Identification of Homologous Polyprenols from Thermophilic Bacteria

. 2021 May 28 ; 9 (6) : . [epub] 20210528

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34071687

Grantová podpora
18-00036S Grantová Agentura České Republiky
MZE-RO1918 Ministerstvo Zemědělství
RVO61388971 Institutional Research Concept

Odkazy

PubMed 34071687
PubMed Central PMC8226974
DOI 10.3390/microorganisms9061168
PII: microorganisms9061168
Knihovny.cz E-zdroje

Sixteen strains of five genera of thermophilic bacteria, i.e., Alicyclobacillus, Brevibacillus, Geobacillus, Meiothermus, and Thermus, were cultivated at a temperature from 42 to 70 °C. Twelve strains were obtained from the Czech Collection of Microorganisms, while four were directly isolated and identified by 16S rRNA gene sequencing from the hot springs of the world-famous Carlsbad spa (Czech Republic). Polyprenol homologs from C40 to C65 as well as free undecaprenol (C55), undecaprenyl phosphate, and undecaprenyl diphosphate were identified by shotgun analysis and RP-HPLC/MS-ESI+ (reverse phase high-performance liquid chromatography-high-resolution positive electrospray ionization mass spectrometry). The limit of detection (50 pM) was determined for individual homologs and free polyprenols and their phosphates. Thus, it has been shown that at least some thermophilic bacteria produce not just the major C55 polyprenol as previously described, but a mixture of homologs.

Zobrazit více v PubMed

Pačes T., Šmejkal V. Water—Rock interaction, Wanty and Seal II. Taylor and Francis Group; London, UK: 2004. Magmatic and Fossil Components of Thermal and Mineral Waters in the Eger River Continental Rift (Bohemian Massif, Central Europe) pp. 167–172.

Peckova M. Properties of a hyperthermophilic bacterium (Thermus sp.) isolated from a Carlsbad spring. Folia Microbiol. 1991;36:515–521. doi: 10.1007/BF02884029. DOI

Mehta D., Satyanarayana T. Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer Netherlands; Dordrecht, The Netherlands: 2013. Diversity of Hot Environments and Thermophilic Microbes; pp. 3–60.

Inskeep W.P., Jay Z.J., Tringe S.G., Herrgård M.J., Rusch D.B., Co Y.M.P.S. The YNP metagenome project: Environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front. Microbiol. 2013;4:67. doi: 10.3389/fmicb.2013.00067. PubMed DOI PMC

Inskeep W.P., Jay Z.J., Herrgard M.J., Kozubal M.A., Rusch D.B., Tringe S.G., Macur R.E., Jennings R.D., Boyd E.S., Spear J.R., et al. Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry. Front. Microbiol. 2013;4:95. doi: 10.3389/fmicb.2013.00095. PubMed DOI PMC

Stetter K.O. Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 1996;18:149–158. doi: 10.1111/j.1574-6976.1996.tb00233.x. DOI

Hippchen B., Röll A., Poralla K. Occurrence in soil of thermo-acidophilic bacilli possessing ω-cyclohexane fatty acids and hopanoids. Arch. Microbiol. 1981;129:53–55. doi: 10.1007/BF00417180. DOI

Wisotzkey J.D., Jurtshuk P., Fox G.E., Deinhard G., Poralla K. Comparative Sequence Analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and Proposal for Creation of a New Genus, Alicyclobacillus gen. nov. Int. J. Syst. Bacteriol. 1992;42:263–269. doi: 10.1099/00207713-42-2-263. PubMed DOI

Hartley M.D., Imperiali B. At the membrane frontier: A prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Arch. Biochem. Biophys. 2012;517:83–97. doi: 10.1016/j.abb.2011.10.018. PubMed DOI PMC

Řezanka T., Votruba J. Chromatography of long chain alcohols (polyprenols) from animal and plant sources. J. Chromatogr. A. 2001;936:95–110. doi: 10.1016/S0021-9673(01)01152-9. PubMed DOI

Surmacz L., Swiezewska E. Polyisoprenoids—Secondary metabolites or physiologically important superlipids? Biochem. Biophys. Res. Commun. 2011;407:627–632. doi: 10.1016/j.bbrc.2011.03.059. PubMed DOI

Swiezewska E., Danikiewicz W. Polyisoprenoids: Structure, biosynthesis and function. Prog. Lipid Res. 2005;44:235–258. doi: 10.1016/j.plipres.2005.05.002. PubMed DOI

Yamaguchi T., Fujikawa N., Nimura S., Tokuoka Y., Tsuda S., Aiuchi T., Kato R., Obama T., Itabe H. Characterization of lipid droplets in steroidogenic MLTC-1 Leydig cells: Protein profiles and the morphological change induced by hormone stimulation. Biochim. Biophys. Acta. 2015;1851:1285–1295. doi: 10.1016/j.bbalip.2015.06.007. PubMed DOI

Bauersachs T., Schouten S., Compaoré J., Stal L.J., Damsté J.S.S. Occurrence of C35–C45 polyprenols in filamentous and unicellular cyanobacteria. Org. Geochem. 2010;41:867–870. doi: 10.1016/j.orggeochem.2010.04.018. DOI

Szabo E., Amdur B., Socransky S. Lipid Composition of Streptococcus mutans. Caries Res. 1978;12:21–27. doi: 10.1159/000260311. PubMed DOI

