DOI PMC
Mulwa LS, Jansen R, Praditya DF et al (2018b) Lanyamycin, a macrolide antibiotic from Sorangium cellulosum, strain Soce 481 (Myxobacteria). Beilstein J Org Chem 14:1554–1562. https://doi.org/10.3762/bjoc.14.132 PubMed DOI PMC
Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E et al (2016) Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol 7:781. https://doi.org/10.3389/fmicb.2016.00781 PubMed DOI PMC
Nasarabadi A, Berleman JE, Auer M (2019) Outer membrane vesicles of bacteria: structure, biogenesis, and function. In: Biogenesis of fatty acids, lipids and membranes. pp 593–607. https://doi.org/10.1007/978-3-319-43676-0_44-1
Nickeleit I, Zender S, Sasse F et al (2008) Argyrin A reveals a critical role for the tumor suppressor protein p27kip1 in mediating antitumor activities in response to proteasome inhibition. Cancer Cell 14:23–35. https://doi.org/10.1016/j.ccr.2008.05.016 PubMed DOI
Oka M, Nishiyama Y, Ohta S et al (1988) Glidobactins A, B and C, new antitumor antibiotics. I. production, isolation, chemical properties and biological activity. J Antibiot (tokyo) 41:1331–1337. https://doi.org/10.7164/antibiotics.41.1331 DOI
Oueis E, Klefisch T, Zaburannyi N et al (2019) Two biosynthetic pathways in Jahnella thaxteri for thaxteramides, distinct types of lipopeptides. Org Lett 21:5407–5412. https://doi.org/10.1021/acs.orglett.9b01524 PubMed DOI
Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J (2016) Bacterial predation: 75 years and counting! Environ Microbiol 18:766–779. https://doi.org/10.1111/1462-2920.13171 PubMed DOI
Plaza A, Garcia R, Bifulco G et al (2012) Aetheramides A and B, potent HIV-inhibitory depsipeptides from a myxobacterium of the new genus “ Aetherobacter .” Org Lett 14:2854–2857. https://doi.org/10.1021/ol3011002 PubMed DOI
Poza M, Sieiro C, Carreira L et al (2003) Production and characterization of the milk-clotting protease of Myxococcus xanthus strain 422. J Ind Microbiol Biotechnol 30:691–698. https://doi.org/10.1007/s10295-003-0100-y PubMed DOI
Reichenbach H, Dworkin M (1992) The myxobacteria. In: The Prokaryotes. pp 3416–3487. https://doi.org/10.1007/978-1-4757-2191-1_26
Saadatpour F, Mohammadipanah F (2020) Bioprospecting of indigenous myxobacteria from Iran and potential of Cystobacter as a source of anti-MDR compounds. Folia Microbiol (praha) 65:639–648. https://doi.org/10.1007/s12223-019-00768-2 DOI
Sah GP, Wall D (2020) Kin recognition and outer membrane exchange (OME) in myxobacteria. Curr Opin Microbiol 56:81–88. https://doi.org/10.1016/j.mib.2020.07.003 PubMed DOI
Sánchez-Sutil MC, Gómez-Santos N, Moraleda-Muñoz A et al (2007) Differential expression of the three multicopper oxidases from Myxococcus xanthus. J Bacteriol 189:4887–4898. https://doi.org/10.1128/JB.00309-07 PubMed DOI PMC
Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an Aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900. https://doi.org/10.1128/AEM.68.2.893-900.2002 PubMed DOI PMC
Sasse F, Steinmetz H, Höfle G, Reichenbach H (2003) Archazolids, new cytotoxic macrolactones from Archangium gephyra (Myxobacteria). Production, isolation, physico-chemical and biological properties. J Antibiot (tokyo) 56:520–525. https://doi.org/10.7164/antibiotics.56.520 DOI
Schäberle TF, Schmitz A, Zocher G et al (2015) Insights into structure-activity relationships of bacterial RNA polymerase inhibiting corallopyronin derivatives. J Nat Prod 78:2505–2509. https://doi.org/10.1021/acs.jnatprod.5b00175 PubMed DOI
Schieferdecker S, König S, Koeberle A et al (2015) Myxochelins target human 5-lipoxygenase. J Nat Prod 78:335–338. https://doi.org/10.1021/np500909b PubMed DOI
Schulz E, Goes A, Garcia R et al (2018) Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. J Control Release 290:46–55. https://doi.org/10.1016/j.jconrel.2018.09.030 PubMed DOI
