Removal of per- and polyfluoroalkyl substances from aqueous media using synthesized silver nanocomposite-activated carbons
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34150231
PubMed Central
PMC8172664
DOI
10.1007/s40201-020-00597-3
PII: 597
Knihovny.cz E-zdroje
- Klíčová slova
- Activated carbon, Adsorption, Maize tassel, PFOA, PFOS, Silver nanocomposite,
- Publikační typ
- časopisecké články MeSH
PURPOSE: Per- and polyfluoroalkyl substances (PFAS) have been found to be widespread, extremely persistent and bioaccumulative with toxicity tendencies. Pre-synthesized nanocomposite-activated carbons, referred to, as physically activated maize tassel silver (PAMTAg) and chemically activated maize tassel silver (CAMTAg) were utilized in the present study. They were used for the removal of 10 PFAS from aqueous solutions. METHODS: The nanocomposite-activated carbons were characterized via scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Brunauer Emmett Teller (BET) and other techniques. Batch equilibrium experiments were conducted in order to investigate the effects of solution pH, adsorbent dosage, initial PFAS concentration and temperature on the removal of PFAS using PAMTAg and CAMTAg. Langmuir and Freundlich adsorption isotherm models were used to analyse the equilibrium data obtained. RESULTS: Maximum adsorption capacities of 454.1 mg/g (0.91 mmol/g) and 321.2 mg/g (0.78 mmol/g) were recorded for perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA), respectively using CAMTAg. The values recorded for the Gibbs' free energy (ΔG°) for the adsorption of PFOS and PFOA onto PAMTAg and CAMTAg were negative; PFOS (-9.61, -9.99 and - 10.39), PFOA (-8.77, -9.76 and - 10.21) using PAMTAg; and PFOS (-13.70, -12.70 and - 12.37), PFOA (-12.86, -12.21 and - 11.17) using CAMTAg. Therefore, the adsorption processes were spontaneous and feasible. The values recorded for enthalpy (ΔH°) (kJ/mol) for the adsorption of PFOS (-26.15) and PFOA (-35.86) onto CAMTAg were negative, indicating that the adsorption mechanism is exothermic in nature. Positive values were recorded for ΔH° for the adsorption of PFOS (2.32) and PFOA (12.69) onto PAMTAg, indicative of an endothermic adsorption mechanism. Positive entropy (ΔS°) values (0.04 and 0.07) were recorded for PFOS and PFOA using PAMTAg; whereas negative values (-0.04 and - 0.08) were recorded for ΔS° using CAMTAg. A positive ΔS° indicates an increase in randomness of the adsorbate at the solid-solution interface and the reverse is the case for a negative ΔS°. CONCLUSION: The interplay of electrostatic attraction and hydrophobic interactions enabled the removal of PFAS using PAMTAg and CAMTAg. Findings suggest that PAMTAg and CAMTAg are effective for the removal of PFAS from aqueous media and are good alternatives to commercially available activated carbons. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-020-00597-3.
