Evidences for a Role of Gut Microbiota in Pathogenesis and Management of Epilepsy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NV19-04-00560
Ministerstvo Zdravotnictví Ceské Republiky
6990332
Institutional Support of Excellence 2. LF UK
PubMed
34070389
PubMed Central
PMC8197531
DOI
10.3390/ijms22115576
PII: ijms22115576
Knihovny.cz E-zdroje
- Klíčová slova
- epilepsy, gut microbiota, ketogenic diet, physical activity, treatment,
- MeSH
- dysbióza * MeSH
- epilepsie * metabolismus mikrobiologie patofyziologie MeSH
- Firmicutes * klasifikace metabolismus MeSH
- lidé MeSH
- mozek patofyziologie MeSH
- střevní mikroflóra * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Epilepsy as a chronic neurological disorder is characterized by recurrent, unprovoked epileptic seizures. In about half of the people who suffer from epilepsy, the root cause of the disorder is unknown. In the other cases, different factors can cause the onset of epilepsy. In recent years, the role of gut microbiota has been recognized in many neurological disorders, including epilepsy. These data are based on studies of the gut microbiota-brain axis, a relationship starting by a dysbiosis followed by an alteration of brain functions. Interestingly, epileptic patients may show signs of dysbiosis, therefore the normalization of the gut microbiota may lead to improvement of epilepsy and to greater efficacy of anticonvulsant drugs. In this descriptive review, we analyze the evidences for the role of gut microbiota in epilepsy and hypothesize a mechanism of action of these microorganisms in the pathogenesis and treatment of the disease. Human studies revealed an increased prevalence of Firmicutes in patients with refractory epilepsy. Exposure to various compounds can change microbiota composition, decreasing or exacerbating epileptic seizures. These include antibiotics, epileptic drugs, probiotics and ketogenic diet. Finally, we hypothesize that physical activity may play a role in epilepsy through the modulation of the gut microbiota.
Department of Neurosurgery Na Homolce Hospital 150 00 Prague Czech Republic
International Clinical Research Center St Anne's University Hospital Brno 656 91 Brno Czech Republic
Zobrazit více v PubMed
Scheffer I.E., Berkovic S., Capovilla G., Connolly M.B., French J., Guilhoto L., Hirsch E., Jain S., Mathern G.W., Moshé S.L., et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58:512–521. doi: 10.1111/epi.13709. PubMed DOI PMC
Mbizvo G.K., Bennett K., Simpson C.R., Duncan S.E., Chin R.F.M. Epilepsy-related and other causes of mortality in people with epilepsy: A systematic review of systematic reviews. Epilepsy Res. 2019;157:106192. doi: 10.1016/j.eplepsyres.2019.106192. PubMed DOI
Shorvon S.D. The causes of epilepsy: Changing concepts of etiology of epilepsy over the past 150 years. Epilepsia. 2011;52:1033–1044. doi: 10.1111/j.1528-1167.2011.03051.x. PubMed DOI
Ahmad S., Khanna R., Sani S. Surgical Treatments of Epilepsy. Semin. Neurol. 2020;40:696–707. doi: 10.1055/s-0040-1719072. PubMed DOI
Burakgazi E., French J.A. Treatment of epilepsy in adults. Epileptic Disord. 2016;18:228–239. doi: 10.1684/epd.2016.0836. PubMed DOI
