Identification of Homologous Polyprenols from Thermophilic Bacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-00036S
Grantová Agentura České Republiky
MZE-RO1918
Ministerstvo Zemědělství
RVO61388971
Institutional Research Concept
PubMed
34071687
PubMed Central
PMC8226974
DOI
10.3390/microorganisms9061168
PII: microorganisms9061168
Knihovny.cz E-zdroje
- Klíčová slova
- Geobacillus stearothermophilus, high resolution electrospray MS, liquid chromatography-mass spectrometry, polyprenols, thermophilic bacteria,
- Publikační typ
- časopisecké články MeSH
Sixteen strains of five genera of thermophilic bacteria, i.e., Alicyclobacillus, Brevibacillus, Geobacillus, Meiothermus, and Thermus, were cultivated at a temperature from 42 to 70 °C. Twelve strains were obtained from the Czech Collection of Microorganisms, while four were directly isolated and identified by 16S rRNA gene sequencing from the hot springs of the world-famous Carlsbad spa (Czech Republic). Polyprenol homologs from C40 to C65 as well as free undecaprenol (C55), undecaprenyl phosphate, and undecaprenyl diphosphate were identified by shotgun analysis and RP-HPLC/MS-ESI+ (reverse phase high-performance liquid chromatography-high-resolution positive electrospray ionization mass spectrometry). The limit of detection (50 pM) was determined for individual homologs and free polyprenols and their phosphates. Thus, it has been shown that at least some thermophilic bacteria produce not just the major C55 polyprenol as previously described, but a mixture of homologs.
Institute of Microbiology The Czech Academy of Sciences 142 20 Prague Czech Republic
Research Institute of Brewing and Malting 120 44 Prague Czech Republic
Zobrazit více v PubMed
Pačes T., Šmejkal V. Water—Rock interaction, Wanty and Seal II. Taylor and Francis Group; London, UK: 2004. Magmatic and Fossil Components of Thermal and Mineral Waters in the Eger River Continental Rift (Bohemian Massif, Central Europe) pp. 167–172.
Peckova M. Properties of a hyperthermophilic bacterium (Thermus sp.) isolated from a Carlsbad spring. Folia Microbiol. 1991;36:515–521. doi: 10.1007/BF02884029. DOI
Mehta D., Satyanarayana T. Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer Netherlands; Dordrecht, The Netherlands: 2013. Diversity of Hot Environments and Thermophilic Microbes; pp. 3–60.
Inskeep W.P., Jay Z.J., Tringe S.G., Herrgård M.J., Rusch D.B., Co Y.M.P.S. The YNP metagenome project: Environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front. Microbiol. 2013;4:67. doi: 10.3389/fmicb.2013.00067. PubMed DOI PMC
Inskeep W.P., Jay Z.J., Herrgard M.J., Kozubal M.A., Rusch D.B., Tringe S.G., Macur R.E., Jennings R.D., Boyd E.S., Spear J.R., et al. Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry. Front. Microbiol. 2013;4:95. doi: 10.3389/fmicb.2013.00095. PubMed DOI PMC
Stetter K.O. Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 1996;18:149–158. doi: 10.1111/j.1574-6976.1996.tb00233.x. DOI
Hippchen B., Röll A., Poralla K. Occurrence in soil of thermo-acidophilic bacilli possessing ω-cyclohexane fatty acids and hopanoids. Arch. Microbiol. 1981;129:53–55. doi: 10.1007/BF00417180. DOI
Wisotzkey J.D., Jurtshuk P., Fox G.E., Deinhard G., Poralla K. Comparative Sequence Analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and Proposal for Creation of a New Genus, Alicyclobacillus gen. nov. Int. J. Syst. Bacteriol. 1992;42:263–269. doi: 10.1099/00207713-42-2-263. PubMed DOI
Hartley M.D., Imperiali B. At the membrane frontier: A prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Arch. Biochem. Biophys. 2012;517:83–97. doi: 10.1016/j.abb.2011.10.018. PubMed DOI PMC
Řezanka T., Votruba J. Chromatography of long chain alcohols (polyprenols) from animal and plant sources. J. Chromatogr. A. 2001;936:95–110. doi: 10.1016/S0021-9673(01)01152-9. PubMed DOI
Surmacz L., Swiezewska E. Polyisoprenoids—Secondary metabolites or physiologically important superlipids? Biochem. Biophys. Res. Commun. 2011;407:627–632. doi: 10.1016/j.bbrc.2011.03.059. PubMed DOI
Swiezewska E., Danikiewicz W. Polyisoprenoids: Structure, biosynthesis and function. Prog. Lipid Res. 2005;44:235–258. doi: 10.1016/j.plipres.2005.05.002. PubMed DOI
Yamaguchi T., Fujikawa N., Nimura S., Tokuoka Y., Tsuda S., Aiuchi T., Kato R., Obama T., Itabe H. Characterization of lipid droplets in steroidogenic MLTC-1 Leydig cells: Protein profiles and the morphological change induced by hormone stimulation. Biochim. Biophys. Acta. 2015;1851:1285–1295. doi: 10.1016/j.bbalip.2015.06.007. PubMed DOI
Bauersachs T., Schouten S., Compaoré J., Stal L.J., Damsté J.S.S. Occurrence of C35–C45 polyprenols in filamentous and unicellular cyanobacteria. Org. Geochem. 2010;41:867–870. doi: 10.1016/j.orggeochem.2010.04.018. DOI
Szabo E., Amdur B., Socransky S. Lipid Composition of Streptococcus mutans. Caries Res. 1978;12:21–27. doi: 10.1159/000260311. PubMed DOI
Wolucka B., McNeil M., de Hoffmann E., Chojnacki T., Brennan P. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem. 1994;269:23328–23335. doi: 10.1016/S0021-9258(17)31657-5. PubMed DOI
De Rosa M., Gambacorta A., Minale L., Bu’Lock J.D. Isoprenoids of Bacillus acidocaldarius. Phytochemistry. 1973;12:1117–1123. doi: 10.1016/0031-9422(73)85026-5. DOI
D’Alexandri F.L., Gozzo F.C., Eberlin M.N., Katzin A.M. Electrospray ionization mass spectrometry analysis of polyisoprenoid alcohols via Li+ cationization. Anal. Biochem. 2006;355:189–200. doi: 10.1016/j.ab.2006.06.014. PubMed DOI
Kania M., Skorupinska-Tudek K., Swiezewska E., Danikiewicz W. Atmospheric pressure photoionization mass spectrometry as a valuable method for the identification of polyisoprenoid alcohols. Rapid Commun. Mass Spectrom. 2012;26:1705–1710. doi: 10.1002/rcm.6280. PubMed DOI
Yu J., Wang Y., Qian H., Zhao Y., Liu B., Fu C. Polyprenols from the needles of Taxus chinensis var. mairei. Fitoterapia. 2012;83:831–837. doi: 10.1016/j.fitote.2012.01.007. PubMed DOI
Lane D.J. Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons; New York, NY, USA: 1991. 16S/23S rRNA Sequencing; pp. 115–175.