Zobrazit více v PubMed
Takagi S, Adachi F, Miyano K, Koizumi Y, Tanaka H, Mimura M, Watanabe I, Tanabe S, Kannan K. Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka. Jpn Chemosphere. 2008;72:1409–1412. doi: 10.1016/j.chemosphere.2008.05.034. PubMed DOI
Idris AO, Oseghe EO, Msagati TA, Kuvarega AT, Feleni U, Mamba B. Graphitic carbon nitride: a highly electroactive nanomaterial for environmental and clinical sensing. Sensors. 2020;20(20):5743. doi: 10.3390/s20205743. PubMed DOI PMC
Rahman MF, Peldszus S, Anderson WB. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res. 2014;50:318–340. doi: 10.1016/j.watres.2013.10.045. PubMed DOI
Omo-Okoro PN, Daso AP, Okonkwo JO. A review of the application of agricultural wastes as precursor materials for the adsorption of per-and polyfluoroalkyl substances: a focus on current approaches and methodologies. Environ Technol Innov. 2018;9:100–114. doi: 10.1016/j.eti.2017.11.005. DOI
Mudumbi J, Ntwampe S, Muganza F, Okonkwo J. Perfluorooctanoate and perfluorooctane sulfonate in South African river water. Water Sci Technol. 2014;69(1):185–194. doi: 10.2166/wst.2013.566. PubMed DOI
Appleman TD, Higgins CP, Quiñones O, Vanderford BJ, Kolstad C, Zeigler-Holady JC, Dickenson ER. Treatment of poly-and perfluoroalkyl substances in US full-scale water treatment systems. Water Res. 2014;51:246–255. doi: 10.1016/j.watres.2013.10.067. PubMed DOI
Flores C, Ventura F, Martin-Alonso J, Caixach J. Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in NE Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. Sci Total Environ. 2013;461:618–626. doi: 10.1016/j.scitotenv.2013.05.026. PubMed DOI
Banzhaf S, Filipovic M, Lewis J, Sparrenbom CJ, Barthel R. A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs) Ambio. 2017;46:335–346. doi: 10.1007/s13280-016-0848-8. PubMed DOI PMC
Post GB, Louis JB, Lippincott RL, Procopio NA. Occurrence of perfluorinated compounds in raw water from New Jersey public drinking water systems. Environ Sci Technol. 2013;47(23):13266–13275. doi: 10.1021/es402884x. PubMed DOI
Post GB, Louis JB, Cooper KR, Boros-Russo BJ, Lippincott RL. Occurrence and potential significance of perfluorooctanoic acid (PFOA) detected in New Jersey public drinking water systems. Environ Sci Technol. 2009;43(12):4547–4554. doi: 10.1021/es900301. PubMed DOI
Benford D, De Boer J, Carere A, Di Domenico A, Johansson N, Schrenk D, et al. Opinion of the scientific panel on contaminants in the food chain on perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. EFSA J. 2008:1–131. https://hdl.handle.net/11245/1.293305. Accessed 6 Apr 2020. PubMed PMC
Joensen UN, Bossi R, Leffers H, Jensen AA, Skakkebæk NE, Jørgensen N. Do perfluoroalkyl compounds impair human semen quality? Environ Health Perspect. 2009;117:923–927. doi: 10.1289/ehp.0800517. PubMed DOI PMC
Wang F, Liu C, Shih K. Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite. Chemosphere. 2012;89:1009–1014. doi: 10.1016/j.chemosphere.2012.06.071. PubMed DOI
Du Plessis, J. Maize production. Department of Agriculture Pretoria, South Africa. 2003
Adisa OM, Botai CM, Botai JO, Hassen A, Darkey D, Tesfamariam E, Adisa AF, Adeola AM, Ncongwane KP. Analysis of agro-climatic parameters and their influence on maize production in South Africa. Theor Appl Climatol. 2018;134(3–4):991–1004. doi: 10.1007/s00704-017-2327-y. DOI
CEC. 2020. South African Crop Estimates Committee (CEC). www.sagis.org.za/CEC. Accessed 10 Oct 2020.
Olorundare O, Krause R, Okonkwo J, Mamba B. Potential application of activated carbon from maize tassel for the removal of heavy metals in water. Phys Chem Earth Parts A/B/C. 2012;50:104–110. doi: 10.1016/j.pce.2012.06.001. DOI
Zvinowanda CM, Okonkwo JO, Sekhula MM, Agyei NM, Sadiku R. Application of maize tassel for the removal of Pb, se, Sr, U and V from borehole water contaminated with mine wastewater in the presence of alkaline metals. J Hazard Mater. 2009;164:884–891. doi: 10.1016/j.jhazmat.2008.08.110. PubMed DOI
Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM. Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol. 2014;14(7):4757–4780. doi: 10.1166/jnn.2014.9526. PubMed DOI
Pradeep T. Noble metal nanoparticles for water purification: a critical review. Thin Solid Films. 2009;517(24):6441–6478. doi: 10.1016/j.tsf.2009.03.195. DOI
Esakkimuthu T, Sivakumar D, Akila S. Application of nanoparticles in wastewater treatment. Pollut Res. 2014;33(03):567–571.
