Tuning the Curing Efficiency of Conventional Accelerated Sulfur System for Tailoring the Properties of Natural Rubber/Bromobutyl Rubber Blends
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
DKRVO (RP/CPS2022/006)
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36499962
PubMed Central
PMC9740831
DOI
10.3390/ma15238466
PII: ma15238466
Knihovny.cz E-resources
- Keywords
- Diels–Alder reaction, bismaleimide, compression set, curing, rubber, tensile strength,
- Publication type
- Journal Article MeSH
The state of cure and the vulcanizate properties of a conventional accelerated sulfur (CV) cured 50/50 blend of natural rubber (NR) and bromobutyl rubber (BIIR) were inferior. However, this blend exhibits a higher extent of cure with remarkable improvements in its mechanical properties, particularly the tensile strength, modulus and hardness after curing with a combination of accelerated sulfur and three parts per hundred rubber (phr) of a bismaleimide (MF3). Moreover, with the use of 0.25 phr of dicumyl peroxide (DCP) along with the CV/MF3 system, the compression set property of the CV-only cured blend could be reduced from 68% to 15%. The enhanced compatibility between NR and BIIR with the aid of bismaleimide via the Diels-Alder reaction was identified as the primary reason for the improved cure state and the mechanical properties. However, the incorporation of a certain amount of bismaleimide as a crosslink in the NR phase of the blend, via a radical initiated crosslinking process by the action of DCP, is responsible for the improved compression set properties.
See more in PubMed
Amram B., Bokobza L., Queslel J.P., Monnerie L. Fourier-transform infra-red dichroism study of molecular orientation in synthetic high cis-1,4-polyisoprene and in natural rubber. Polymer. 1986;27:877–882. doi: 10.1016/0032-3861(86)90298-3. DOI
Huneau B. Strain induced crystallization of natural rubber. A review of X-ray diffraction investigations. Rubber Chem. Technol. 2011;84:425–452. doi: 10.5254/1.3601131. DOI
Gros A., Tosaka M., Huneau B., Verron E., Poompradub S., Senoo K. Dominating factor of strain-induced crystallization in natural rubber. Polymer. 2015;76:230–236. doi: 10.1016/j.polymer.2015.08.058. DOI
Mahendra A., Akhmad A., Dewi K.A., Eryanti K., Herri S., Ade S.H., Caroline D.L. Properties of natural rubber/chloroprene rubber blend for rubber fender application: Effects of blend ratio. Macromol. Symp. 2020;391:1–5.
Quang N.T., Hung D.V., Linh N.P.D., Chuong B., Duong D.L. Detailed study on the mechanical properties and activation energy of natural rubber/chloroprene rubber blends during aging processes. J. Chem. 2020;2020:7064934.
Hayeemasae N., Salleh S.Z., Ismail H. Utilization of chloroprene rubber waste as blending components with natural rubber: Aspect on metal oxide contents. J. Mater. Cycles Waste Manag. 2019;21:1095–1105. doi: 10.1007/s10163-019-00862-0. DOI
Siti Z.S., Hanafi I., Zulkifli A. Study on the effect of virgin and recycled chloroprene rubber (vCR and rCR) on the properties of natural rubber/chloroprene rubber (NR/CR) blends. J. Polym. Eng. 2013;33:803–811.
Marek P., Shibulal G.S., Radek S., Ondřej K. Rheometer evidences for the co-curing effect of a bismaleimide in conjunction with the accelerated-sulfur on natural rubber/chloroprene rubber blends. Polymers. 2021;13:1510–1520. PubMed PMC
Akiba M., Hashim A.S. Vulcanization and crosslinking in elastomers. Prog. Polym. Sci. 1997;22:475–521. doi: 10.1016/S0079-6700(96)00015-9. DOI
Kruzelak J., Sykora R., Hudec I. Sulfur and peroxide vulcanisation of rubber compounds-overview. Chem. Pap. 2016;70:1533–1555. doi: 10.1515/chempap-2016-0093. DOI
Rajesh B.R., Shibulal G.S., Chandra A.K., Naskar K. Advances in Elastomers I. Advanced Structured Materials. Springer; Berlin/Heidelberg, Germany: 2013. Compounding and Vulcanization; pp. 83–138.
Vukov R. Zinc oxide cross-linking chemistry of halobutyl elastomers—A model compound approach. Rubber Chem. Technol. 1984;57:284–290. doi: 10.5254/1.3536008. DOI
Kuntz I., Zapp R.L., Pancirov R.J. The chemistry of the zinc oxide cure of halobutyl. Rubber Chem. Technol. 1984;57:813–825. doi: 10.5254/1.3536036. DOI
Naba K.D., Tripathy D.K. Miscibility studies in blends of bromobutyl rubber and natural rubber. J. Elastomers Plast. 1993;25:158–179.
Sathi S.G., Jang J.Y., Jeong K.U., Nah C. Thermally stable bromobutyl rubber with a high crosslinking density based on a 4,4′ bismaleimidodiphenylmethane curing agent. J. Appl. Polym. Sci. 2016;133:1–14. doi: 10.1002/app.44092. DOI
Thomas D.K. The degradation of polyisobutylene by dicumyl peroxide. Trans. Faraday Soc. 1961;57:511–517. doi: 10.1039/tf9615700511. DOI
Sathi S.G., Stoček R., Kratina O. Reversion free high-temperature vulcanization of cis-polybutadiene rubber with the accelerated-sulfur system. Express Polym. Lett. 2020;14:838–847.
Sathi S.G., Jang J.Y., Yu H.C., Huh Y.I., Nah C. Cure characteristics and physico-mechanical properties of a conventional sulfur-cured natural rubber with a novel anti-reversion agent. J. Polym. Res. 2016;23:237–248.
Movahed S.O., Ansarifar A., Mirzaie F. Effect of various efficient vulcanization cure systems on the compression set of a nitrile rubber filled with different fillers. J. Appl. Polym. Sci. 2015;132:1–10. PubMed
Sathi S.G., Jeon J., Won J., Nah C. Enhancing the efficiency of zinc oxide vulcanization in brominated poly (isobutylene-co-isoprene) rubber using structurally different bismaleimides. J. Polym. Res. 2018;25:108–121. doi: 10.1007/s10965-018-1512-8. DOI
Marek P., Shibulal G.S., Radek S. Identifying the co-curing effect of an accelerated-sulfur/bismaleimide combination on natural rubber/halogenated rubber blends using a rubber process analyzer. Polymers. 2021;13:4329–4342. PubMed