Cox L.M., Weiner H.L. Microbiota Signaling Pathways that Influence Neurologic Disease. Neurotherapeutics. 2018;15:135–145. doi: 10.1007/s13311-017-0598-8. PubMed DOI PMC
Lum G.R., Olson C.A., Hsiao E.Y. Emerging roles for the intestinal microbiome in epilepsy. Neurobiol. Dis. 2020;135:104576. doi: 10.1016/j.nbd.2019.104576. PubMed DOI
Dahlin M., Prast-Nielsen S. The gut microbiome and epilepsy. EBioMedicine. 2019;44:741–746. doi: 10.1016/j.ebiom.2019.05.024. PubMed DOI PMC
Holmes M., Flaminio Z., Vardhan M., Xu F., Li X., Devinsky O., Saxena D. Cross talk between drug-resistant epilepsy and the gut microbiome. Epilepsia. 2020;61:2619–2628. doi: 10.1111/epi.16744. PubMed DOI
Yamashiro Y. Gut Microbiota in Health and Disease. Ann. Nutr. Metab. 2017;71:242–246. doi: 10.1159/000481627. PubMed DOI
Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G., Gasbarrini A., Mele M. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019;7:14. doi: 10.3390/microorganisms7010014. PubMed DOI PMC
Zocco M.A., Ainora M.E., Gasbarrini G., Gasbarrini A. Bacteroides thetaiotaomicron in the gut: Molecular aspects of their interaction. Dig. Liver Dis. 2007;39:707–712. doi: 10.1016/j.dld.2007.04.003. PubMed DOI
Czepiel J., Dróżdż M., Pituch H., Kuijper E.J., Perucki W., Mielimonka A., Goldman S., Wultańska D., Garlicki A., Biesiada G. Clostridium difficile infection: Review. Eur. J. Clin. Microbiol. Infect. Dis. 2019;38:1211–1221. doi: 10.1007/s10096-019-03539-6. PubMed DOI PMC
Jakobsson H.E., Rodríguez-Piñeiro A.M., Schütte A., Ermund A., Boysen P., Bemark M., Sommer F., Bäckhed F., Hansson G.C., Johansson M.E. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015;16:164–177. doi: 10.15252/embr.201439263. PubMed DOI PMC
Mendes V., Galvão I., Vieira A.T. Mechanisms by Which the Gut Microbiota Influences Cytokine Production and Modulates Host Inflammatory Responses. J. Interf. Cytokine Res. 2019;39:393–409. doi: 10.1089/jir.2019.0011. PubMed DOI
Gareau M.G. Microbiota-Gut-Brain Axis and Cognitive Function. Adv. Exp. Med. Biol. 2014;817:357–371. PubMed
Dinan T.G., Cryan J.F. The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol. Clin. N. Am. 2017;46:77–89. doi: 10.1016/j.gtc.2016.09.007. PubMed DOI
Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015;28:203–209. PubMed PMC
Warner B.B. The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatr. Res. 2019;85:216–224. doi: 10.1038/s41390-018-0191-9. PubMed DOI
Quigley E.M.M. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr. Neurol. Neurosci. Rep. 2017;17:94. doi: 10.1007/s11910-017-0802-6. PubMed DOI
Angelucci F., Cechova K., Amlerova J., Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflamm. 2019;16:108. doi: 10.1186/s12974-019-1494-4. PubMed DOI PMC
Wang H.X., Wang Y.P. Gut microbiota-brain axis. Chin. Med. J. Engl. 2016;129:2373–2380. doi: 10.4103/0366-6999.190667. PubMed DOI PMC
Silva Y.P., Bernardi A., Frozza R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020;11:25. doi: 10.3389/fendo.2020.00025. PubMed DOI PMC
Tan A.H., Chong C.W., Lim S., Yap I.K.S., Teh C.S.J., Loke M.F., Song S., Tan J.Y., Ang B.H., Tan Y.Q., et al. Gut Microbial Ecosystem in Parkinson Disease: New Clinicobiological Insights from Multi-Omics. Ann. Neurol. 2021;89:546–559. doi: 10.1002/ana.25982. PubMed DOI
Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., Deng Y., Blennerhassett P., Macri J., McCoy K.D., et al. The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology. 2011;141:599–609.e3. doi: 10.1053/j.gastro.2011.04.052. PubMed DOI
Simpson C.A., Diaz-Arteche C., Eliby D., Schwartz O.S., Simmons J.G., Cowan C.S.M. The gut microbiota in anxiety and depression—A systematic review. Clin. Psychol. Rev. 2021;83:101943. doi: 10.1016/j.cpr.2020.101943. PubMed DOI
Liu B., He Y., Wang M., Liu J., Ju Y., Zhang Y., Liu T., Li L., Li Q. Efficacy of probiotics on anxiety-A meta-analysis of randomized controlled trials. Depress. Anxiety. 2018;35:935–945. doi: 10.1002/da.22811. PubMed DOI
Barichella M., Severgnini M., Cilia R., Cassani E., Bolliri C., Caronni S., Ferri V., Cancello R., Ceccarani C., Faierman S., et al. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov. Disord. 2018;34:396–405. doi: 10.1002/mds.27581. PubMed DOI
Franceschi F., Ojetti V., Candelli M., Covino M., Cardone S., Potenza A., Simeoni B., Gabrielli M., Sabia L., Gasbarrini G., et al. Microbes and Alzheimer’ disease: Lessons from H. pylori and GUT microbiota. Eur. Rev. Med. Pharmacol. Sci. 2019;23:426–430. PubMed
Sampson T.R., Debelius J.W., Thron T., Janssen S., Shastri G.G., Ilhan Z.E., Challis C., Schretter C.E., Rocha S., Gradinaru V., et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell. 2016;167:1469–1480.e12. doi: 10.1016/j.cell.2016.11.018. PubMed DOI PMC
Vogt N.M., Kerby R.L., Dill-McFarland K.A., Harding S.J., Merluzzi A.P., Johnson S.C., Carlsson C.M., Asthana S., Zetterberg H., Blennow K., et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017;7:13537. doi: 10.1038/s41598-017-13601-y. PubMed DOI PMC
Cekanaviciute E., Yoo B.B., Runia T.F., Debelius J.W., Singh S., Nelson C.A., Kanner R., Bencosme Y., Lee Y.K., Hauser S.L., et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. USA. 2017;114:10713–10718. doi: 10.1073/pnas.1711235114. PubMed DOI PMC
Medel-Matus J.-S., Shin D., Dorfman E., Sankar R., Mazarati A. Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open. 2018;3:290–294. doi: 10.1002/epi4.12114. PubMed DOI PMC
Molina-Torres G., Rodriguez-Arrastia M., Roman P., Sanchez-Labraca N., Cardona D. Stress and the gut microbiota-brain axis. Behav. Pharmacol. 2019;30:187–200. doi: 10.1097/FBP.0000000000000478. PubMed DOI
De Caro C., Leo A., Nesci V., Ghelardini C., di Cesare Mannelli L., Striano P., Avagliano C., Calignano A., Mainardi P., Constanti A., et al. Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci. Rep. 2019;9:13983. doi: 10.1038/s41598-019-50542-0. PubMed DOI PMC
Tang A.T., Choi J.P., Kotzin J.J., Yang Y., Hong C.C., Hobson N., Girard R., Zeineddine H.A., Lightle R., Moore T., et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305–310. doi: 10.1038/nature22075. PubMed DOI PMC
Gong X., Liu X., Chen C., Lin J., Li A., Guo K., An D., Zhou D., Hong Z. Alteration of Gut Microbiota in Patients With Epilepsy and the Potential Index as a Biomarker. Front. Microbiol. 2020;11:11. doi: 10.3389/fmicb.2020.517797. PubMed DOI PMC