Kim B, Park CS, Murayama M, Hochella MF., Jr Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol. 2010;44(19):7509–7514. doi: 10.1021/es101565j. PubMed DOI
Nowack B, Krug HF, Height M. 120 years of nanosilver history: implications for policy makers. ACS Publ. 2011;45(4):1177–1183. doi: 10.1021/es103316q. PubMed DOI
Olgun U, Tunç K, Hoş A. Preparation and antibacterial properties of nano biocomposite poly (ε-caprolactone)-SiO 2 films with nanosilver. J Polym Res. 2019;26(2):24. doi: 10.1007/s10965-018-1686-0. DOI
Amin M, Alazba A, Manzoor U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng. 2014; Article ID 825910: 24pp. 10.1155/2014/825910
Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6(6):2295–2350. doi: 10.3390/ma6062295. PubMed DOI PMC
Motshekga SC, Ray SS, Onyango MS, Momba MN. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J Hazard Mater. 2013;262:439–446. doi: 10.1016/j.jhazmat.2013.08.074. PubMed DOI
Pourmand M, Shahidi K, Nazari P, Moosavian SM, Samadi N, Pourmand G, Shahverdi A. The different antibacterial impact of silver nanoparticles against legionella pneumophila compared to other microorganisms. J Sci Islam Repub Iran. 2013;24(4):313–319.
Qu Y, Zhang C, Li F, Bo X, Liu G, Zhou Q. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon. J Hazard Mater. 2009;169:146–152. doi: 10.1016/j.jhazmat.2009.03.063. PubMed DOI
BhatnagarA VVJ, Botelho CM, Boaventura RA. Coconut-based biosorbents for water treatment—a review of the recent literature. Adv. Colloid Interface Sci. 2010;160(1):1–15. doi: 10.1016/j.cis.2010.06.011. PubMed DOI
Yu Q, Zhang R, Deng S, Huang J, Yu G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study. Water Res. 2009;43:1150–1158. doi: 10.1016/j.watres.2008.12.001. PubMed DOI
Kucharzyk KH, Darlington R, Benotti M, Deeb R, Hawley E. Novel treatment technologies for PFAS compounds: a critical review. J Environ Manag. 2017;204:757–764. doi: 10.1016/j.jenvman.2017.08.016. PubMed DOI
Pal J, Deb MK, Deshmukh DK, Verma D. Removal of methyl orange by activated carbon modified by silver nanoparticles. Appl Water Sci. 2013;3(2):367–374. doi: 10.1007/s13201-013-0087-0. DOI
Goldstein N, Greenlee LF. Influence of synthesis parameters on iron nanoparticle size and zeta potential. J Nanopart Res. 2012;14(4):760. doi: 10.1007/s11051-012-0760-5. DOI
Igwegbe C, Rahdar S, Rahdar A, Mahvi A, Ahmadi S, Banach A. Removal of fluoride from aqueous solution by Nikel oxide nanoparticles: equilibrium and kinetic studies. Fluoride. 2019;52(4):569–579.
Ahmadi S, Igwegbe CA. Removal of methylene blue on zinc oxide nanoparticles: Nonlinear and linear adsorption isotherms and kinetics study. Sigma: J Eng Nat Sci/Mühendislik ve Fen Bilimleri Derg. 2020; 38(1).