Wolucka B., McNeil M., de Hoffmann E., Chojnacki T., Brennan P. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem. 1994;269:23328–23335. doi: 10.1016/S0021-9258(17)31657-5. PubMed DOI

De Rosa M., Gambacorta A., Minale L., Bu’Lock J.D. Isoprenoids of Bacillus acidocaldarius. Phytochemistry. 1973;12:1117–1123. doi: 10.1016/0031-9422(73)85026-5. DOI

D’Alexandri F.L., Gozzo F.C., Eberlin M.N., Katzin A.M. Electrospray ionization mass spectrometry analysis of polyisoprenoid alcohols via Li+ cationization. Anal. Biochem. 2006;355:189–200. doi: 10.1016/j.ab.2006.06.014. PubMed DOI

Kania M., Skorupinska-Tudek K., Swiezewska E., Danikiewicz W. Atmospheric pressure photoionization mass spectrometry as a valuable method for the identification of polyisoprenoid alcohols. Rapid Commun. Mass Spectrom. 2012;26:1705–1710. doi: 10.1002/rcm.6280. PubMed DOI

Yu J., Wang Y., Qian H., Zhao Y., Liu B., Fu C. Polyprenols from the needles of Taxus chinensis var. mairei. Fitoterapia. 2012;83:831–837. doi: 10.1016/j.fitote.2012.01.007. PubMed DOI

Lane D.J. Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons; New York, NY, USA: 1991. 16S/23S rRNA Sequencing; pp. 115–175.

Bligh E., Dyer W. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI

Siristova L., Melzoch K., Řezanka T. Fatty acids, unusual glycophospholipids and DNA analyses of thermophilic bacteria isolated from hot springs. Extremophiles. 2008;13:101–109. doi: 10.1007/s00792-008-0202-6. PubMed DOI

Haeuptle M.A., Hülsmeier A.J., Hennet T. HPLC and mass spectrometry analysis of dolichol-phosphates at the cell culture scale. Anal. Biochem. 2010;396:133–138. doi: 10.1016/j.ab.2009.09.020. PubMed DOI

Guan Z., Meyer B.H., Albers S.-V., Eichler J. The thermoacidophilic archaeon Sulfolobus acidocaldarius contains an unsually short, highly reduced dolichyl phosphate. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2011;1811:607–616. doi: 10.1016/j.bbalip.2011.06.022. PubMed DOI PMC

Řezanka T., Kambourova M., Derekova A., Kolouchová I., Sigler K. LC–ESI–MS/MS Identification of Polar Lipids of Two Thermophilic Anoxybacillus Bacteria Containing a Unique Lipid Pattern. Lipids. 2012;47:729–739. doi: 10.1007/s11745-012-3675-0. PubMed DOI

Řezanka T., Matoulkova D., Kyselová L., Sigler K. Identification of plasmalogen cardiolipins from pectinatus by liquid chromatography–high resolution electrospray ionization tandem mass spectrometry. Lipids. 2013;48:1237–1251. doi: 10.1007/s11745-013-3851-x. PubMed DOI

Řezanka T., Matoulková D., Benada O., Sigler K. Lipidomics as an important key for the identification of beer-spoilage bacteria. Lett. Appl. Microbiol. 2015;60:536–543. doi: 10.1111/lam.12415. PubMed DOI

Skorupińska-Tudek K., Bieńkowski T., Olszowska O., Furmanowa M., Chojnacki T., Danikiewicz W., Swiezewska E. Divergent pattern of polyisoprenoid alcohols in the tissues of Coluria geoides: A new electrospray lonization MS approach. Lipids. 2003;38:981–990. doi: 10.1007/s11745-003-1152-3. PubMed DOI

Guan Z., Chen L., Gerritsen J., Smidt H., Goldfine H. The cellular lipids of Romboutsia. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2016;1861:1076–1082. doi: 10.1016/j.bbalip.2016.06.006. PubMed DOI PMC

Umbreit J.N., Stone K.J., Strominger J.L. Isolation of Polyisoprenyl Alcohols from Streptococcus faecalis. J. Bacteriol. 1972;112:1302–1305. doi: 10.1128/JB.112.3.1302-1305.1972. PubMed DOI PMC

Chhonker Y.S., Haney S.L., Bala V., Holstein S.A., Murry D.J. Simultaneous Quantitation of Isoprenoid Pyrophosphates in Plasma and Cancer Cells Using LC-MS/MS. Molecules. 2018;23:3275. doi: 10.3390/molecules23123275. PubMed DOI PMC

Huang L.-Y., Wang S.-C., Cheng T.-J.R., Wong C.-H. Undecaprenyl phosphate phosphatase activity of undecaprenol kinase regulates the lipid pool in gram-positive bacteria. Biochemistry. 2017;56:5417–5427. doi: 10.1021/acs.biochem.7b00603. PubMed DOI

Barreteau H., Magnet S., El Ghachi M., Touzé T., Arthur M., Mengin-Lecreulx D., Blanot D. Quantitative high-performance liquid chromatography analysis of the pool levels of undecaprenyl phosphate and its derivatives in bacterial membranes. J. Chromatogr. B. 2009;877:213–220. doi: 10.1016/j.jchromb.2008.12.010. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...