Peng A., Qiu X., Lai W., Li W., Zhang L., Zhu X., He S., Duan J., Chen L. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res. 2018;147:102–107. doi: 10.1016/j.eplepsyres.2018.09.013. PubMed DOI
Xie G., Zhou Q., Qiu C.Z., Dai W.K., Wang H.P., Li Y.H., Liao J.X., Lu X.G., Lin S.F., Ye J.H., et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 2017;23:6164–6171. doi: 10.3748/wjg.v23.i33.6164. PubMed DOI PMC
Lindefeldt M., Eng A., Darban H., Bjerkner A., Zetterström C.K., Allander T., Andersson B., Borenstein E., Dahlin M., Prast-Nielsen S. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes. 2019;5:1–13. doi: 10.1038/s41522-018-0073-2. PubMed DOI PMC
Zhang Y., Zhou S., Zhou Y., Yu L., Zhang L., Wang Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018;145:163–168. doi: 10.1016/j.eplepsyres.2018.06.015. PubMed DOI
Chatzikonstantinou S., Gioula G., Kimiskidis V.K., McKenna J., Mavroudis I., Kazis D. The gut microbiome in drug-resistant epilepsy. Epilepsia Open. 2021;6:28–37. doi: 10.1002/epi4.12461. PubMed DOI PMC
Scharfman H.E. The neurobiology of epilepsy. Curr. Neurol. Neurosci. Rep. 2007;7:348–354. doi: 10.1007/s11910-007-0053-z. PubMed DOI PMC
Guerriero R.M., Giza C.C., Rotenberg A. Glutamate and GABA Imbalance Following Traumatic Brain Injury. Curr. Neurol. Neurosci. Rep. 2015;15:27. doi: 10.1007/s11910-015-0545-1. PubMed DOI PMC
Pitkänen A., Lukasiuk K., Dudek F.E., Staley K.J. Epileptogenesis. Cold Spring Harb. Perspect. Med. 2015;5:a022822. doi: 10.1101/cshperspect.a022822. PubMed DOI PMC
Rana A., Musto A.E. The role of inflammation in the development of epilepsy. J. Neuroinflamm. 2018;15:144. doi: 10.1186/s12974-018-1192-7. PubMed DOI PMC
Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–133. doi: 10.1016/j.brainres.2018.03.015. PubMed DOI PMC
Bagdy G., Kecskemeti V., Riba P., Jakus R. Serotonin and epilepsy. J. Neurochem. 2007;100:857–873. doi: 10.1111/j.1471-4159.2006.04277.x. PubMed DOI
Casillas-Espinosa P.M., Powell K.L., O’Brien T.J. Regulators of synaptic transmission: Roles in the pathogenesis and treatment of epilepsy. Epilepsia. 2012;53:41–58. doi: 10.1111/epi.12034. PubMed DOI
Lim J.S., Lim M.Y., Choi Y., Ko G. Modeling environmental risk factors of autism in mice induces IBD-related gut microbial dysbiosis and hyperserotonemia. Mol. Brain. 2017;10:14. doi: 10.1186/s13041-017-0292-0. PubMed DOI PMC
Lee K., Kim N., Shim J.O., Kim G.-H. Gut Bacterial Dysbiosis in Children with Intractable Epilepsy. J. Clin. Med. 2020;10:5. doi: 10.3390/jcm10010005. PubMed DOI PMC
Arulsamy A., Tan Q.Y., Balasubramaniam V., O’Brien T.J., Shaikh M.F. Gut Microbiota and Epilepsy: A Systematic Review on Their Relationship and Possible Therapeutics. ACS Chem. Neurosci. 2020;11:3488–3498. doi: 10.1021/acschemneuro.0c00431. PubMed DOI
Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 2011;108:16050–16055. doi: 10.1073/pnas.1102999108. PubMed DOI PMC
Bagheri S., Heydari A., Alinaghipour A., Salami M. Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav. 2019;95:43–50. doi: 10.1016/j.yebeh.2019.03.038. PubMed DOI
Gómez-Eguílaz M., Ramón-Trapero J.L., Pérez-Martínez L., Blanco J.R. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: A pilot study. Benef. Microbes. 2018;9:875–881. doi: 10.3920/BM2018.0018. PubMed DOI