Igwegbe CA, Onukwuli OD, Ighalo JO, Okoye PU. Adsorption of cationic dyes on Dacryodes edulis seeds activated carbon modified using phosphoric acid and sodium chloride. Environ Process. 2020;7:1–21. doi: 10.1007/s40710-020-00467-y. DOI
Qu X, Alvarez PJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013;47(12):3931–3946. doi: 10.1016/j.watres.2012.09.058. PubMed DOI
Zhang W, Zhang D, Liang Y. Nanotechnology in remediation of water contaminated by poly-and perfluoroalkyl substances: a review. Environ Pollut. 2019;247:266–276. doi: 10.1016/j.envpol.2019.01.045. PubMed DOI
Srivastava V, Zare EN, Makvandi P, Zheng XQ, Iftekhar S, Wu A, Padil VV, Mokhtari B, Varma RS, Tay FR. Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents. Chemosphere. 2020; 127324. 10.1016/j.chemosphere.2020.127324 PubMed
Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol. 2008;42(24):9005–9013. doi: 10.1021/es801777n. PubMed DOI
Tuan TQ, Van Son N, Dung HT, Luong NH, Thuy BT, Van Anh N, Hoa ND, Hai NH. Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. J Hazard Mater. 2011;192(3):1321–1329. doi: 10.1016/j.jhazmat.2011.06.044. PubMed DOI
Ghaedi M, Sadeghian B, Pebdani AA, Sahraei R, Daneshfar A, Duran C. Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chem Eng J. 2012;187:133–141. doi: 10.1016/j.cej.2012.01.111. DOI
Ochoa-Herrera V, Sierra-Alvarez R. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere. 2008;72(10):1588–1593. doi: 10.1016/j.chemosphere.2008.04.029. PubMed DOI
Chen X, Xia X, Wang X, Qiao J, Chen H. A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere. 2011;83:1313–1319. doi: 10.1016/j.chemosphere.2011.04.018. PubMed DOI
Oyetade OA, Varadwaj GBB, Nyamori VO, Jonnalagadda SB, Martincigh BS. A critical review of the occurrence of perfluoroalkyl acids in aqueous environments and their removal by adsorption onto carbon nanotubes. Rev Environ Sci Biotechnol. 2018;17(4):603–635. doi: 10.1007/s11157-018-9479-9. DOI
Fisal A, Daud WMAW, Ahmad MA, Radzi R. Using cocoa (Theobroma cacao) shell-based activated carbon to remove 4-nitrophenol from aqueous solution: kinetics and equilibrium studies. Chem Eng J. 2011;178:461–467. doi: 10.1016/j.cej.2011.10.044. DOI
Akl MA, Dawy MB, Serage AA. Efficient removal of phenol from water samples using sugarcane bagasse based activated carbon. J Anal Bioanal Tech. 2014;5:2. doi: 10.4172/2155-9872.1000189. DOI
Fernandez ME, Nunell GV, Bonelli PR, Cukierman AL. Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes. Ind Crop Prod. 2014;62:437–445. doi: 10.1016/j.indcrop.2014.09.015. DOI
Chang KL, Hsieh JF, Ou BM, Chang MH, Hseih WY, Lin JH. Adsorption studies on the removal of an endocrine-disrupting compound (Bisphenol a) using activated carbon from rice straw agricultural waste. Sep Sci Technol. 2012;47(10):1514–1521. doi: 10.1080/01496395.2011.647212. DOI
Malik PK. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of acid yellow 36. Dyes Pigments. 2003;56(3):239–249. doi: 10.1016/S0143-7208(02)00159-6. DOI
Zhong ZY, Yang Q, Li XM, Luo K, Liu Y, Zeng GM. Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol brilliant blue R adsorption. Ind Crop Prod. 2012;37(1):178–185. doi: 10.1016/j.indcrop.2011.12.015. DOI
Nwadiogbu J, Ajiwe V, Okoye P. Removal of crude oil from aqueous medium by sorption on hydrophobic corncobs: Equilibrium and kinetic studies. J Taibah Univ Sci. 2016;10(1):56–63. 10.1016/j.jtusci.2015.03.014.
Sud D, Mahajan G, Kaur M. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–a review. Bioresour Technol. 2008;99(14):6017–27. 10.1016/j.biortech.2007.11.064. PubMed
Wahi R, Chuah LA, Choong TS, Ngaini Z, Nourouzi MM. Oil removal from aqueous state by natural fibrous sorbent: an overview. Sep Purif Technol. 2013;113:51–63. 10.1016/j.seppur.2013.04.015.
