In situ and ex situ bioassays with Cantareus aspersus for environmental risk assessment of metal(loid) and PAH-contaminated soils

. 2022 Mar ; 18 (2) : 539-554. [epub] 20210726

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34138503

Grantová podpora
1572C0310 ADEME

Environmental risk assessment of contaminated soils requires bioindicators that allow the assessment of bioavailability and toxicity of chemicals. Although many bioassays can determine the ecotoxicity of soil samples in the laboratory, few are available and standardized for on-site application. Bioassays based on specific threshold values that assess the in situ and ex situ bioavailability and risk of metal(loid)s and polycyclic aromatic hydrocarbons (PAHs) in soils to the land snail Cantareus aspersus have never been simultaneously applied to the same soils. The aims of this study were to compare the results provided by in situ and ex situ bioassays and to determine their respective importance for environmental risk assessment. The feasibility and reproducibility of the in situ bioassay were assessed using an international ring test. This study used five plots located at a former industrial site and six laboratories participated in the ring test. The results revealed the impact of environmental parameters on the bioavailability of metal(loid)s and PAHs to snails exposed in the field to structured soils and vegetation compared to those exposed under laboratory conditions to soil collected from the same field site (excavated soils). The risk coefficients were generally higher ex situ than in situ, with some exceptions (mainly due to Cd and Mo), which might be explained by the in situ contribution of plants and humus layer as sources of exposure of snails to contaminants and by climatic parameters. The ring test showed good agreement among laboratories, which determined the same levels of risk in most of the plots. Comparison of the bioavailability to land snails and the subsequent risk estimated in situ or ex situ highlighted the complementarity between both approaches in the environmental risk assessment of contaminated soils, namely, to guide decisions on the fate and future use of the sites (e.g., excavation, embankments, and land restoration). Integr Environ Assess Manag 2022;18:539-554. © 2021 SETAC.

Zobrazit více v PubMed

ADEME. (2018). Guide pour la détermination des valeurs de fonds dans les sols-Echelle d'un territoire (p. 141). Agence de l'environnement et de la maîtrise de l'énergie.

Al-Alam, J., Chbani, A., Faljoun, Z., & Millet, M. (2019). The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution-A review. Environmental Science and Pollution Research, 26, 9391-9408.

Azzolina, N. A., Neuhauser, E. F., Fin, J. T., Crawford, T. R., Anders, K. A., Doroski, M. A., Perretta, A. C., Distler, M. A., & Heitzman, G. W. (2014). Volatile organic compounds from coal tar and soil vapor samples at MGP sites. Journal of Environmental Forensics, 15(3), 225-233.

Baudrot, V., Fritsch, C., Perasso, A., Banerjee, M., & Raoul, F. (2018). Effects of contaminants and trophic cascade regulation on food chain stability: Application to cadmium soil pollution on small mammals-Raptor systems. Ecological Modelling, 382, 33-42.

Baxter, I., Muthukumar, B., Cheol Park, H., Buchner, P., Lahner, B., Danku, J., Zhao, K., Lee, J., Hawkesford, M. J., Guerinot, M. L., & Salt, D. E. (2008). Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLOS Genetics, 4(2), e1000004.

Billeret, M., Berny, P., Mazallon, M., & Buronfosse, T. (2000). Bioavailability of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in rats from naturally contaminated soils-Preliminary evaluation of the influence of soil parameters. Environmental Toxicology and Chemistry, 19(10), 2614-2620.

Biswas, B., Qi, F., Biswas, J. K., Wijayawardena, A., Islam Khan, M. A., & Naidu, R. (2018). The fate of chemical pollutants with soil properties and processes in the climate change paradigm-A review. Soil Systems, 2(3), 51.

Boisa, N., Elom, N., Dean, J. R., Deary, M. E., Bird, G., & Entwistle, J. A. (2014). Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil. Environment International, 70, 132-142.

Bourceret, A., Leyval, C., Faure, P., Lorgeoux, C., & Cébron, A. (2018). High PAH degradation and activity of degrading bacteria during alfalfa growth where a contrasted active community developed in comparison to unplanted soil. Environmental Science and Pollution Research, 25, 29556-29571.