Sutter R., Rüegg S., Tschudin-Sutter S. Seizures as adverse events of antibiotic drugs. Neurology. 2015;85:1332–1341. doi: 10.1212/WNL.0000000000002023. PubMed DOI
Braakman H.M.H., van Ingen J. Can epilepsy be treated by antibiotics? J. Neurol. 2018;265:1934–1936. doi: 10.1007/s00415-018-8943-3. PubMed DOI
Wang D.D., Englot D.J., Garcia P.A., Lawton M.T., Young W.L. Minocycline- and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav. 2012;24:314–318. doi: 10.1016/j.yebeh.2012.03.035. PubMed DOI PMC
Ianiro G., Tilg H., Gasbarrini A. Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut. 2016;65:1906–1915. doi: 10.1136/gutjnl-2016-312297. PubMed DOI
Jakobsson H.E., Jernberg C., Andersson A.F., Sjölund-Karlsson M., Jansson J.K., Engstrand L. Short-term antibiotic treatment has differing long- term impacts on the human throat and gut microbiome. PLoS ONE. 2010;5:e9836. doi: 10.1371/journal.pone.0009836. PubMed DOI PMC
Maurice C.F., Haiser H.J., Turnbaugh P.J. Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome. Cell. 2013;152:39–50. doi: 10.1016/j.cell.2012.10.052. PubMed DOI PMC
Wolf S.A., Mattei D. You Need Guts to Make New Neurons. Curr. Behav. Neurosci. Rep. 2017;4:353–360. doi: 10.1007/s40473-017-0127-4. DOI
Akbari E., Asemi Z., Kakhaki R.D., Bahmani F., Kouchaki E., Tamtaji O.R., Hamidi G.A., Salami M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci. 2016;8:256. doi: 10.3389/fnagi.2016.00256. PubMed DOI PMC
Lv T., Ye M., Luo F., Hu B., Wang A., Chen J., Yan J., He Z., Chen F., Qian C., et al. Probiotics treatment improves cognitive impairment in patients and animals: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021;120:159–172. doi: 10.1016/j.neubiorev.2020.10.027. PubMed DOI
Lu K., Mahbub R., Fox J.G. Xenobiotics: Interaction with the Intestinal Microflora. ILAR J. 2015;56:218–227. doi: 10.1093/ilar/ilv018. PubMed DOI PMC
Wanleenuwat P., Suntharampillai N., Iwanowski P. Antibiotic-induced epileptic seizures: Mechanisms of action and clinical considerations. Seizure. 2020;81:167–174. doi: 10.1016/j.seizure.2020.08.012. PubMed DOI
Esposito S., Canevini M.P., Principi N. Complications associated with antibiotic administration: Neurological adverse events and interference with antiepileptic drugs. Int. J. Antimicrob. Agents. 2017;50:1–8. doi: 10.1016/j.ijantimicag.2017.01.027. PubMed DOI
Wang Y.-F., Qiao M., Zhu D., Zhu Y.-G. Antibiotic Resistance in the Collembolan Gut Microbiome Accelerated by the Nonantibiotic Drug Carbamazepine. Environ. Sci. Technol. 2020;54:10754–10762. doi: 10.1021/acs.est.0c03075. PubMed DOI
Stokes J.M., Davis J.H., Mangat C.S., Williamson J.R., Brown E.D. Discovery of a small molecule that inhibits bacterial ribosome biogenesis. eLife. 2014;3:e03574. doi: 10.7554/eLife.03574. PubMed DOI PMC
Cussotto S., Strain C.R., Fouhy F., Strain R.G., Peterson V.L., Clarke G., Stanton C., Dinan T.G., Cryan J.F. Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology. 2019;236:1671–1685. doi: 10.1007/s00213-018-5006-5. PubMed DOI