Fagbayigbo BO, Opeolu BO, Fatoki OS, Akenga TA, Olatunji OS. Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter. Environ Sci Pollut Res. 2017;24:13107–13120. doi: 10.1007/s11356-017-8912-x. PubMed DOI
Deng S, Niu L, Bei Y, Wang B, Huang J, Yu G. Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization. Chemosphere. 2013;91:124–130. doi: 10.1016/j.chemosphere.2012.11.015. PubMed DOI
Deng S, Nie Y, Du Z, Huang Q, Meng P, Wang B, et al. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. J Hazard Mater. 2015;282:150–157. doi: 10.1016/j.jhazmat.2014.03.045. PubMed DOI
Liu L, Liu Y, Gao B, Ji R, Li C, Wang S. Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water by carbonaceous nanomaterials: a review. Crit Rev Environ Sci Technol. 2020;50(22):2379–2414. doi: 10.1080/10643389.2019.1700751. DOI
Basta AH, Lotfy VF, Hasanin MS, Trens P, El-Saied H. Efficient treatment of rice byproducts for preparing high-performance activated carbons. J Clean Prod. 2019;207:284–295. doi: 10.1016/j.jclepro.2018.09.216. DOI
Mohan AN, Manoj B, Panicker S. Facile synthesis of graphene-tin oxide nanocomposite derived from agricultural waste for enhanced antibacterial activity against Pseudomonas aeruginosa. Sci Rep. 2019;9(1):1–12. doi: 10.1038/s41598-019-40916-9. PubMed DOI PMC
Omo-Okoro PN, Maepa CE, Daso AP, Okonkwo JO. Microwave-assisted synthesis and characterization of an agriculturally derived silver nanocomposite and its derivatives. Waste Biomass Valorization. 2020;11:2247–2259. doi: 10.1007/s12649-018-0523-3. DOI
Omo-Okoro PN, Curtis CJ, Karásková P, Melymuk L, Oyewo OA, Okonkwo JO. Kinetics, isotherm, and thermodynamic studies of the adsorption mechanism of PFOS and PFOA using inactivated and chemically activated maize tassel. Water Air Soil Pollut. 2020;231(9):1–21. doi: 10.1007/s11270-020-04852-z. DOI
Exner M, Färber H. Perfluorinated surfactants in surface and drinking waters. Environ Sci Pollut Res. 2006;13:299–307. doi: 10.1065/espr2006.07.326. PubMed DOI
Rumsby PC, Mclaughlin CL, Hall T. Perfluorooctane sulphonate and perfluorooctanoic acid in drinking and environmental waters. Philos Trans R Soc A Math Phys Eng Sci. 2009;367:4119–4136. doi: 10.1098/rsta.2009.0109. PubMed DOI
Djerahov L, Vasileva P, Karadjova I, Kurakalva RM, Aradhi KK. Chitosan film loaded with silver nanoparticles—sorbent for solid phase extraction of Al (III), cd (II), cu (II), co (II), Fe (III), Ni (II), Pb (II) and Zn (II) Carbohydr Polym. 2016;147:45–52. doi: 10.1016/j.carbpol.2016.03.080. PubMed DOI
Regiel A, Irusta S, Kyzioł A, Arruebo M, Santamaria J. Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology. 2012;24(1):015101. doi: 10.1088/0957-4484/24/1/015101. PubMed DOI
Ahmad MB, Tay MY, Shameli K, Hussein MZ, Lim JJ. Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. Int J Mol Sci. 2011;12(8):4872–4884. doi: 10.3390/ijms12084872. PubMed DOI PMC
Zhang Y, Gao X, Zhi L, Liu X, Jiang W, Sun Y, Yang J. The synergetic antibacterial activity of Ag islands on ZnO (Ag/ZnO) heterostructure nanoparticles and its mode of action. J Inorg Biochem. 2014;130:74–83. doi: 10.1016/j.jinorgbio.2013.10.004. PubMed DOI
Londoño-Restrepo SM, Jeronimo-Cruz R, Millán-Malo BM, Rivera-Muñoz EM, Rodriguez-García ME. Effect of the nano crystal size on the X-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci Rep. 2019;9(1):1–12. doi: 10.1038/s41598-019-42269-9. PubMed DOI PMC
