Rheometer Evidences for the Co-Curing Effect of a Bismaleimide in Conjunction with the Accelerated Sulfur on Natural Rubber/Chloroprene Rubber Blends

. 2021 May 07 ; 13 (9) : . [epub] 20210507

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34067201

Grantová podpora
DKRVO (RP/CPS/2020/004). Ministry of Education, Youth and Sports of the Czech Republic

The rheometer curing curves of neat natural rubber (NR) and neat chloroprene rubber (CR) with maleide F (MF) exhibit considerable crosslinking torque at 180 °C. This indicates that MF can crosslink both these rubbers via Alder-ene reactions. Based on this knowledge, MF has been introduced as a co-crosslinking agent for a 50/50 blend of NR and CR in conjunction with accelerated sulfur. The delta (Δ) torque obtained from the curing curves of a blend with the addition of 1 phr MF was around 62% higher than those without MF. As the content of MF increased to 3 phr, the Δ torque was further raised to 236%. Moreover, the mechanical properties, particularly the tensile strength of the blend with the addition of 1 phr MF in conjunction with the accelerated sulfur, was around 201% higher than the blend without MF. The overall tensile properties of the blends cured with MF were almost retained even after ageing the samples at 70 °C for 72 h. This significant improvement in the curing torque and the tensile properties of the blends indicates that MF can co-crosslink between NR and CR via the Diels-Alder reaction.

Zobrazit více v PubMed

Morton M. Rubber Technology. Van Nostrand Reinhold Company; New York, NY, USA: 1987. pp. 1–20.

Hofmann W. Rubber Technology Hand Book. Hanser Publishers; New York, NY, USA: 1989.

Ferguson R.C. Infrared and nuclear magnetic resonance studies of the microstructures of polychlo-roprenes. J. Polym. Sci. Part A Gen. Pap. 1964;2:4735–4741. doi: 10.1002/pol.1964.100021104. DOI

Tabb D.L., Koenig J.L., Coleman M.M. Infrared spectroscopic evidence of structural defects in the crystalline regions of trans-1,4-polychloroprene. J. Polym. Sci. Polym. Phys. Ed. 1975;13:1145–1158. doi: 10.1002/pol.1975.180130607. DOI

Aufdermarsh C.A., Pariser R. Cis-polychloroprene. J. Polym. Sci. Part A Gen. Pap. 1964;2:4727–4733. doi: 10.1002/pol.1964.100021103. DOI

Sathasivam K., Haris M.R.H.M., Mohan S. Vibrational spectroscopic studies on cis-1, 4-polychloroprene. Int. J. Chemtech Res. 2010;2:1780–1785.

Ferguson R.C. Determination of Polychloroprene Isomers by High Resolution Infrared Spectrometry. Anal. Chem. 1964;36:2204–2205. doi: 10.1021/ac60217a059. DOI

Petcavich R.J., Painter P.C., Coleman M.M. Application of infra-red digital subtraction techniques to the microstructure of polychloroprenes: 2. Mechanism of oxidative degradation at 60 °C. Polymer. 1978;19:1249–1252. doi: 10.1016/0032-3861(78)90300-2. DOI

Alliger G., Sjothun I.J. Vulcanization of Elastomers. Robert E. Krieger Publishers; New York, NY, USA: 1978.

Hofmann W. Vulcanization and Vulcanizing Agents. Maclaren and Sons; London, UK: 1967.

Desai H., Hendrikse K.G., Woolard C.D. Vulcanization of polychloroprene rubber. I. A revised cationic mechanism for ZnO crosslinking. J. Appl. Polym. Sci. 2007;105:865–876. doi: 10.1002/app.23904. DOI

Berry K., Liu M., Chakraborty K., Pullan N., West A., Sammon C., Topham P.D. Mechanism for Cross-Linking Polychloroprene with Ethylene Thiourea and Zinc Oxide. Rubber Chem. Technol. 2015;88:80–97. doi: 10.5254/rct.14.85986. DOI

Miyata Y., Atsumi M. Zinc Oxide Crosslinking Reaction of Polychloroprene Rubber. Rubber Chem. Technol. 1989;62:1–12. doi: 10.5254/1.3536232. DOI

Kovacic P. Bisalkylation Theory of Neoprene Vulcanization. Ind. Eng. Chem. 1955;47:1090–1094. doi: 10.1021/ie50545a053. DOI

Mallon P.E., McGill W.J., Shillington D.P. A DSC study of the crosslinking of polychloroprene with ZnO and MgO. J. Appl. Polym. Sci. 1995;55:705–721. doi: 10.1002/app.1995.070550507. DOI

Vukov R. Zinc oxide cross-linking chemistry of halobutyl elastomers—A model compound approach. Rubber Chem. Technol. 1984;57:284–290. doi: 10.5254/1.3536008. DOI

Kuntz I., Zapp R.L., Pancirov R.J. The Chemistry of the Zinc Oxide Cure of Halobutyl. Rubber Chem. Technol. 1984;57:813–825. doi: 10.5254/1.3536036. DOI