Liu F., Horton-Sparks K., Hull V., Li R.W., Martínez-Cerdeño V. The valproic acid rat model of autism presents with gut bacterial dysbiosis similar to that in human autism. Mol. Autism. 2018;9:61. doi: 10.1186/s13229-018-0251-3. PubMed DOI PMC
Sgritta M., Dooling S.W., Buffington S.A., Momin E.N., Francis M.B., Britton R.A., Costa-Mattioli M. Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron. 2019;101:246–259.e6. doi: 10.1016/j.neuron.2018.11.018. PubMed DOI PMC
Zimmermann M., Zimmermann-Kogadeeva M., Wegmann R., Goodman A.L. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science. 2019;363:eaat9931. doi: 10.1126/science.aat9931. PubMed DOI PMC
Clarke G., Sandhu K.V., Griffin B.T., Dinan T.G., Cryan J.F., Hyland N.P. Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacol. Rev. 2019;71:198–224. doi: 10.1124/pr.118.015768. PubMed DOI
Javdan B., Lopez J.G., Chankhamjon P., Lee Y.-C.J., Hull R., Wu Q., Wang X., Chatterjee S., Donia M.S. Personalized Mapping of Drug Metabolism by the Human Gut Microbiome. Cell. 2020;181:1661–1679.e22. doi: 10.1016/j.cell.2020.05.001. PubMed DOI PMC
Kitamura S., Sugihara K., Kuwasako M., Tatsumi K. The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide. J. Pharm. Pharmacol. 1997;49:253–256. doi: 10.1111/j.2042-7158.1997.tb06790.x. PubMed DOI
Ułamek-Kozioł M., Czuczwar S.J., Januszewski S., Pluta R. Ketogenic Diet and Epilepsy. Nutrients. 2019;11:2510. doi: 10.3390/nu11102510. PubMed DOI PMC
Fan Y., Wang H., Liu X., Zhang J., Liu G. Crosstalk between the Ketogenic Diet and Epilepsy: From the Perspective of Gut Microbiota. Mediat. Inflamm. 2019;2019:1–9. doi: 10.1155/2019/8373060. PubMed DOI PMC
Paoli A., Mancin L., Bianco A., Thomas E., Mota J.F., Piccini F. Ketogenic diet and microbiota: Friends or enemies? Genes. 2019;10:534. doi: 10.3390/genes10070534. PubMed DOI PMC
Olson C.A., Vuong H.E., Yano J.M., Liang Q.Y., Nusbaum D.J., Hsiao E.Y. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell. 2018;173:1728–1741.e13. doi: 10.1016/j.cell.2018.04.027. PubMed DOI PMC
Spinelli E., Blackford R. Gut Microbiota, the Ketogenic Diet and Epilepsy. Pediatr. Neurol. Briefs. 2018;32:10. doi: 10.15844/pedneurbriefs-32-10. PubMed DOI PMC
Eor J.Y., Tan P.L., Son Y.J., Kwak M.J., Kim S.H. Gut microbiota modulation by both Lactobacillus fermentum MSK 408 and ketogenic diet in a murine model of pentylenetetrazole-induced acute seizure. Epilepsy Res. 2021;169:106506. doi: 10.1016/j.eplepsyres.2020.106506. PubMed DOI
Yeom J.S., Park J.S., Kim Y.-S., Kim R.B., Choi D.-S., Chung J.-Y., Han T.-H., Seo J.-H., Park E.S., Lim J.-Y., et al. Neonatal seizures and white matter injury: Role of rotavirus infection and probiotics. Brain Dev. 2019;41:19–28. doi: 10.1016/j.braindev.2018.07.001. PubMed DOI
He Z., Cui B.-T., Zhang T., Li P., Long C.-Y., Ji G.-Z., Zhang F.-M. Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: The first report. World J. Gastroenterol. 2017;23:3565. doi: 10.3748/wjg.v23.i19.3565. PubMed DOI PMC
Allen J.M., Mailing L.J., Cohrs J., Salmonson C., Fryer J.D., Nehra V., Hale V.L., Kashyap P., White B.A., Woods J.A. Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes. 2018;9:115–130. doi: 10.1080/19490976.2017.1372077. PubMed DOI PMC