Selle PH, Ravindran V (2007) Microbial phytase in poultry nutrition. Anim Feed Sci Technol 135:1–41. https://doi.org/10.1016/j.anifeedsci.2006.06.010 DOI
Sharma G, Burrows LL, Singer M (2018) Diversity and evolution of myxobacterial type IV pilus systems Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.01630
Sharma G, Khatri I, Subramanian S (2016a) Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T. Genome Biol Evol 8:2520–2529. https://doi.org/10.1093/gbe/evw151 PubMed DOI PMC
Sharma G, Narwani T, Subramanian S (2016b) Complete genome sequence and comparative genomics of a novel myxobacterium Myxococcus hansupus PLoS ONE 11. https://doi.org/10.1371/journal.pone.0148593
Sharma RK, Arora DS (2015) Fungal degradation of lignocellulosic residues: an aspect of improved nutritive quality. Crit Rev Microbiol 41:52–60. https://doi.org/10.3109/1040841X.2013.791247 PubMed DOI
Shimkets LJ, Dworkin M, Reichenbach H (2006) The Myxobacteria. In: The Prokaryotes. pp 31–115
Shrivastava A, Sharma RK (2021) Biosensors for the detection of mycotoxins Toxin Rev 1 21. https://doi.org/10.1080/15569543.2021.1894175
Sood S, Awal RP, Wink J et al (2015) Aggregicoccus edonensis gen. nov., sp. nov., an unusually aggregating myxobacterium isolated from a soil sample. Int J Syst Evol Microbiol 65:745–753. https://doi.org/10.1099/ijs.0.061176-0 PubMed DOI
Stackebrandt E, Päuker O, Erhard M (2005) Grouping myxococci (Corallococcus) strains by matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry: comparison with gene sequence phylogenies. Curr Microbiol 50:71–77. https://doi.org/10.1007/s00284-004-4395-3 PubMed DOI
Steinmetz H, Glaser N, Herdtweck E et al (2004) Isolation, crystal and solution structure determination, and biosynthesis of tubulysins - powerful inhibitors of tubulin polymerization from myxobacteria. Angew Chemie - Int Ed 43:4888–4892. https://doi.org/10.1002/anie.200460147 DOI
Steinmetz H, Irschik H, Kunze B et al (2007) Thuggacins, macrolide antibiotics active against Mycobacterium tuberculosis: isolation from myxobacteria, structure elucidation, conformation analysis and biosynthesis. Chem - A Eur J 13:5822–5832. https://doi.org/10.1002/chem.200700269 DOI
Steinmetz H, Mohr KI, Zander W et al (2012) Indiacens A and B: prenyl indoles from the myxobacterium Sandaracinus amylolyticus. J Nat Prod 75:1803–1805. https://doi.org/10.1021/np300288b PubMed DOI
Stephens K (1986) Pheromones among the procaryotes. Crit Rev Microbiol 13:309–334. https://doi.org/10.3109/10408418609108741 PubMed DOI
Surup F, Viehrig K, Mohr KI et al (2014) Disciformycins A and B: 12-membered macrolide glycoside antibiotics from the myxobacterium Pyxidicoccus fallax active against multiresistant Staphylococci. Angew Chemie - Int Ed 53:13588–13591. https://doi.org/10.1002/anie.201406973 DOI
Tan AR, Toppmeyer DL (2008) Ixabepilone in metastatic breast cancer: complement or alternative to taxanes? Clin. Cancer Res. 14:6725–6729. https://doi.org/10.1158/1078-0432.CCR-07-4704
Tang B, Yu Y, Liang J et al (2019) Reclassification of ’Polyangium brachysporum’ DSM 7029 as Schlegelella brevitalea sp. nov. Int J Syst Evol Microbiol 69:2877–2883. https://doi.org/10.1099/ijsem.0.003571 PubMed DOI
Thakur P, Chopra C, Anand P et al (2018) Myxobacteria: unraveling the potential of a unique microbiome niche. In: Microbial Bioprospecting for Sustainable Development. pp 137–163. https://doi.org/10.1007/978-981-13-0053-0_7
Thomas SH, Wagner RD, Arakaki AK et al (2008) The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria PLoS ONE 3. https://doi.org/10.1371/journal.pone.0002103
Tian Y, Xu X, Ding Y et al (2018) Synthesis and biological evaluation of nannocystin analogues toward understanding the binding role of the (2R,3S)-Epoxide in nannocystin A. Eur J Med Chem 150:626–632. https://doi.org/10.1016/j.ejmech.2018.03.012 PubMed DOI
