Relationship between WCS120 Protein Family Accumulation and Frost Tolerance in Wheat Cultivars Grown under Different Temperature Treatments
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
RO0418
Ministerstvo Zemědělství
QK1710302
Ministerstvo Zemědělství
QK1910269
Ministerstvo Zemědělství
PubMed
34073120
PubMed Central
PMC8228299
DOI
10.3390/plants10061114
PII: plants10061114
Knihovny.cz E-resources
- Keywords
- LT50, Triticum aestivum, cold acclimation, controlled condition, dehydrins,
- Publication type
- Journal Article MeSH
Frost tolerance (FT) is generally acquired after exposure of plants to low, but non-freezing temperatures, where it is associated with the accumulation of COR proteins. The aim of the study was to reveal the effect of different temperature treatments (25, 17, 9 and 4 °C) on accumulation of cold-regulated dehydrins, dry weight content, and the development of FT in five wheat cultivars of different frost-tolerances in detail. The levels of cold-regulated dehydrins, WCS120 proteins in wheat were determined by immunoblot analysis, probed with an anti-dehydrin antibody. The lower the growth temperature: the higher the level of frost tolerance, dry weight content, and dehydrin accumulation, in all cultivars. There was a significant correlation between the level of induced FT and the accumulation of WCS120 proteins in cultivars grown at lower temperatures (9 and 4 °C). Moreover, the highly frost-tolerant wheat cultivars (as opposed to the lower-tolerant) accumulated higher levels of WCS120 proteins at 17 °C, a temperature at which it was not possible to differentiate between them via a frost test. Here, we demonstrated the possibility to distinguish differently frost-tolerant cultivars grown at different temperatures by the accumulation of different members of WCS120 family.
See more in PubMed
Thomashow M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:571–599. doi: 10.1146/annurev.arplant.50.1.571. PubMed DOI
Janáček J., Prášil I.T. Quantification of plant frost injury by nonlinear fitting of an S-shaped function. Cryo-Letter. 1991;12:47–52.
Vítámvás P., Prášil I.T. WCS120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. Plant Physiol. Biochem. 2008;46:970–976. doi: 10.1016/j.plaphy.2008.06.006. PubMed DOI
Kosová K., Klíma M., Prášil I.T., Vítámvás P. COR/LEA proteins as indicators of frost tolerance in Triticeae: A comparison of controlled versus field conditions. Plants. 2021;10:789. doi: 10.3390/plants10040789. PubMed DOI PMC
Houde M., Danyluk J., Laliberte J.F., Rassart E., Dhindsa R.S., Sarhan F. Cloning, characterization, and expression of a cDNA encoding a 50 kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol. 1992;99:1381–1387. doi: 10.1104/pp.99.4.1381. PubMed DOI PMC
Sarhan F., Ouellet F., VazquezTello A. The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol. Plant. 1997;101:439–445. doi: 10.1111/j.1399-3054.1997.tb01019.x. DOI
Vítámvás P., Saalbach G., Prášil I.T., Čapková V., Opatrná J., Ahmed J. WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. J. Plant Physiol. 2007;164:1197–1207. doi: 10.1016/j.jplph.2006.06.011. PubMed DOI
Kalapos B., Novák A., Dobrev P., Vítámvás P., Marincs F., Galiba G., Vanková R. Effect of the winter wheat Cheyenne 5A substituted chromosome on dynamics of abscisic acid and cytokinins in freezing-sensitive Chinese spring genetic background. Front. Plant Sci. 2017;8:2033. doi: 10.3389/fpls.2017.02033. PubMed DOI PMC
Vítámvás P., Kosová K., Prášilová P., Prášil I.T. Accumulation of WCS120 protein in wheat cultivars grown at 9 °C or 17 °C in relation to their winter survival. Plant Breed. 2010;129:611–616. doi: 10.1111/j.1439-0523.2010.01783.x. DOI
Kosová K., Vítámvás P., Prášilová P., Prášil I.T. Accumulation of WCS120 and DHN5 proteins in differently frost-tolerant wheat and barley cultivars grown under a broad temperature scale. Biol. Plant. 2013;57:105–112. doi: 10.1007/s10535-012-0237-5. DOI
Vítámvás P., Kosová K., Musilová J., Holková L., Mařík P., Smutná P., Klíma M., Prášil I.T. Relationship between dehydrin accumulation and winter survival in winter wheat and barley grown in the field. Front. Plant Sci. 2019;10:7. doi: 10.3389/fpls.2019.00007. PubMed DOI PMC
Fowler D.B. Cold acclimation threshold induction temperatures in cereals. Crop Sci. 2008;48:1147–1154. doi: 10.2135/cropsci2007.10.0581. DOI
Vágújfalvi A., Crosatti C., Galiba G., Dubcovsky J., Cattivelli L. Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes. Mol. Gen. Genet. 2000;263:194–200. doi: 10.1007/s004380051160. PubMed DOI
Vágújfalvi A., Galiba G., Cattivelli L., Dubcovsky J. The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol. Genet. Genom. 2003;269:60–67. doi: 10.1007/s00438-003-0806-6. PubMed DOI PMC
Vítámvás P. Ph.D. Thesis. Charles University; Prague, Czechia: 2007. Dynamics of Cold Regulated Proteins during Cold Acclimation in Cereals.
Fowler D.B., Limin A.E., Ritchie J.T. Low-temperature tolerance in cereals: Model and genetic interpretation. Crop Sci. 1999;39:626–633. doi: 10.2135/cropsci1999.0011183X003900020002x. DOI
Prášil I.T., Prášilová P., Mařík P. Comparative study of direct and indirect evaluations of frost tolerance in barley. Field Crop Res. 2007;102:1–8. doi: 10.1016/j.fcr.2006.12.012. DOI
Houde M., Daniel C., Lachapelle M., Allard F., Laliberte S., Sarhan F. Immunolocalization of Freezing-Tolerance-Associated Proteins in the Cytoplasm and Nucleoplasm of Wheat Crown Tissues. Plant J. 1995;8:583–593. doi: 10.1046/j.1365-313X.1995.8040583.x. PubMed DOI
Prášilová P., Prášil I.T. Winter-hardiness scale for wheat cultivars of different geographical origin. Icel. Agric. Sci. 2001;14:35–39.
Prášil I., Zámečník J. The use of a conductivity measurement method for assessing freezing injury I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environ. Exp. Bot. 1998;40:1–10. doi: 10.1016/S0098-8472(98)00010-0. DOI
Bradford M.M. A rapid and sensitive method for the quantities of protein by an improved protein-dye binding assay. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature. 1970;277:680–685. doi: 10.1038/227680a0. PubMed DOI
Close T.J., Fenton R.D., Moonan F. A view of plant dehydrins using antibodies specific to the carboxy-terminal peptide. Plant Mol. Biol. 1993;23:279–286. doi: 10.1007/BF00029004. PubMed DOI