Allen J.M., Berg Miller M.E., Pence B.D., Whitlock K., Nehra V., Gaskins H.R., White B.A., Fryer J.D., Woods J.A. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. J. Appl. Physiol. 2015;118:1059–1066. doi: 10.1152/japplphysiol.01077.2014. PubMed DOI
Clarke S.F., Murphy E.F., O’Sullivan O., Lucey A.J., Humphreys M., Hogan A., Hayes P., O’Reilly M., Jeffery I.B., Wood-Martin R., et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913–1920. doi: 10.1136/gutjnl-2013-306541. PubMed DOI
Mach N., Fuster-Botella D. Endurance exercise and gut microbiota: A review. J. Sport Health Sci. 2017;6:179–197. doi: 10.1016/j.jshs.2016.05.001. PubMed DOI PMC
Pimentel J., Tojal R., Morgado J. Epilepsy and physical exercise. Seizure. 2015;25:87–94. doi: 10.1016/j.seizure.2014.09.015. PubMed DOI
Arida R.M. Physical exercise and seizure activity. Biochim. Biophys. Acta Mol. Basis Dis. 2021;1867:165979. doi: 10.1016/j.bbadis.2020.165979. PubMed DOI
Eriksen H.R., Ellertsen B., Gronningsaeter H., Nakken K.O., Loyning Y., Ursin H. Physical Exercise in Women with Intractable Epilepsy. Epilepsia. 1994;35:1256–1264. doi: 10.1111/j.1528-1157.1994.tb01797.x. PubMed DOI
Nakken K.O., Bjørholt P.G., Johannessen S.I., LoSyning T., Lind E. Effect of Physical Training on Aerobic Capacity, Seizure Occurrence, and Serum Level of Antiepileptic Drugs in Adults with Epilepsy. Epilepsia. 1990;31:88–94. doi: 10.1111/j.1528-1157.1990.tb05365.x. PubMed DOI
McAuley J.W., Long L., Heise J., Kirby T., Buckworth J., Pitt C., Lehman K.J., Moore J.L., Reeves A.L. A Prospective Evaluation of the Effects of a 12-Week Outpatient Exercise Program on Clinical and Behavioral Outcomes in Patients with Epilepsy. Epilepsy Behav. 2001;2:592–600. doi: 10.1006/ebeh.2001.0271. PubMed DOI
Götze W., Kubicki S., Munter M., Teichmann J. Effect of physical exercise on seizure threshold (investigated by electroencephalographic telemetry) Dis. Nerv. Syst. 1967;28:664–667. PubMed
Aird R.B. The Importance of Seizure-Inducing Factors in the Control of Refractory Forms of Epilepsy. Epilepsia. 1983;24:567–583. doi: 10.1111/j.1528-1157.1983.tb03421.x. PubMed DOI
Sheng J., Liu S., Qin H., Li B., Zhang X. Drug-Resistant Epilepsy and Surgery. Curr. Neuropharmacol. 2017;16:17–28. doi: 10.2174/1570159X15666170504123316. PubMed DOI PMC
Chen B., Choi H., Hirsch L.J., Katz A., Legge A., Buchsbaum R., Detyniecki K. Psychiatric and behavioral side effects of antiepileptic drugs in adults with epilepsy. Epilepsy Behav. 2017;76:24–31. doi: 10.1016/j.yebeh.2017.08.039. PubMed DOI
Thambi M., Nathan J., Radhakrishnan K. Can change in gut microbiota composition be used as a surrogate marker of treatment efficacy of ketogenic diet in patients with drug-resistant epilepsy? Epilepsy Behav. 2020;113:107444. doi: 10.1016/j.yebeh.2020.107444. PubMed DOI
Iannone L.F., Gómez-Eguílaz M., Citaro R., Russo E. The potential role of interventions impacting on gut-microbiota in epilepsy. Expert Rev. Clin. Pharmacol. 2020;13:423–435. doi: 10.1080/17512433.2020.1759414. PubMed DOI
De Caro C., Iannone L.F., Citraro R., Striano P., De Sarro G., Constanti A., Cryan J.F., Russo E. Can we ‘seize’ the gut microbiota to treat epilepsy? Neurosci. Biobehav. Rev. 2019;107:750–764. doi: 10.1016/j.neubiorev.2019.10.002. PubMed DOI