Treuner-Lange A, Bruckskotten M, Rupp O et al (2017) Complete genome sequence of the fruiting myxobacterium Myxococcus macrosporus strain DSM 14697 generated by PacBio sequencing Genome Announc 5. https://doi.org/10.1128/genomeA.01127-17
Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29:223–229. https://doi.org/10.1016/j.biotechadv.2010.11.006 PubMed DOI
Wang D, Hiebl V, Schachner D et al (2020) Soraphen A enhances macrophage cholesterol efflux via indirect LXR activation and ABCA1 upregulation Biochem Pharmacol 177. https://doi.org/10.1016/j.bcp.2020.114022
Wang H, Zhang L, Shi N (2011) Screening of myxobacteria strains producing bioactive substances against breast cancer. Mod Appl Sci 5:86–91. https://doi.org/10.5539/mas.v5n1p86 DOI
Wang SY, Hu W, Lin XY et al (2012) A novel cold-active xylanase from the cellulolytic myxobacterium Sorangium cellulosum So9733-1: gene cloning, expression, and enzymatic characterization. Appl Microbiol Biotechnol 93:1503–1512. https://doi.org/10.1007/s00253-011-3480-3 PubMed DOI
Weissman KJ, Müller R (2010) Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 27:1276–1295. https://doi.org/10.1039/C001260M PubMed DOI
Welch SA, Skatvold M.A, Labrenz M, et al (2000) Biogenic carbonate precipitation by a planktonic microbial population. Goldschmidt 2000, J Conf Abstr 5:1075
Witte SNR, Hug JJ, Géraldy MNE et al (2017) Biosynthesis and total synthesis of pyrronazol B: a secondary metabolite from Nannocystis pusilla. Chem - A Eur J 23:15917–15921. https://doi.org/10.1002/chem.201703782 DOI
Wolgemuth C, Hoiczyk E, Kaiser D, Oster G (2002) How myxobacteria glide. Curr Biol 12:369–377. https://doi.org/10.1016/S0960-9822(02)00716-9 PubMed DOI
Wrótniak-Drzewiecka W, Brzezińska AJ, Dahm H et al (2016) Current trends in myxobacteria research. Ann Microbiol 66:17–33. https://doi.org/10.1007/s13213-015-1104-3 DOI
Wu M, Abokitse K, Grosse S et al (2012) New feruloyl esterases to access phenolic acids from grass biomass. Appl Biochem Biotechnol 168:129–143. https://doi.org/10.1007/s12010-011-9359-z PubMed DOI
Wu ZH, Ma Q, Sun ZN et al (2021) Biocontrol mechanism of Myxococcus fulvus B25-I-3 against Phytophthora infestans and its control efficiency on potato late blight. Folia Microbiol (praha). https://doi.org/10.1007/s12223-021-00865-1 DOI
Yamamoto E, Muramatsu H, Nagai K (2014) Vulgatibacter incomptus gen. nov., sp. nov. and Labilithrix luteola gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of Vulgatibacteraceae fam. nov., Labilitrichaceae fam. nov. and Anaeromyxobacteraceae fam. Int J Syst Evol Microbiol 64:3360–3368. https://doi.org/10.1099/ijs.0.063198-0 PubMed DOI
Zander W, Irschik H, Augustiniak H et al (2012) Sulfangolids, macrolide sulfate esters from Sorangium cellulosum. Chem - A Eur J 18:6264–6271. https://doi.org/10.1002/chem.201100851 DOI
Zhang F, Braun DR, Rajski SR et al (2019) Enhypyrazinones A and B, pyrazinone natural products from a marine-derived myxobacterium Enhygromyxa sp Mar Drugs 17. https://doi.org/10.3390/md17120698
Zhang S, Menche D, Zahler S et al (2015) In vitro anti-cancer effects of the actin-binding natural compound rhizopodin. Pharmazie 70:610–615. https://doi.org/10.1691/ph.2015.5579 PubMed DOI
Zhao LH, Guan S, Gao X et al (2011) Preparation, purification and characteristics of an aflatoxin degradation enzyme from Myxococcus fulvus ANSM068. J Appl Microbiol 110:147–155. https://doi.org/10.1111/j.1365-2672.2010.04867.x PubMed DOI
Zhou X, Xu Z, He J et al (2020) A myxobacterial LPMO10 has oxidizing cellulose activity for promoting biomass enzymatic saccharification of agricultural crop straws Bioresour Technol 318. https://doi.org/10.1016/j.biortech.2020.124217
Zhou Z, Qiao W, Xing C et al (2014) A micro-aerobic hydrolysis process for sludge in situ reduction: Performance and microbial community structure. Bioresour Technol 173:452–456. https://doi.org/10.1016/j.biortech.2014.09.119 PubMed DOI
Mining the soil myxobacteria and finding sources of anti-diabetic metabolites