Chalot, M., Blaudez, D., Rogaume, Y., Provent, A. S., & Pascual, C. (2012). Fate of trace elements during the combustion of phytoremediation wood. Environmental Science and Technology, 46(24), 13361-13369.

Chalot, M., Girardclos, O., Ciadamidaro, L., Zappelini, L., Yung, L., Durand, A., Pfendler, S., Lamy, I., Driget, V., & Blaudez, D. (2020). Poplar rotation coppice at a trace element-contaminated phytomanagement site: A 10-year study revealing biomass production, element export and impact on extractable elements. Science of the Total Environment, 669, 134260.

Chevalier, L., Desbuquois, C., Le Lannic, J., & Charrier, M. (2001). Poaceae in the natural diet of the snail Helix aspersa Müller (Gastropoda, Pulmonata). Comptes rendus de l'Académie des Sciences, Paris-Series III-Sciences de la Vie, 324(11), 979-987.

Ciadamidaro, L., Parelle, J., Tatin-Froux, F., Moyen, C., Durand, A., Zappelini, C., Morin-Crini, N., Soupe, D., Blaudez, D., & Chalot, M. (2019). Early screening of new accumulating versus non-accumulating tree species for the management of marginal lands. Ecological Engineering, 130, 147-156.

Coelho, C., Foret, C., Bazin, C., Leduc, L., Hammada, M., Inacio, M., & Bedell, J. P. (2018). Bioavailability and bioaccumulation of heavy metals of several soils and sediments (from industrialized urban areas) for Eisenia fetida. Science of the Total Environment, 635, 1317-1330.

Coeurdassier, M., Gomot-de Vaufleury, A., Lovy, C., & Badot, P. M. (2002). Is the epithelial cadmium uptake from soil important in bioaccumulation and toxic effects for snails? Ecotoxicology and Environmental Safety, 53, 425-431.

de Vaufleury, A. (2015). Landsnail for ecotoxicological assessment of chemicals and soil contamination. In R. H. Armon, & O. Hanninen (Eds.), Environmental Indicators (pp. 365-391). Springer.

de Vaufleury, A., Coeurdassier, M., Pandard, P., Scheifler, R., Lovy, C., Crini, N., & Badot, P. M. (2006). How terrestrial snails can be used in risk assessment of soils. Environmental Toxicology and Chemistry, 25(3), 797-806.

EURACHEM. (2011). Selection, use and interpretation of proficiency testing (PT) schemes (2nd ed., p. 46).

Feng, Y., Park, J. H., Voice, T. C., & Boyd, S. A. (2000). Bioavailability of soil-sorbed biphenyl to bacteria. Environmental Science and Technology, 34(10), 1977-1984.

Frelon, S., Chazel, V., Tourlonias, E., Blanchardon, E., Bouisset, P., Pourcelot, L., & Paquet, F. (2007). Risk assessment after internal exposure to black sand from Camargue: Uptake and prospective dose calculation. Radiation Protection Dosimetry, 127(1-4), 64-67.

Fritsch, C., Coeurdassier, M., Gimbert, F., Crini, N., Scheifler, R., & de Vaufleury, A. (2011). Investigations of responses to metal pollution in land snail populations (Cantareus aspersus and Cepaea nemoralis) from a smelter-impacted area. Ecotoxicology, 20, 739-759.

Fritsch, C., Coeurdassier, M., Giraudoux, P., Raoul, F., Douay, F., Rieffel, D., de Vaufleury, A., & Scheifler, R. (2011). Spatially explicit analysis of metal transfer to biota: Influence of soil contamination and landscape. PLOS One, 6(5), e20682.

Gimbert, F., Mench, M., Coeurdassier, M., Badot, P. M., & de Vaufleury, A. (2008). Kinetic and dynamic aspects of soil-plant-snail transfer of cadmium in the field. Environmental Pollution, 152, 736-745.

Gomot, A., Gomot, L., Boukraa, S., & Bruckert, S. (1989). Influence of soils on the growth of the land snail Helix aspersa. An experimental study on the absorption route for the stimulating factors. The Journal of Molluscan Studies, 55(1), 1-7.