Joseph R., George K.E., Francis D.J. Tribasic lead sulphate as efficient curing agent for Polychlo-roprene. Angew. Makromol. Chem. 1987;148:19–26. doi: 10.1002/apmc.1987.051480102. DOI

Das A., Naskar N., Datta R.N., Bose P.P., Debnath S.C. Naturally occurring amino acid: Novel curatives for chloroprene rubber. J. Appl. Polym. Sci. 2006;100:3981–3986. doi: 10.1002/app.23065. DOI

Das A., Naskar N., Basu D.K. Thiophosphoryl disulfides as crosslinking agents for chloroprene rubber. J. Appl. Polym. Sci. 2003;91:1913–1919. doi: 10.1002/app.13300. DOI

Ismail H., Ahmad Z., Ishak Z.M. Effects of cetyltrimethylammonium maleate on curing characteristics and mechanical properties of polychloroprene rubber. Polym. Test. 2003;22:179–183. doi: 10.1016/S0142-9418(02)00067-3. DOI

Dziemidkiewicz A., Pingot M., Maciejewska M. Metal complexes as a new pro-ecological cross-linking agents for chloroprene rubber based on Heck coupling reaction. Rubber Chem. Technol. 2019;92:589–597. doi: 10.5254/rct.19.81465. DOI

Gros A., Tosaka M., Huneau B., Verron E., Poompradub S., Senoo K. Dominating factor of strain-induced crystallization in natural rubber. Polymer. 2015;76:230–236. doi: 10.1016/j.polymer.2015.08.058. DOI

Sotta P., Albouy P.-A. Strain-Induced Crystallization in Natural Rubber: Flory’s Theory Revisited. Macromolecules. 2020;53:3097–3109. doi: 10.1021/acs.macromol.0c00515. DOI

Albouy P.A., Sotta P. Draw ratio at the onset of strain-induced crystallization in cross-linked natural rubber. Macromolecules. 2020;53:992–1000. doi: 10.1021/acs.macromol.9b01957. DOI

Sathi S.G., Jang J.Y., Jeong K.U., Nah C. Thermally stable bromobutyl rubber with a high cross-linking density based on a 4,4′ bismaleimidodiphenylmethane curing agent. J. Appl. Polym. Sci. 2016;133:44092. doi: 10.1002/app.44092. DOI

Sathi S.G., Jeon J., Won J., Nah C. Enhancing the efficiency of zinc oxide vulcanization in brominated poly (isobutylene-co-isoprene) rubber using structurally different bismaleimides. J. Polym. Res. 2018;25:108–121. doi: 10.1007/s10965-018-1512-8. DOI

Sathi S.G., Jang J.Y., Jeong K.U., Nah C. Synergistic effect of 4,4′-bis(maleimido) diphenylme-thane and zinc oxide on the vulcanization behavior and thermo-mechanical properties of chlorinated isobutylene–isoprene rubber. Polym. Adv. Technol. 2017;28:742–753.

Sathi S.G., Park C., Huh Y.I., Jeon J., Yun C.H., Won J., Jeong K.U., Nah C. Enhancing the reversion resistance, crosslinking density and thermo-mechanical properties of accelerated sulfur cured chlorobutyl rubber using 4,4′-bis (maleimido) diphenyl methane. Rubber Chem. Technol. 2019;92:110–128.

Shibulal G.S., Jang J., Yu H.C., Huh Y.I., Nah C. Cure characteristics and physico-mechanical properties of a conventional sulphur-cured natural rubber with a novel anti-reversion agent. J. Polym. Res. 2016;23:1–12. doi: 10.1007/s10965-016-1128-9. DOI

Sathi S.G., Harea E., Machů A., Stoček R. Facilitating high-temperature curing of natural rubber with a conventional accelerated-sulfur system using a synergistic combination of bismaleimides. EXPRESS Polym. Lett. 2021;15:16–27. doi: 10.3144/expresspolymlett.2021.3. DOI

Sathi S.G., Stocek R., Kratina O. Reversion free high-temperature vulcanization of cis-polybutadiene rubber with the accelerated-sulfur system. Express Polym. Lett. 2020;14:823–837. doi: 10.3144/expresspolymlett.2020.68. DOI

Inoue S. Chloroprene Rubber Composition. JPS59109541A. 1984

Jain S.R., Sekkar V., Krishnamurthy V.N. Mechanical and swelling properties of HTPB-based copolyurethane networks. J. Appl. Polym. Sci. 1993;48:1515–1523. doi: 10.1002/app.1993.070480902. DOI

Hayeemasae N., Salleh S.Z., Ismail H. Utilization of chloroprene rubber waste as blending compo-nents with natural rubber: Aspect on metal oxide contents. J. Mater. Cycles Waste Manag. 2019;21:1095–1105. doi: 10.1007/s10163-019-00862-0. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...