Use of Precision-Cut Tissue Slices as a Translational Model to Study Host-Pathogen Interaction
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
Grantová podpora
BB/G019177/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
34150901
PubMed Central
PMC8212980
DOI
10.3389/fvets.2021.686088
Knihovny.cz E-zdroje
- Klíčová slova
- host-pathogen interaction, immunology and infectious diseases, precision cut tissue slices, vaccinology, veterinary,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The recent increase in new technologies to analyze host-pathogen interaction has fostered a race to develop new methodologies to assess these not only on the cellular level, but also on the tissue level. Due to mouse-other mammal differences, there is a desperate need to develop relevant tissue models that can more closely recapitulate the host tissue during disease and repair. Whereas organoids and organs-on-a-chip technologies have their benefits, they still cannot provide the cellular and structural complexity of the host tissue. Here, precision cut tissue slices (PCTS) may provide invaluable models for complex ex-vivo generated tissues to assess host-pathogen interaction as well as potential vaccine responses in a "whole organ" manner. In this mini review, we discuss the current literature regarding PCTS in veterinary species and advocate that PCTS represent remarkable tools to further close the gap between target identification, subsequent translation of results into clinical studies, and thus opening avenues for future precision medicine approaches.
Zobrazit více v PubMed
Alsafadi HN, Uhl FE, Pineda RH, Bailey KE, Rojas M, Wagner DE, et al. . Applications and approaches for three-dimensional precision-cut lung slices. Disease modeling and drug discovery. Am J Respir Cell Mol Biol. (2020) 62:681–91. 10.1165/rcmb.2019-0276TR PubMed DOI PMC
Bryson KJ, Garrido D, Esposito M, McLachlan G, Digard P, Schouler C, et al. . Precision cut lung slices: a novel versatile tool to examine host-pathogen interaction in the chicken lung. Vet Res. (2020) 51:2. 10.1186/s13567-019-0733-0 PubMed DOI PMC
Ebsen M, Mogilevski G, Anhenn O, Maiworm V, Theegarten D, Schwarze J, et al. . Infection of murine precision cut lung slices (PCLS) with respiratory syncytial virus (RSV) and chlamydophila pneumoniae using the Krumdieck technique. Pathol Res Pract. (2002) 198:747–53. 10.1078/0344-0338-00331 PubMed DOI
Goris K, Uhlenbruck S, Schwegmann-Wessels C, Kohl W, Niedorf F, Stern M, et al. . Differential sensitivity of differentiated epithelial cells to respiratory viruses reveals different viral strategies of host infection. J Virol. (2009) 83:1962–8. 10.1128/JVI.01271-08 PubMed DOI PMC
Kirchhoff J, Uhlenbruck S, Goris K, Keil GM, Herrler G. Three viruses of the bovine respiratory disease complex apply different strategies to initiate infection. Vet Res. (2014) 45:20. 10.1186/1297-9716-45-20 PubMed DOI PMC
Kirchhoff J, Uhlenbruck S, Keil GM, Schwegmann-Wessels C, Ganter M, Herrler G. Infection of differentiated airway epithelial cells from caprine lungs by viruses of the bovine respiratory disease complex. Vet Microbiol. (2014) 170:58–64. 10.1016/j.vetmic.2014.01.038 PubMed DOI
Cousens C, Alleaume C, Bijsmans E, Martineau HM, Finlayson J, Dagleish MP, et al. . Jaagsiekte sheep retrovirus infection of lung slice cultures. Retrovirology. (2015) 12:31. 10.1186/s12977-015-0157-5 PubMed DOI PMC
Wu W, Booth JL, Duggan ES, Wu S, Patel KB, Coggeshall KM, et al. . Innate immune response to H3N2 and H1N1 influenza virus infection in a human lung organ culture model. Virology. (2010) 396:178–88. 10.1016/j.virol.2009.10.016 PubMed DOI PMC
Wu W, Zhang W, Booth JL, Metcalf JP. Influenza A(H1N1)pdm09 virus suppresses RIG-I initiated innate antiviral responses in the human lung. PLoS One. (2012) 7:e49856. 10.1371/journal.pone.0049856 PubMed DOI PMC
Delgado-Ortega M, Melo S, Punyadarsaniya D, Rame C, Olivier M, Soubieux D, et al. . Innate immune response to a H3N2 subtype swine influenza virus in newborn porcine trachea cells, alveolar macrophages, and precision-cut lung slices. Vet Res. (2014) 45:42. 10.1186/1297-9716-45-42 PubMed DOI PMC
Punyadarsaniya D, Liang CH, Winter C, Petersen H, Rautenschlein S, Hennig-Pauka I, et al. . Infection of differentiated porcine airway epithelial cells by influenza virus: differential susceptibility to infection by porcine and avian viruses. PLoS One. (2011) 6:e28429. 10.1371/journal.pone.0028429 PubMed DOI PMC