Gomot-de Vaufleury, A. (2000). Standardized growth toxicity testing (Cu, Zn, Pb and pentachlorophenol) with Helix aspersa. Ecotoxicology and Environmental Safety, 46, 41-50.

Gomot-de Vaufleury, A., & Bispo, A. (2000). Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails. Sublethal effects on growth. Environmental Science and Technology, 34, 1865-1870.

Gomot-de Vaufleury, A., & Pihan, F. (2002). Methods for toxicity assessment of contaminated soil by oral or dermal uptake in land snails: Metal bioavailability and bioaccumulation. Environmental Toxicology and Chemistry, 21, 820-827.

Grignet, A., de Vaufleury, A., Papin, A., & Bert, V. (2020). Urban soil phytomanagement for Zn and Cd in situ removal, greening, and Zn-rich biomass production taking care of snail exposure. Environmental Science and Pollution Research, 27, 3187-3201.

Guney, M., Chapuis, R. P., & Zagury, G. J. (2016). Lung bioaccessibility of contaminants in particulate matter of geological origin. Environmental Science and Pollution Research, 23, 24422-24434.

Gustin, M. S., & Stamenkovic, J. (2005). Effect of watering and soil moisture on mercury emissions from soils. Biogeochemistry, 76, 215-232.

Hernandez-Soriano, M. C., & Jimenez-Lopez, J. C. (2012). Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals. Science of the Total Environment, 423, 55-61.

ISO 17402. (2008). Soil quality-Requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. International Standard Organisation.

ISO 19204. (2017). Soil quality-Procedure for site specific ecological risk assessment of soil contamination (soil quality TRIAD approach). International Standard Organisation.

ISO DIS 24032. (2021). Soil quality-In situ caging of snails to assess bioaccumulation of contaminants. International Standard Organisation.

Khan, I., Iqbal, M., & Shafiq, F. (2019). Phytomanagement of lead-contaminated soils: Critical review of new trends and future prospects. International Journal of Environmental Science and Technology. 16, 6473-6488.

Lanno, R. P., Oorts, K., Smolders, E., Albanese, K., & Chowdhury, M. J. (2019). Effect of soil properties on the toxicity and bioaccumulation of lead in soil invertebrates. Environmental Toxicology and Chemistry, 38(7), 1486-1494.

Louzon, M., Devalloir, Q., Gimbert, F., Pauget, B., Rieffel, D., & de Vaufleury (2021). From bioavailability to risk assessment of polluted soil for the brown garden snail: Link between excess transfer and inhibition of sexual maturation. Environmental Science and Pollution Research, 28, 17343-17354.

Louzon, M., Pauget, B., Gimbert, F., Morin-Crini, N., & de Vaufleury, A. (2020a). Ex situ environmental risk assessment of polluted soils using threshold guide values for the land snail Cantareus aspersus. Science of the Total Environment, 721, 137789.

Louzon, M., Pelfrêne, A., Pauget, B., Gimbert, F., Morin-Crini, N., Douay, F., & de Vaufleury, A. (2020b). Bioaccessibility of metal(loid)s in soils to humans and their bioavailability to snails: A way to associate human health and ecotoxicological risk assessment? Journal of Hazardous Materials, 384, 121432.

Lévêque, T., Dumat, C., Lagier, L., Schreck, E., Ruales, J., & Capowiez, Y. (2019). Influence of earthworm bioturbation on metals phytoavailability and human gastric bioaccessibility. Environmental Science and Pollution Research, 26, 20052-20063.

Mariet, A. L., Pauget, B., de Vaufleury, A., Bégeot, C., Walter-Simonnet, A. V., & Gimbert, F. (2017). Using bioindicators to assess the environmental risk of past mining activities in the Vosges Mountains (France). Ecological Indicators, 75, 17-26.

Maron, M., Simmonds, J. S., Watson, J. E. M., Sonter, L. J., Bennun, L., Griffiths, V. F., Quétier, F., von Hase, A., Edwards, S., Rainey, H., Bull, J. W., Savy, C. E., Victurine, R., Kiesecker, J., Puydarrieux, P., Stevens, T., Cozannet, N., & Jones, J. P. G. (2020). Global no net loss of natural ecosystems. Nature Ecology & Evolution, 4, 46-49.

