Secreted Enzyme-Responsive System for Controlled Antifungal Agent Release
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845
Czech government
RTI2018-100910-B-C41, RTI2018-101599-B-C22-AR and RTI2018-101599-B-C21-AR
Ministerio de Asuntos Económicos y Transformación Digital
PROMETEO 2018/024
Generalitat Valenciana
PubMed
34068155
PubMed Central
PMC8153022
DOI
10.3390/nano11051280
PII: nano11051280
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus niger, antifungal, antimicrobial, essential oil component, exogenous enzyme, nanoparticles,
- Publikační typ
- časopisecké články MeSH
Essential oil components (EOCs) such as eugenol play a significant role in plant antimicrobial defense. Due to the volatility and general reactivity of these molecules, plants have evolved smart systems for their storage and release, which are key prerequisites for their efficient use. In this study, biomimetic systems for the controlled release of eugenol, inspired by natural plant defense mechanisms, were prepared and their antifungal activity is described. Delivery and antifungal studies of mesoporous silica nanoparticles (MSN) loaded with eugenol and capped with different saccharide gates-starch, maltodextrin, maltose and glucose-against fungus Aspergillus niger-were performed. The maltodextrin- and maltose-capped systems show very low eugenol release in the absence of the fungus Aspergillus niger but high cargo delivery in its presence. The anchored saccharides are degraded by exogenous enzymes, resulting in eugenol release and efficient inhibition of fungal growth.
Zobrazit více v PubMed
Hu Y., Wang Z., Jin D., Zhang C., Sun R., Li Z., Hu K., Ni J., Cai Z., Pan D., et al. Botanical-Inspired 4D printing of hydrogel at the microscale. Adv. Funct. Mater. 2019:1907377. doi: 10.1002/adfm.201907377. DOI
Havlik J., Budesinsky M., Kloucek P., Kokoska L., Valterova I., Vasickova S., Zeleny V. Norsesquiterpene hydrocarbon, chemical composition and antimicrobial activity of Rhaponticum carthamoides root essential oil. Phytochemistry. 2009;70:414–418. doi: 10.1016/j.phytochem.2008.12.018. PubMed DOI
Kloucek P., Smid J., Frankova A., Kokoska L., Valterova I., Pavela R. Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase. Food Res. Int. 2012;47:161–165. doi: 10.1016/j.foodres.2011.04.044. DOI
Pavela R., Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant. Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Huffman M.A. Animal self-medication and ethno-medicine: Exploration and exploitation of the medicinal properties of plants. Proc. Nutr. Soc. 2003;62:371–381. doi: 10.1079/PNS2003257. PubMed DOI
Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008;46:446–475. doi: 10.1016/j.fct.2007.09.106. PubMed DOI
Lüthy B., Matile P. The mustard oil bomb: Rectified analysis of the subcellular organisation of the myrosinase system. Biochem. und Physiol. der Pflanz. 1984;179:5–12. doi: 10.1016/S0015-3796(84)80059-1. DOI
Sharifi-Rad J., Sureda A., Tenore G.C., Daglia M., Sharifi-Rad M., Valussi M., Tundis R., Sharifi-Rad M., Loizzo M.R., Oluwaseun Ademiluyi A., et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules. 2017;22:70. doi: 10.3390/molecules22010070. PubMed DOI PMC
Gómez-Guillén M.C., Pérez-Mateos M., Gómez-Estaca J., López-Caballero E., Giménez B., Montero P. Fish gelatin: A renewable material for developing active biodegradable films. Trends Food Sci. Technol. 2009;20:3–16. doi: 10.1016/j.tifs.2008.10.002. DOI
Pedro A.S., Cabral-Albuquerque E., Ferreira D., Sarmento B. Chitosan: An option for development of essential oil delivery systems for oral cavity care? Carbohydr. Polym. 2009;76:501–508. doi: 10.1016/j.carbpol.2008.12.016. DOI
Ramos Ó.L., Fernandes J.C., Silva S.I., Pintado M.E., Malcata F.X. Edible films and coatings from whey proteins: A review on formulation, and on mechanical and bioactive properties. Crit. Rev. Food Sci. Nutr. 2012;52:533–552. doi: 10.1080/10408398.2010.500528. PubMed DOI
Liu S., Maheshwari R., Kiick K.L. Polymer-based therapeutics. Macromolecules. 2009;42:3–13. doi: 10.1021/ma801782q. PubMed DOI PMC
Traitel T., Goldbart R., Kost J. Smart polymers for responsive drug-delivery systems. J. Biomater. Sci. Polym. Ed. 2008;19:755–767. doi: 10.1163/156856208784522065. PubMed DOI