Holder CF, Schaak RE. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Publ. 2019;13:7359–7365. doi: 10.1021/acsnano.9b05157. PubMed DOI
Buso D, Pacifico J, Martucci A, Mulvaney P. Gold-nanoparticle-doped TiO2 semiconductor thin films: optical characterization. Adv Funct Mater. 2007;17(3):347–354. doi: 10.1002/adfm.200600349. DOI
Ruggiero I, Terracciano M, Martucci NM, De Stefano L, Migliaccio N, Tatè R, Rendina I, Arcari P, Lamberti A, Rea I. Diatomite silica nanoparticles for drug delivery. Nanoscale Res Lett. 2014;9(1):1–7. doi: 10.1186/1556-276X-9-329. PubMed DOI PMC
Abreu AS, Oliveira M, de Sá A, Rodrigues RM, Cerqueira MA, Vicente AA, Machado A. Antimicrobial nanostructured starch based films for packaging. Carbohydr Polym. 2015;129:127–134. doi: 10.1016/j.carbpol.2015.04.021. PubMed DOI
Li SM, Jia N, Ma MG, Zhang Z, Liu QH, Sun RC. Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym. 2011;86(2):441–447. doi: 10.1016/j.carbpol.2011.04.060. DOI
Oyewo O, Onyango M, Wolkersdorfer C. Lanthanides removal from mine water using banana peels nanosorbent. Int J Environ Sci Technol. 2018;15:1265–1274. doi: 10.1007/s13762-017-1494-9. DOI
Zvinowanda C, Okonkwo J, Shabalala P, Agyei N. A novel adsorbent for heavy metal remediation in aqueous environments. Int J Environ Sci Technol. 2009;6:425–434. doi: 10.1007/BF03326081. DOI
Guo J, Lua AC. Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants. Mater Lett. 2002;55:334–339. doi: 10.1016/S0167-577X(02)00388-9. DOI
Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report) Pure Appl Chem. 2015;87(9–10):1051–1069. doi: 10.1515/pac-2014-1117. DOI
Baccar R, Sarrà M, Bouzid J, Feki M, Blánquez P. Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J. 2012;211:310–317. doi: 10.1016/j.cej.2012.09.099. DOI
Omo-Okoro PN, Daso AP, Okonkwo JO. Per- and Polyfluoroalkyl substances: ubiquity, levels, toxicity and their removal from aqueous media using novel agro-based adsorbents. Organohalogen Compd. 2018b;80:309–12 http://dioxin20xx.org/organohalogen-compounds-database-search/. Accessed 10 Mar 2020.
Wang N, Liu J, Buck RC, Korzeniowski SH, Wolstenholme BW, Folsom PW, Sulecki LM. 6: 2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere. 2011;82:853–858. doi: 10.1016/j.chemosphere.2010.11.003. PubMed DOI
Guo W, Huo S, Feng J, Lu X. Adsorption of perfluorooctane sulfonate (PFOS) on corn straw-derived biochar prepared at different pyrolytic temperatures. J Taiwan Inst Chem Eng. 2017;78:265–271. doi: 10.1016/j.jtice.2017.06.013. DOI
Kumar N, Mittal H, Parashar V, Ray SS, Ngila JC. Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel. RSC Adv. 2016;6:21929–21939. doi: 10.1039/C5RA24299A. DOI
Oyewo OA, Onyango MS, Wolkersdorfer C. Application of banana peels nanosorbent for the removal of radioactive minerals from real mine water. J Environ Radioact. 2016;164:369–376. doi: 10.1016/j.jenvrad.2016.08.014. PubMed DOI
Mekonnen E, Yitbarek M, Soreta TR. Kinetic and thermodynamic studies of the adsorption of Cr (VI) onto some selected local adsorbents. S Afr J Chem. 2015;68:45–52. doi: 10.17159/0379-4350/2015/v68a7. DOI
Piccin J, Dotto G, Pinto L. Adsorption isotherms and thermochemical data of FD&C red n 40 binding by chitosan. Braz J Chem Eng. 2011;28:295–304. doi: 10.1590/S0104-66322011000200014. DOI
Al-Anber MA. Thermodynamics approach in the adsorption of heavy metals. Thermodynamics-Interaction Studies-Solids, Liquids and Gases. InTech; 2011. 30 pp.