Punyadarsaniya D, Winter C, Mork AK, Amiri M, Naim HY, Rautenschlein S, et al. . Precision-cut intestinal slices as a culture system to analyze the infection of differentiated intestinal epithelial cells by avian influenza viruses. J Virol Methods. (2015) 212:71–5. 10.1016/j.jviromet.2014.10.015 PubMed DOI PMC
Dobrescu I, Levast B, Lai K, Delgado-Ortega M, Walker S, Banman S, et al. . In vitro and ex vivo analyses of co-infections with swine influenza and porcine reproductive and respiratory syndrome viruses. Vet Microbiol. (2014) 169:18–32. 10.1016/j.vetmic.2013.11.037 PubMed DOI PMC
Meng F, Wu NH, Nerlich A, Herrler G, Valentin-Weigand P, Seitz M. Dynamic virus-bacterium interactions in a porcine precision-cut lung slice coinfection model: swine influenza virus paves the way for Streptococcus suis infection in a two-step process. Infect Immun. (2015) 83:2806–15. 10.1128/IAI.00171-15 PubMed DOI PMC
Neuhaus V, Schwarz K, Klee A, Seehase S, Forster C, Pfennig O, et al. . Functional testing of an inhalable nanoparticle based influenza vaccine using a human precision cut lung slice technique. PLoS One. (2013) 8:e71728. 10.1371/journal.pone.0071728 PubMed DOI PMC
Temann A, Golovina T, Neuhaus V, Thompson C, Chichester JA, Braun A, et al. . Evaluation of inflammatory and immune responses in long-term cultured human precision-cut lung slices. Hum Vaccin Immunother. (2017) 13:351–358. 10.1080/21645515.2017.1264794 PubMed DOI PMC
Abd El Rahman S, Winter C, El-Kenawy A, Neumann U, Herrler G. Differential sensitivity of well-differentiated avian respiratory epithelial cells to infection by different strains of infectious bronchitis virus. J Virol. (2010) 84:8949–52. 10.1128/JVI.00463-10 PubMed DOI PMC
Krimmling T, Beineke A, Schwegmann-Wessels C. Infection of porcine precision cut intestinal slices by transmissible gastroenteritis coronavirus demonstrates the importance of the spike protein for enterotropism of different virus strains. Vet Microbiol. (2017) 205:1–5. 10.1016/j.vetmic.2017.04.029 PubMed DOI PMC
Weldearegay YB, Muller S, Hanske J, Schulze A, Kostka A, Ruger N, et al. . Host-pathogen interactions of Mycoplasma mycoides in caprine and bovine precision-cut lung slices (PCLS) models. Pathogens. (2019) 8:82. 10.3390/pathogens8020082 PubMed DOI PMC
Werling D, Jann OC, Offord V, Glass EJ, Coffey TJ. Variation matters: TLR structure and species-specific pathogen recognition. Trends Immunol. (2009) 30:124–30. 10.1016/j.it.2008.12.001 PubMed DOI
Gibson AJ, Coffey TJ, Werling D. Of creatures great and small: the advantages of farm animal models in immunology research. Front Immunol. (2013) 4:124. 10.3389/fimmu.2013.00124 PubMed DOI PMC
Abolins S, King EC, Lazarou L, Weldon L, Hughes L, Drescher P, et al. . The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat Commun. (2017) 8:14811. 10.1038/ncomms14811 PubMed DOI PMC
Arnesen H, Knutsen LE, Hognestad BW, Johansen GM, Bemark M, Pabst O, et al. . A model system for feralizing laboratory mice in large farmyard-like pens. Front Microbiol. (2020) 11:615661. 10.3389/fmicb.2020.615661 PubMed DOI PMC
Groff BD, Kinman AWL, Woodroof JF, Pompano RR. Immunofluorescence staining of live lymph node tissue slices. J Immunol Methods. (2019) 464:119–5. 10.1016/j.jim.2018.10.010 PubMed DOI PMC
Belanger MC, Ball AG, Catterton MA, Kinman AWL, Anbaei P, Groff BD, et al. . Acute lymph node slices are a functional model system to study immunity ex vivo. ACS Pharmacol Transl Sci. (2021) 4:128–42. 10.1021/acsptsci.0c00143 PubMed DOI PMC
Dresen M, Schenk J, Berhanu Weldearegay Y, Votsch D, Baumgartner W, Valentin-Weigand P, et al. . Streptococcus suis induces expression of cyclooxygenase-2 in porcine lung tissue. Microorganisms. (2021) 9:366. 10.3390/microorganisms9020366 PubMed DOI PMC
Vietmeier J, Niedorf F, Baumer W, Martin C, Deegen E, Ohnesorge B, et al. . Reactivity of equine airways–a study on precision-cut lung slices. Vet Res Commun. (2007) 31:611–9. 10.1007/s11259-007-3501-y PubMed DOI
Votsch D, Willenborg M, Baumgartner W, Rohde M, Valentin-Weigand P. Bordetella bronchiseptica promotes adherence, colonization, and cytotoxicity of Streptococcus suis in a porcine precision-cut lung slice model. Virulence. (2021) 12:84–95. 10.1080/21505594.2020.1858604 PubMed DOI PMC