Martz, M., Heil, J., Marschner, B., & Stumpe, B. (2019). Effects of soil organic carbon (SOC) content and accessibility in subsoils on the sorption process of the model pollutants nonylphenol (4-n=NP) and perfluorooctanoic acid (PFOA). Science of the Total Environment, 672, 162-173.

McGrath, S. P., Mico, C., Curdy, R., & Zhao, F. J. (2010). Predicting molybdenum toxicity to higher plants: Influence of soil properties. Environmental Pollution, 158(10), 3095-3102.

MEEM. (2017). Méthodologie nationale de gestion des sites et sols pollués (p. 128). Ministére de l'Environnement, de l'Energie et de la Mer.

Mleiki, A., El Menif, N. J., & Marigomez, I. (2020). Integrative assessment of the biological responses elicited by metal pollution in the green garden snail, Cantareus apertus: Laboratory and field studies. Ecolological Indicators, 117, 106589.

Morin-Crini, N., Louzon, M., Amiot, C., & de Vaufleury, A. (2020). QuEChERS applicability to measure land snail polycyclic aromatic hydrocarbons for risk assessment. Toxicological & Environmental Chemistry, 102(5-6), 209-223.

MTES. (2015). Site 25-Vieux-Charmont-IPM FRANCE (ex Burgess Norton). Base de données BASOL sur les sites et sols pollués (ou potentiellement pollués) appelant une action des pouvoirs publics, à titre préventif ou curative. Ministère de la transition écologique et solidaire, Paris.

Noordijk, H., van Bergeijk, K. E., Lembrechts, J., & Frissel, M. J. (1992). Impact of ageing and weather conditions on soil-to-plant transfer of radiocesium and radiostrontium. Journal of Environmental Radioactivity, 15(3), 277-286.

O'Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., Wang, S., Tack, F. M. G., & Rinklebe, J. (2019). Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 126, 747-761.

Ozaki, S., Fritsch, C., Valot, B., Mora, F., Cornier, T., Scheifler, R., & Raoul, F. (2019). How do richness and composition of diet shape trace metal exposure in a free-living generalist rodent, Apodemus sylvaticus. Environmental Science and Technology, 53(10), 5977-5986.

Pauget, B., & de Vaufleury, A. (2015). The SET and ERITME indices: Integrative tools for the management of polluted sites. Ecological Indicators, 53, 206-210.

Pauget, B., Faure, O., Conord, C., Crini, N., & de Vaufleury, A. (2015). In situ assessment of phyto and zooavailability of trace elements: A complementary approach to chemical extraction procedures. Science of the Total Environment, 521-522, 400-410.

Pauget, B., Gimbert, F., Coeurdassier, M., Crini, N., Pérès, G., Faure, O., Douay, F., Hitmi, A., Beguiristain, T., Alaphilippe, A., Guernion, M., Houot, S., Legras, M., Vian, J. F., Hedde, M., Bispo, A., Grand, C., & de Vaufleury, A. (2013a). Ranking field site management priorities according to their metal transfer to snails. Ecological Indicators, 29, 445-454.

Pauget, B., Gimbert, F., Coeurdassier, M., Crini, N., Pérès, G., Faure, O., Douay, F., Richard, A., Grand, C., & de Vaufleury, A. (2013b). Assessing the in situ bioavailability of trace elements to snails using accumulation kinetics. Ecological Indicators, 34, 126-135.

Pauget, B., Gimbert, F., Coeurdassier, M., Druart, C., Crini, N., & de Vaufleury, A. (2016). How contamination sources and soil properties can influence the Cd and Pb bioavailability to snails. Environmental Science and Pollution Research, 23, 2987-2996.

Pauget, B., Gimbert, F., Coeurdassier, M., Scheifler, R., & de Vaufleury, A. (2011). Use of chemical methods to assess Cd and Pb bioavailability to the snail Cantareus aspersus: A first attempt taking into account soil characteristics. Journal of Hazardous Materials, 192, 1804-1811.

Pauget, B., Gimbert, F., Scheifler, R., Coeurdassier, M., & de Vaufleury, A. (2012). Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data. Science of the Total Environment, 431, 413-425.