Dada A, Olalekan A, Olatunya A, Dada O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem. 2012;3(1):38–45. doi: 10.9790/5736-0313845. DOI
He J, Hong S, Zhang L, Gan F, Ho Y. Equilibrium and thermodynamic parameters of adsorption of methylene blue onto rectorite. Fresenius Environ Bull. 2010;19:2651–2656.
Sharma PK, Ayub S, Tripathi CN. Isotherms describing physical adsorption of Cr (VI) from aqueous solution using various agricultural wastes as adsorbents. Cogent Eng. 2016;3(1):1186857. doi: 10.1080/23311916.2016.1186857. DOI
Aziz HA, Yusoff MS, Adlan MN, Adnan NH, Alias S. Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Waste Manag. 2004;24:353–358. doi: 10.1016/j.wasman.2003.10.006. PubMed DOI
Ismail M, Weng CN, Rahman HA, Zakaria NA. Freundlich isotherm equilibrium equations in determining effectiveness of a low cost absorbent to heavy metal removal in wastewater (leachate) at Teluk Kitang landfill, Pengkalan Chepa, Kelantan, Malaysia. J Geogr Earth Sci. 2013;1:1–8.
Arsénio de Sá AS, Moura I, Machado AV. Polymeric materials for metal sorption from hydric resources, In Water Purification, Academic Press. 2017; 289–322. 10.1016/B978-0-12-804300-4.00008-3
Equilibria. Adsorption Equilbrium Principles [Online]. Marmara University, Turkey. 2017, 29 pp. available: http://mimoza.marmara.edu.tr/~zehra.can/ENVE401/3.%20Adsorption%20Equilibria.pdf. Accessed 6 Dec 2019.
Kumar U, Bandyopadhyay M. Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol. 2006;97:104–109. doi: 10.1016/j.biortech.2005.02.027. PubMed DOI
Bansal G. What does coefficient of determination explain? (In terms of variation). University of Wisconsin. 2020. https://blog.uwgb.edu/bansalg/statistics-data-analytics/linear-regression/what-does-coefficient-of-determination-explain-in-terms-of-variation/ Accessed 5 Feb 2020.
Ratner B. The correlation coefficient: its values range between +1/−1, or do they? J Target Meas Anal Mark. 2009;17:139–142. doi: 10.1057/jt.2009.5. DOI
Ahmad MA, Puad NA, Bello OS. Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour Ind. 2014;6:18–35. doi: 10.1016/j.wri.2014.06.002. DOI
Adane B, Siraj K, Meka N. Kinetic, equilibrium and thermodynamic study of 2-chlorophenol adsorption onto Ricinus communis pericarp activated carbon from aqueous solutions. Green Chem Lett Rev. 2015;8:1–12. doi: 10.1080/17518253.2015.1065348. DOI
Hamad BK, Noor AM, Rahim AA. Removal of 4-chloro-2-methoxyphenol from aqueous solution by adsorption to oil palm shell activated carbon activated with K2CO3. J Phys Sci. 2011;22:39–55. doi: 10.1016/j.jaubas.2015.09.001. DOI
Khan MN, Wahab MF. Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution. J Hazard Mater. 2007;141(1):237–244. doi: 10.1016/j.jhazmat.2006.06.119. PubMed DOI