Bligh E., Dyer W. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI
Siristova L., Melzoch K., Řezanka T. Fatty acids, unusual glycophospholipids and DNA analyses of thermophilic bacteria isolated from hot springs. Extremophiles. 2008;13:101–109. doi: 10.1007/s00792-008-0202-6. PubMed DOI
Haeuptle M.A., Hülsmeier A.J., Hennet T. HPLC and mass spectrometry analysis of dolichol-phosphates at the cell culture scale. Anal. Biochem. 2010;396:133–138. doi: 10.1016/j.ab.2009.09.020. PubMed DOI
Guan Z., Meyer B.H., Albers S.-V., Eichler J. The thermoacidophilic archaeon Sulfolobus acidocaldarius contains an unsually short, highly reduced dolichyl phosphate. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2011;1811:607–616. doi: 10.1016/j.bbalip.2011.06.022. PubMed DOI PMC
Řezanka T., Kambourova M., Derekova A., Kolouchová I., Sigler K. LC–ESI–MS/MS Identification of Polar Lipids of Two Thermophilic Anoxybacillus Bacteria Containing a Unique Lipid Pattern. Lipids. 2012;47:729–739. doi: 10.1007/s11745-012-3675-0. PubMed DOI
Řezanka T., Matoulkova D., Kyselová L., Sigler K. Identification of plasmalogen cardiolipins from pectinatus by liquid chromatography–high resolution electrospray ionization tandem mass spectrometry. Lipids. 2013;48:1237–1251. doi: 10.1007/s11745-013-3851-x. PubMed DOI
Řezanka T., Matoulková D., Benada O., Sigler K. Lipidomics as an important key for the identification of beer-spoilage bacteria. Lett. Appl. Microbiol. 2015;60:536–543. doi: 10.1111/lam.12415. PubMed DOI
Skorupińska-Tudek K., Bieńkowski T., Olszowska O., Furmanowa M., Chojnacki T., Danikiewicz W., Swiezewska E. Divergent pattern of polyisoprenoid alcohols in the tissues of Coluria geoides: A new electrospray lonization MS approach. Lipids. 2003;38:981–990. doi: 10.1007/s11745-003-1152-3. PubMed DOI
Guan Z., Chen L., Gerritsen J., Smidt H., Goldfine H. The cellular lipids of Romboutsia. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2016;1861:1076–1082. doi: 10.1016/j.bbalip.2016.06.006. PubMed DOI PMC
Umbreit J.N., Stone K.J., Strominger J.L. Isolation of Polyisoprenyl Alcohols from Streptococcus faecalis. J. Bacteriol. 1972;112:1302–1305. doi: 10.1128/JB.112.3.1302-1305.1972. PubMed DOI PMC
Chhonker Y.S., Haney S.L., Bala V., Holstein S.A., Murry D.J. Simultaneous Quantitation of Isoprenoid Pyrophosphates in Plasma and Cancer Cells Using LC-MS/MS. Molecules. 2018;23:3275. doi: 10.3390/molecules23123275. PubMed DOI PMC
Huang L.-Y., Wang S.-C., Cheng T.-J.R., Wong C.-H. Undecaprenyl phosphate phosphatase activity of undecaprenol kinase regulates the lipid pool in gram-positive bacteria. Biochemistry. 2017;56:5417–5427. doi: 10.1021/acs.biochem.7b00603. PubMed DOI
Barreteau H., Magnet S., El Ghachi M., Touzé T., Arthur M., Mengin-Lecreulx D., Blanot D. Quantitative high-performance liquid chromatography analysis of the pool levels of undecaprenyl phosphate and its derivatives in bacterial membranes. J. Chromatogr. B. 2009;877:213–220. doi: 10.1016/j.jchromb.2008.12.010. PubMed DOI
Analysis of Bacteriohopanoids from Thermophilic Bacteria by Liquid Chromatography-Mass Spectrometry