Identification of the LLDPE Constitutive Material Model for Energy Absorption in Impact Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
John H. and Amy Bowles Lawrence Foundation
CZ.02.1.01/0.0/0.0/17_048/0007280
European Regional Development Fund-Project
SGS-2019-002
University ofWest Bohemia
PubMed
34064915
PubMed Central
PMC8151402
DOI
10.3390/polym13101537
PII: polym13101537
Knihovny.cz E-zdroje
- Klíčová slova
- LLDPE, constitutive material model, impact energy absorption, material parameter identification, quasi-static and dynamic experimental tests, simulation, validation,
- Publikační typ
- časopisecké články MeSH
Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.
Faculty of Applied Sciences University of West Bohemia 301 00 Plzeň Czech Republic
MECAS ESI s r o Brojova 2113 326 00 Plzeň Czech Republic
New Technologies Research Centre University of West Bohemia 301 00 Plzeň Czech Republic
Zobrazit více v PubMed
Špička J., Hynčík L., Kovář L., Hanuliak A. Virtual assessment of advanced safety systems for new mobility modes; Proceedings of the 16th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and the 4th Conference on Imaging and Visualization; New York, NY, USA. 14–16 August 2019; New York, NY, USA: Columbia University; 2019. p. 263.
Hanuliak A. Safety Restraint System for Motor Vehicles. WO2018/219371. 2018 Dec 6;
Mezghani K., Furquan S. Analysis of dart impact resistance of low-density polyethylene and linear low-density polyethylene blown films via an improved instrumented impact test method. J. Plast. Film. Sheeting. 2012;28:298–313. doi: 10.1177/8756087911434184. DOI
Ragaert K., Delva L., Van Damme N., Kuzmanovic M., Hubo S., Cardon L. Microstructural foundations of the strength and resilience of LLDPE artificial turf yarn. Appl. Polym. Sci. 2016;133:1–12. doi: 10.1002/app.44080. DOI
Bosi F., Pellegrino S. Molecular based temperature and strain rate dependent yield criterion for anisotropic elastomeric thin films. Polymer. 2017;125:144–153. doi: 10.1016/j.polymer.2017.07.080. DOI
Bosi F., Pellegrino S. Nonlinear thermomechanical response and constitutive modeling of viscoelastic polyethylene membranes. Mech. Mater. 2018;117:9–21. doi: 10.1016/j.mechmat.2017.10.004. DOI
Jeon K., Krishnamoorti R. Morphological behavior of thin linear low-density polyethylene films. Macromolecules. 2008;49:7131–7140. doi: 10.1021/ma800652p. DOI
Morris B.A. The Science and Technology of Flexible Packaging. Elsevier; Oxford, UK: 2017. Strength, stifffness, and abuse resistance; pp. 309–350.
Omar M.F., Akil H.M., Ahmad Z.A. Effect of molecular structures on dynamic compression properties of polyethylene. Mater. Sci. Eng. A. 2012;538:125–134. doi: 10.1016/j.msea.2011.12.111. DOI
Jordan J., Casem D.T., Bradley J.M., Dwivedi A.K. Mechanical Properties of Low Density Polyethylene. J. Dyn. Behav. Mater. 2016;2:411–420. doi: 10.1007/s40870-016-0076-0. DOI
Zhang X.M., Elkoun S., Ajji A., Huneault M.A. Oriented structure and anisotropy properties of polymer blown films: HDPE, LLDPE and LDPE. Polymer. 2004;45:217–229. doi: 10.1016/j.polymer.2003.10.057. DOI
Ren Y., Shi Y., Yao X., Tang Y., Liu L.-Z. Different Dependence of Tear Strength on Film Orientation of LLDPE Made with Different Co-Monomer. Polymers. 2019;11:434. doi: 10.3390/polym11030434. PubMed DOI PMC
Dogru S., Aksoy B., Bayraktar H., Alaca B.E. Poisson’s ratio of PDMS thin films. Polym. Test. 2018;69:375–384. doi: 10.1016/j.polymertesting.2018.05.044. DOI
Dorigato A., Pegoretti A., Kolařík J. Nonlinear tensile creep of linear low density polyethylene/fumed silica nanocomposites: Time-strain superposition and creep prediction. Polym. Compos. 2010;31:1947–1955. doi: 10.1002/pc.20993. DOI
Krishnaswamy K.R., Lamborn M.J. Tensile Properties of Linear Low Density Polyethylene (LLDPE) Blown Films. Polym. Eng. Sci. 2000;40:2395–2396. doi: 10.1002/pen.11370. DOI
Plaza A.R., Ramos E., Manzur A., Olayo R., Escobar A. Double yield points in triblends of LDPE, LLDPE and EPDM. J. Mater. Sci. 1997;32:549–554. doi: 10.1023/A:1018554828007. DOI
Richeton J., Ahzi S., Daridon L., Rémond Y. Modeling of strain rates and temperature effects on the yield behavior of amorphous polymers. J. Phys. IV (Proc.) 2003;110:39–44. doi: 10.1051/jp4:20020667. DOI
Luyt A.S., Gasmi S.A., Malik S.S., Aljindi R.M., Ouederni M., Vouyiouka S.N., Porfyris A.D., Pfaendner R., Papaspyrides C.D. Artificial weathering and accelerated heat aging studies on low-density polyethylene (LDPE) produced via autoclave and tubular process technologies. eXPRESS Polym. Lett. 2021;15:121–136. doi: 10.3144/expresspolymlett.2021.12. DOI
Du W., Ren Y., Tang Y., Shi Y., Yao X., Zheng C., Zhang X., Guo M., Zhang S., Liu L.Z. Different structure transitions and tensile property of LLDPE film deformed at slow and very fast speeds. Eur. Polym. J. 2018;103:170–178. doi: 10.1016/j.eurpolymj.2018.04.003. DOI
Omar M.F. Static and Dynamic Mechanical Properties of Thermoplastic Materials. Lap Lambert Academic Publishing; Chisinau, Moldova: 2013.
Durmus A., Kasgöz A., Macoscom C.W. Mechanical Properties of Linear Low-density Polyethylene (LLDPE)/clay Nanocomposites: Estimation of Aspect Ratio and Interfacial Strength by Composite Models. Macromol. Sci. Part B Phys. 2008;47:608–619. doi: 10.1080/00222340801957780. DOI
LLDPE Foils. [(accessed on 21 November 2020)];2020 Available online: http://www.tichelmann.cz/lldpe-folie.
ASTM Standards. [(accessed on 17 March 2021)];2021 Available online: https://www.astm.org.
ESI Group International . VPS User’s Manual. ESI Group International; Paris, France: 2020.
Vezin P., Bruyère-Garnier K., Bermond F., Verriest J.P. Comparison of Hybrid III, Thor-α and PMHS response in frontal sled tests. Stapp Car Crash J. 2002;46:1–26. PubMed
Yoganandan N., Pintar F.A., Zhang J., Baisden J.L. Physical properties of the human head: Mass, center of gravity and moment of inertia. J. Biomech. 2009;42:1177–1192. doi: 10.1016/j.jbiomech.2009.03.029. PubMed DOI
Cichos D., de Vogel D., Otto M., Schaar O., Zoelsch S., Clausnitzer S., Vetter D. Crash Analysis Criteria Description. [(accessed on 9 May 2021)];2011 Available online: http://mdvfs.org/crash-analyse.
Gupalov V., Kukaev A., Shevchenko S., Shalymov E., Venediktov V. Physical principles of a piezo accelerometer sensitive to a nearly constant signal. Sensors. 2018;18:3258. doi: 10.3390/s18103258. PubMed DOI PMC