Pelfrêne, A., & Douay, F. (2018). Assessment of oral and lung bioaccessibility of Cd and Pb from smelter-impacted dust. Environmental Science and Pollution Research, 25, 3718-3730.

Pierart, A., Shahid, M., Séjalon-Delmas, N., & Dumat, C. (2015). Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. Journal of Hazardous Materials, 289, 219-234.

Ross, D. S., Bailey, S. W., Briggs, R. D., Curry, J., Fernandez, I. J., Fredriksen, G., Goodale, C. L., Hazlett, W., Heine, P. R., Johnson, C. E., Larson, J. T., Lawrence, G. B., Kolka, R. K., Ouimet, R., Paré, D., Richter, D. B., Schirmer, C. D., & Warby, R. A. (2015). Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America. Ecosphere, 6(5), 1-22.

Scheifler, R., Ben Brahim, M., Gomot-de Vaufleury, A., Carnus, J. M., & Badot, P. M. (2003). A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails. Environmental Pollution, 122, 343-350.

Scheifler, R., de Vaufleury, A., Coeurdassier, M., Crini, N., & Badot, P. M. (2006). Transfer of Cd, Cu, Ni, Pb and Zn in a soil-plant-invertebrate food chain: A microcosm study. Environmental Toxicology and Chemistry, 25(3), 815-822.

Schreck, E., Foucault, Y., Geret, F., Pradère, P., & Dumat, C. (2011). Influence of soil ageing on bioavailability and ecotoxicity of lead carried by process waste metallic ultrafine particles. Chemosphere, 85, 1555-1562.

Spasojevic, J., Maletic, S., Roncevic, S., Grgic, M., Krcmar, D., Varga, N., & Dalmacija, B. (2018). The role of organic matter and clay content in sediments for bioavailability of pyrene. Water Science and Technology, 77(1-2), 439-447.

Suman, J., Uhlik, O., Viktorova, J., & Macek, T. (2018). Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Frontiers of Plant Science, 9, 1476.

Suter, G., Nichols, J., Lavoie, E., & Cormier, S. (2020). Systematic review and weight of evidence are integral to ecological and human health assessments: They need an integrated framework. Integrated Environmental Assessment and Management, 16(5), 718-728.

Tomatsu, H., Takano, J., Takahashi, H., Watanabe-Takahashi, A., Shibagaki, N., & Fujiwara, T. (2007). An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proceedings of the National Acadademy of Sciences, 404(47), 18807-18812.

Upadhyay, M. K., Yadav, P., Shukla, A., & Srivastava, S. (2018). Utilizing the potential of microorganisms for managing arsenic contamination: A feasible and sustainable approach. Frontiers in Environmental Sciences, 6, 24.

van Gestel, C. A. M., Diez Ortiz, M., Borgman, E., & Verweij, R. A. (2011). The bioaccumulation of molybdenum in the earthworm Eisenia andrei: Influence of soil properties and ageing. Chemosphere, 82(11), 1614-1619.

Vasseur, P., Bonnard, M., Palais, F., Eom, I. C., & Morel, J. L. (2008). Bioavailability of chemical pollutants in contaminated and pitfalls of chemical analyses in hazard assessment. Environmental Toxicology, 23(5), 652-656.

Viard, B., Pihan, F., Promeyrat, S., & Pihan, J. C. (2004). Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: Bioaccumulation in soil, Graminaceae and land snails. Chemosphere, 55(10), 1349-1359.

Wichard, T., Mishra, B., Myneni, S. C. B., Bellenger, J. P., & Kraepiel, A. M. L. (2009). Storage and bioavailability of molybdenum in soils increased by organic matter complexation. Nature Geoscience, 2, 625-629.

Wu, S. C., Luo, Y. M., Cheung, K. C., & Wong, M. H. (2006). Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: A laboratory study. Environmental Pollution, 144(3), 765-773.

Yi, Z., Lehto, N. J., Robinson, B. H., & Cavanagh, J. A. E. (2020). Environmental and edaphic factors affecting soil cadmium uptake by spinach, potatoes, onion and wheat. Science of the Total Environment, 713, 136694.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...