Identification of the LLDPE Constitutive Material Model for Energy Absorption in Impact Applications

. 2021 May 11 ; 13 (10) : . [epub] 20210511

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34064915

Grantová podpora
John H. and Amy Bowles Lawrence Foundation
CZ.02.1.01/0.0/0.0/17_048/0007280 European Regional Development Fund-Project
SGS-2019-002 University ofWest Bohemia

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.

Zobrazit více v PubMed

Špička J., Hynčík L., Kovář L., Hanuliak A. Virtual assessment of advanced safety systems for new mobility modes; Proceedings of the 16th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and the 4th Conference on Imaging and Visualization; New York, NY, USA. 14–16 August 2019; New York, NY, USA: Columbia University; 2019. p. 263.

Hanuliak A. Safety Restraint System for Motor Vehicles. WO2018/219371. 2018 Dec 6;

Mezghani K., Furquan S. Analysis of dart impact resistance of low-density polyethylene and linear low-density polyethylene blown films via an improved instrumented impact test method. J. Plast. Film. Sheeting. 2012;28:298–313. doi: 10.1177/8756087911434184. DOI

Ragaert K., Delva L., Van Damme N., Kuzmanovic M., Hubo S., Cardon L. Microstructural foundations of the strength and resilience of LLDPE artificial turf yarn. Appl. Polym. Sci. 2016;133:1–12. doi: 10.1002/app.44080. DOI

Bosi F., Pellegrino S. Molecular based temperature and strain rate dependent yield criterion for anisotropic elastomeric thin films. Polymer. 2017;125:144–153. doi: 10.1016/j.polymer.2017.07.080. DOI

Bosi F., Pellegrino S. Nonlinear thermomechanical response and constitutive modeling of viscoelastic polyethylene membranes. Mech. Mater. 2018;117:9–21. doi: 10.1016/j.mechmat.2017.10.004. DOI

Jeon K., Krishnamoorti R. Morphological behavior of thin linear low-density polyethylene films. Macromolecules. 2008;49:7131–7140. doi: 10.1021/ma800652p. DOI

Morris B.A. The Science and Technology of Flexible Packaging. Elsevier; Oxford, UK: 2017. Strength, stifffness, and abuse resistance; pp. 309–350.

Omar M.F., Akil H.M., Ahmad Z.A. Effect of molecular structures on dynamic compression properties of polyethylene. Mater. Sci. Eng. A. 2012;538:125–134. doi: 10.1016/j.msea.2011.12.111. DOI

Jordan J., Casem D.T., Bradley J.M., Dwivedi A.K. Mechanical Properties of Low Density Polyethylene. J. Dyn. Behav. Mater. 2016;2:411–420. doi: 10.1007/s40870-016-0076-0. DOI

Zhang X.M., Elkoun S., Ajji A., Huneault M.A. Oriented structure and anisotropy properties of polymer blown films: HDPE, LLDPE and LDPE. Polymer. 2004;45:217–229. doi: 10.1016/j.polymer.2003.10.057. DOI

Ren Y., Shi Y., Yao X., Tang Y., Liu L.-Z. Different Dependence of Tear Strength on Film Orientation of LLDPE Made with Different Co-Monomer. Polymers. 2019;11:434. doi: 10.3390/polym11030434. PubMed DOI PMC

Dogru S., Aksoy B., Bayraktar H., Alaca B.E. Poisson’s ratio of PDMS thin films. Polym. Test. 2018;69:375–384. doi: 10.1016/j.polymertesting.2018.05.044. DOI

Dorigato A., Pegoretti A., Kolařík J. Nonlinear tensile creep of linear low density polyethylene/fumed silica nanocomposites: Time-strain superposition and creep prediction. Polym. Compos. 2010;31:1947–1955. doi: 10.1002/pc.20993. DOI

Krishnaswamy K.R., Lamborn M.J. Tensile Properties of Linear Low Density Polyethylene (LLDPE) Blown Films. Polym. Eng. Sci. 2000;40:2395–2396. doi: 10.1002/pen.11370. DOI

Plaza A.R., Ramos E., Manzur A., Olayo R., Escobar A. Double yield points in triblends of LDPE, LLDPE and EPDM. J. Mater. Sci. 1997;32:549–554. doi: 10.1023/A:1018554828007. DOI

Richeton J., Ahzi S., Daridon L., Rémond Y. Modeling of strain rates and temperature effects on the yield behavior of amorphous polymers. J. Phys. IV (Proc.) 2003;110:39–44. doi: 10.1051/jp4:20020667. DOI

Luyt A.S., Gasmi S.A., Malik S.S., Aljindi R.M., Ouederni M., Vouyiouka S.N., Porfyris A.D., Pfaendner R., Papaspyrides C.D. Artificial weathering and accelerated heat aging studies on low-density polyethylene (LDPE) produced via autoclave and tubular process technologies. eXPRESS Polym. Lett. 2021;15:121–136. doi: 10.3144/expresspolymlett.2021.12. DOI

Du W., Ren Y., Tang Y., Shi Y., Yao X., Zheng C., Zhang X., Guo M., Zhang S., Liu L.Z. Different structure transitions and tensile property of LLDPE film deformed at slow and very fast speeds. Eur. Polym. J. 2018;103:170–178. doi: 10.1016/j.eurpolymj.2018.04.003. DOI

Omar M.F. Static and Dynamic Mechanical Properties of Thermoplastic Materials. Lap Lambert Academic Publishing; Chisinau, Moldova: 2013.

Durmus A., Kasgöz A., Macoscom C.W. Mechanical Properties of Linear Low-density Polyethylene (LLDPE)/clay Nanocomposites: Estimation of Aspect Ratio and Interfacial Strength by Composite Models. Macromol. Sci. Part B Phys. 2008;47:608–619. doi: 10.1080/00222340801957780. DOI

LLDPE Foils. [(accessed on 21 November 2020)];2020 Available online: http://www.tichelmann.cz/lldpe-folie.

ASTM Standards. [(accessed on 17 March 2021)];2021 Available online: https://www.astm.org.

ESI Group International . VPS User’s Manual. ESI Group International; Paris, France: 2020.

Vezin P., Bruyère-Garnier K., Bermond F., Verriest J.P. Comparison of Hybrid III, Thor-α and PMHS response in frontal sled tests. Stapp Car Crash J. 2002;46:1–26. PubMed

Yoganandan N., Pintar F.A., Zhang J., Baisden J.L. Physical properties of the human head: Mass, center of gravity and moment of inertia. J. Biomech. 2009;42:1177–1192. doi: 10.1016/j.jbiomech.2009.03.029. PubMed DOI

Cichos D., de Vogel D., Otto M., Schaar O., Zoelsch S., Clausnitzer S., Vetter D. Crash Analysis Criteria Description. [(accessed on 9 May 2021)];2011 Available online: http://mdvfs.org/crash-analyse.

Gupalov V., Kukaev A., Shevchenko S., Shalymov E., Venediktov V. Physical principles of a piezo accelerometer sensitive to a nearly constant signal. Sensors. 2018;18:3258. doi: 10.3390/s18103258. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...