Hoste K., De Winne K., Schacht E. Polymeric prodrugs. Int. J. Pharm. 2004;277:119–131. doi: 10.1016/j.ijpharm.2003.07.016. PubMed DOI
Siepmann F., Siepmann J., Walther M., MacRae R.J., Bodmeier R. Polymer blends for controlled release coatings. J. Control. Release. 2008;125:1–15. doi: 10.1016/j.jconrel.2007.09.012. PubMed DOI
Vallet-Regí M., Balas F., Arcos D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 2007;46:7548–7558. doi: 10.1002/anie.200604488. PubMed DOI
Butler K.S., Durfee P.N., Theron C., Ashley C.E., Carnes E.C., Brinker C.J. Protocells: Modular mesoporous silica nanoparticle-supported lipid bilayers for drug delivery. Small. 2016;12:2173–2185. doi: 10.1002/smll.201502119. PubMed DOI PMC
Cheng C.A., Deng T., Lin F.C., Cai Y., Zink J.I. Supramolecular nanomachines as stimuli-responsive gatekeepers on mesoporous silica nanoparticles for antibiotic and cancer drug delivery. Theranostics. 2019;9:3341–3364. doi: 10.7150/thno.34576. PubMed DOI PMC
Teruel A.H., Pérez-Esteve É., González-Álvarez I., González-Álvarez M., Costero A.M., Ferri D., Gaviña P., Merino V., Martínez-Máñez R., Sancenón F. Double drug delivery using capped mesoporous silica microparticles for the effective treatment of inflammatory bowel disease. Mol. Pharm. 2019;16:2418–2429. doi: 10.1021/acs.molpharmaceut.9b00041. PubMed DOI
Coll C., Bernardos A., Martínez-Máñez R., Sancenón F. Gated silica mesoporous supports for controlled release and signaling applications. Acc. Chem. Res. 2013;46:339–349. doi: 10.1021/ar3001469. PubMed DOI
Aznar E., Oroval M., Pascual L., Murguía J.R., Martínez-Mánez R., Sancenón F. Gated materials for on-command release of guest molecules. Chem. Rev. 2016;116:561–718. doi: 10.1021/acs.chemrev.5b00456. PubMed DOI
Llopis-Lorente A., Lozano-Torres B., Bernardos A., Martínez-Máñez R., Sancenón F. Mesoporous silica materials for controlled delivery based on enzymes. J. Mater. Chem. B. 2017;5:3069–3083. doi: 10.1039/C7TB00348J. PubMed DOI
Climent E., Martínez-Máñez R., Sancenón F., Marcos M.D., Soto J., Maquieira A., Amorós P. Controlled delivery using oligonucleotide-capped mesoporous silicananoparticles. Angew. Chem. 2010;122:7439–7441. doi: 10.1002/ange.201001847. PubMed DOI
Bernardos A., Aznar E., Marcos M.D., Martínez-Máñez R., Sancenón F., Soto J., Barat J.M., Amorós P. Enzyme-responsive controlled release using mesoporous silica supports capped with lactose. Angew. Chem. Int. Ed. 2009;48:5884–5887. doi: 10.1002/anie.200900880. PubMed DOI
Bernardos A., Mondragón L., Aznar E., Marcos M.D., Martínez-Máñez R., Sancenón F., Soto J., Barat J.M., Pérez-Payá E., Guilem C., et al. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano. 2010;4:6353–6368. doi: 10.1021/nn101499d. PubMed DOI
Shin M., Park E., Lee H. Plant-Inspired Pyrogallol-containing functional materials. Adv. Funct. Mater. 2019;29:1903022. doi: 10.1002/adfm.201903022. DOI
Descalzo A.B., Martínez-Máñez R., Sancenón F., Hoffmann K., Rurack K. The supramolecular chemistry of organic-inorganic hybrid materials. Angew. Chem. Int. Ed. Engl. 2006;45:5924–5948. doi: 10.1002/anie.200600734. PubMed DOI
Bengisu M. Biomimetic materials and design. Cuad. del Cent. Estud. Diseño y Comun. 2018:97–103. doi: 10.18682/cdc.vi70.1141. DOI
Bagheri A., Khodarahmi R., Mostafaie A. Purification and biochemical characterisation of glucoamylase from a newly isolated Aspergillus niger: Relation to starch processing. Food Chem. 2014;161:270–278. doi: 10.1016/j.foodchem.2014.03.095. PubMed DOI
Rojo R., Mendoza G.D., González S.S., Landois L., Bárcena R., Crosby M.M. Effects of exogenous amylases from Bacillus licheniformis and Aspergillus niger on ruminal starch digestion and lamb performance. Anim. Feed Sci. Technol. 2005;123–124:655–665. doi: 10.1016/j.anifeedsci.2005.04.053. DOI
van den Brink J., de Vries R.P. Fungal enzyme sets for plant polysaccharide degradation. Appl. Microbiol. Biotechnol. 2011;91:1477–1492. doi: 10.1007/s00253-011-3473-2. PubMed DOI PMC
Bernardos A., Kourimská L. Applications of mesoporous silica materials in food—A review. Czech. J. Food Sci. 2013;31:99–107. doi: 10.17221/240/2012-CJFS. DOI
Naderi M. Surface Area. Progress in Filtration and Separation. Elsevier; Amsterdam, The Netherlands: 2015. pp. 585–608.
Barrett E.P., Joyner L.G., Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951;73:373–380. doi: 10.1021/ja01145a126. DOI
Božik M., Císarová M., Tančinová D., Kouřimská L., Hleba L., Klouček P. Selected essential oil vapours inhibit growth of Aspergillus spp. in oats with improved consumer acceptability. Ind. Crops Prod. 2017;98:146–152. doi: 10.1016/j.indcrop.2016.11.044. DOI
Martos A.I., Martín-Mazuelos E., Romero A., Serrano C., González T., Almeida C., Puche B., Cantón E., Pemán J., Espinel-Ingroff A. Evaluation of disk diffusion method compared to broth microdilution for antifungal susceptibility testing of 3 echinocandins against Aspergillus spp. Diagn. Microbiol. Infect. Dis. 2012;73:53–56. doi: 10.1016/j.diagmicrobio.2012.01.006. PubMed DOI
Huayao C., Yueshun L., Hongjun Z., Xinhua Z., Sheng G., Hua X. Highly efficient alginate sodium encapsulated chlorpyrifos/copper (II) Schiff base mesoporous silica sustained release system with pH and ion response for pesticide delivery. RSC Adv. 2016;6:114714–114721. doi: 10.1039/C6RA23836J. DOI
Chen H., Chen L., Shen Z., Zhou H., Hao L., Xu H., Zhou X. Synthesis of mesoporous silica post-loaded by methyl eugenol as an environment-friendly slow-release bio pesticide. Sci. Rep. 2020;10:6108. doi: 10.1038/s41598-020-63015-6. PubMed DOI PMC
Ribes S., Ruiz-Rico M., Pérez-Esteve É., Fuentes A., Talens P., Martínez-Máñez R., Barat J.M. Eugenol and thymol immobilised on mesoporous silica-based material as an innovative antifungal system: Application in strawberry jam. Food Control. 2017;81:181–188. doi: 10.1016/j.foodcont.2017.06.006. DOI
Sun L., Lu L., Qiu X., Tang Y. Development of low-density polyethylene antioxidant active films containing α-tocopherol loaded with MCM-41 (Mobil Composition of Matter No. 41) mesoporous silica. Food Control. 2017;71:193–199. doi: 10.1016/j.foodcont.2016.06.025. DOI
Wang S., Lin C., Liu Y., Shen Z., Jeyaseelan J., Qin W. Characterization of a starch-hydrolyzing α-amylase produced by Aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment. Int. J. Biochem. Mol. Biol. 2016;7:1–10. PubMed PMC
Wilks E.S. Industrial Polymers Handbook. Products, Processes, Applications. Wiley-VCH; Weinheim, Germany: 2001.
Marchese A., Barbieri R., Coppo E., Orhan I.E., Daglia M., Nabavi S.F., Izadi M., Abdollahi M., Nabavi S.M., Ajami M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017;43:668–689. doi: 10.1080/1040841X.2017.1295225. PubMed DOI
Zhao Y., Wang Q., Wu X., Jiang M., Jin H., Tao K., Hou T. Unraveling the polypharmacology of a natural antifungal product, eugenol, against Rhizoctonia solani. Pest. Manag. Sci. 2021 doi: 10.1002/ps.6400. PubMed DOI
Sanla-Ead N., Jangchud A., Chonhenchob V., Suppakul P. Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose-based packaging films. Packag. Technol. Sci. 2012;25:7–17. doi: 10.1002/pts.952. DOI
Gomes C., Moreira R.G., Castell-Perez E. Poly (DL-lactide-co-glycolide) (PLGA) Nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci. 2011;76:16–24. doi: 10.1111/j.1750-3841.2010.01985.x. PubMed DOI
Xu H., Zhang D., Li J. Antibacterial nanoparticles with universal adhesion function based on dopamine and eugenol. J. Bioresour. Bioprod. 2019;4:177–182. doi: 10.12162/jbb.v4i3.006. DOI